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3D Flight Navigation Using 
Sparse Voxel Octrees
Daniel Brewer

21.1 Introduction

Navigating two-dimensional spaces is something we are quite familiar with in the game 
AI field. Regular grids, corridor maps, and navigation meshes (navmeshes) are all very well 
known and documented problem spaces. However, navigating in full three-dimensional 
environments where the agents are not constrained to the ground is quite a challenging 
problem space and is compounded when having to deal with very large, sparsely popu-
lated volumes that have clusters of dense, complex regions.

A Sparse Voxel Octree (SVO) is a spatial structure used in graphics rendering, par-
ticularly ray-tracing. This structure is optimized for handling large, sparsely populated 
regions. This chapter will cover how we adapted SVOs for use in 3D flight navigation in 
Warframe, discuss modifications to the A* search algorithm to work on this adaptive grid 
representation and go into the details of tuning the heuristic to speed up the search by 
sacrificing optimality.

21.2 Alternative Techniques

Before covering how to use SVOs to represent flight navigation, we will briefly cover a few 
other alternatives.
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266 21. 3D Flight Navigation Using Sparse Voxel Octrees

A simple approach is to use a connected waypoint graph. Bounding volumes of free 
space can be manually placed by the level designer. Clear paths between volumes can be 
marked up as connections in the graph. These annotations work well in small areas or to 
simply provide occasional extra flight shortcuts above normal ground navigation. But, 
waypoint graphs in 3D have the same problems as in 2D space. There are a limited number 
of connections between volumes, which results in unnatural flight-paths as agents deviate 
to go back to a specific connection. Another limitation of this approach is that the graphs 
are typically made by hand and are therefore static and cannot easily adapt to changes in 
the level.

Alternatively, it is possible to extend navmeshes to be used for flight path planning. 
A series of navmeshes can be created at various heights above the ground. Special flight-
links can be used to connect these meshes to allow flying avatars to path up or down 
through the multiple layers of NavMesh. This technique can work well in confined spaces 
such as indoors or for creatures restricted to hovering near the ground. In very large 
volumes, such as a 2 km by 2 km by 2 km cube in an asteroid field, it becomes impossible 
to decide how many layers of NavMesh will be required to cover the volume adequately.

Regular grids are another option, though the sheer size of the search space is a major 
drawback. A 3D regular grid covering the aforementioned 2 km cube at 2 m resolution 
would require a billion grid locations!

Given the issues mentioned with each approach, an adaptive representation of the vol-
ume is required. More detail is needed in the dense, cluttered regions and wide the open 
regions should occupy as little memory as possible. Ideally, this representation can be 
constructed quickly and dynamically at runtime in order to handle dynamic levels where 
the collision geometry is not known ahead of time.

21.3 Sparse Voxel Octrees

SVOs are a popular graphics structure used for lighting and ray-tracing. Since they are 
essentially an octree, they facilitate fast position lookups, as you hierarchically split the 
volume into eight partitions at each level of the tree. The data structure contains neighbor 
connectivity information instead of just parent–child links to speed up traversal through 
the tree for ray-tracing. We can repurpose this connectivity information for path plan-
ning. There are several techniques for constructing SVOs, some of which boast interac-
tive frame-rate performance by optimizing and parallelizing the construction algorithm 
(Schwarz and Seidel 2010). These optimizations are beyond the scope of this chapter, how-
ever you can refer to their paper for further information.

One big difference between a typical octree data structure and an SVO is the way the data 
are stored in memory. In an SVO, the data for each level of the tree are usually compacted 
together and stored in Morton Code order in memory. The Morton order is a z-shaped 
space-filling curve that maps three-dimensional coordinates into a one-dimensional 
sequence (Morton 1966, Haverkort and Freek van Walderveen 2008). It does this by inter-
leaving the bits from each coordinate. For instance, the 2D x/y coordinate (0,3) is rep-
resented in binary as (00,11) and encoded as 1010. This method has the advantageous 
property of keeping neighbors within a quadtree or octree locally coherent. Figure 21.1 
shows how Morton Codes fill 2D and 3D space. Storing the nodes in Morton order flattens 
the entire three-dimensional octree into a linear, one-dimensional array.
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26721.3 Sparse Voxel Octrees

Figure 21.2 provides a high-level illustration of how the data in the SVO are arranged. 
Nodes from each level of the octree are stored in their own array, shown in the upper right 
of the figure, and the leaf nodes are stored in a separate array of 64-bit values. Following 
are the details of what is stored each node, and how the leaf nodes differ from other nodes 
in the SVO.

Each node in the tree requires a position so we know where it is in space. It also needs 
a link to its lower resolution parent node and a link to the first, higher resolution, child 
node. All nodes, except leaf nodes, will always have eight children. Since these children 
are stored contiguously in Morton Code order, we only need a link to the first child, 
and we can simply offset 0–7 to go to individual child nodes. Additionally, to help in 
traversal through the tree, each node contains six links to its neighbors through each 
of its faces.

Leaf nodes are handled differently. Since we are only concerned with collision or free 
space, our voxel data require only a single bit to store its state. The overhead of storing 
links with each voxel would be too costly. We can however use a small, compact 4 × 4 × 4 
voxel grid for each leaf; this fits nicely into 64 bits.

When dealing with massive environments, every bit of memory is important. Using 
pointers for links will mean that the data size will vary drastically between 32 bit and 64 
bit operating systems. In order to control memory usage, offsets into arrays are used for 
the links instead of pointers. Links are a general purpose way of referencing both an arbi-
trary node in the octree and an arbitrary voxel. They are used both within the octree and 
in the A* search. So, links need to be able to go up and down layers of the octree, not only 
between neighbors on the same layer. Additionally, the voxels in our leaf nodes are really 
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Figure 21.1

Diagrams showing 2D Morton Order (a, b). Note how the two-dimensional coordinates are 
mapped onto a single-dimensional sequence, shown by the line with arrows. 3D coordinates 
are mapped onto a single-dimensional sequence of Morton Codes in a similar fashion (c).
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compound nodes representing 64 different locations, which we call subnodes. We pack 
our links into 32 bit integers as follows: 

4 bits—layer index 0 to 15
22 bits—node index 0 to 4,194,303
6 bit—subnode index 0 to 63 (only used for indexing voxels inside leaf nodes)

21.4 Creating the SVO

We based our construction of the SVO on the article mentioned in the previous section 
(Schwarz and Seidel 2010). The tree is constructed from the bottom up, one layer at a time. 
This is different from the typical octree construction that splits parent nodes from the top 
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Figure 21.2

Simple illustration of the arrangement of the nodes in a Sparse Voxel Octree. Each occu-
pied node in a layer has eight children in the layer below it. The bottom-most layer maps 
directly onto the leaf node array. The leaf nodes, however, are not Octree nodes but simply 
a 64-bit integer representing a 4 × 4 × 4 voxel grid.
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down until arriving at the desired resolution of the child node. Doing it one layer at a time 
keeps each layer coherent in memory and also allows for parallelization to speed up the 
construction.

The first step is to determine how many leaf nodes are required. To do this, rasterize 
the collision geometry at a low resolution. If the final resolution is 2 m per voxel, then 
the leaf nodes in the SVO will be 4 × 2 = 8 m cubes. The parent of a leaf node will always 
have to be split; this means having two leaf nodes next to each other in each direction. 
The low-resolution rasterization can therefore be performed at a 16 m resolution, which is 
effectively layer 1 in the octree, where the leaves are in layer 0. Instead of rasterizing into a 
voxel grid, we simply keep a sorted list of unique Morton Codes of the solid voxels.

Once complete, the number of leaf nodes required can be calculated by counting the 
number of unique Morton Codes from the low resolution (layer 1) rasterize step. Eight 
leaf nodes (at layer 0) are required for each Morton Code. Their 3D coordinates can be 
calculated from the Morton Codes, and the memory for the nodes can be allocated and 
initialized in a single contiguous block.

The octree structure can now be built up from the lowest to the highest level. Bitwise 
operations can be used to modify nodes at the current level to get the Morton Code for the 
parent level. The parent–child links between layers are filled in on the way up; afterward 
the neighbor links are filled in while traversing back down.

If a node has no neighbor at the same level, then the neighbor link is set to that node’s 
higher level parent’s neighbor. This ensures that each node always has a link to a neighbor 
through each of its faces. Figure 21.3 illustrates how the neighbor links are set up.

Finally, rasterization is performed at the desired resolution into the leaf nodes. Note 
that unlike a traditional octree, the term leaf node only refers to the occupied, highest 
resolution nodes in the octree, that is, layer 0 nodes. The SVO only requires leaf nodes 
where collision geometry exists. A higher layer node that does not contain any collision 
geometry will not have any child nodes. These nodes are referred to as childless nodes 
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Figure 21.3

Neighbor links in the Sparse Voxel Octree connect to neighbors of the same layer, and if 
there is no neighbor in the same layer, the neighbor links point to the parent’s neighbor.
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instead of leaf nodes in traditional octrees. Taking the example SVO in Figure 21.2, node 
0 in layer 1 is a childless node and contains only empty space and can be freely traversed. 
Node 6 in layer 1 however, does have children: layer 0, nodes 8–15. Most leaf nodes, such 
as node 11 in layer 0, will be partially blocked and have some solid and some empty voxels.

Some leaf nodes will be completely free of collision geometry, such as node 0 in layer 0. 
The data payload for a leaf is only a 64-bit integer, and an empty leaf will contain the value 
0. These nodes can be considered padding for memory alignment. The speed advantage of 
not culling them outweighs the small additional memory cost. As explained below, during 
pathfinding, any leaf node with a value of 0 can be skipped over, as it is open space, and 
any node with a value of −1, or 0×FFFFFFFFFFFFFFFF, will be fully blocked and need not 
be explored.

21.5 Pathfinding through a SVO

The SVO is now a connected graph representing the free space that agents can traverse. 
A graph search algorithm can be used to find paths through this space. We initially chose 
to implement the standard A* search.

The first step is to look up the locations of the start and end points for the desired path 
and push the start node onto the open list. Next, pop the best node off the open list and 
mark it as visited. Expand this node by getting the neighboring nodes, scoring them with 
the A* f-cost, distance traveled plus the estimate of the distance to goal, and then push 
them onto the open list. This continues until the end point is reached.

Looking up positions is the same in an SVO as in a standard octree. Start at the top of 
the tree and test whether the point is inside the axis-aligned box of each child. Once the 
child containing the point has been identified, we repeat the test one layer deeper down 
the octree. Since octrees subdivide the volume by eight at each layer of the tree, this proce-
dure is very fast. If we arrive at a childless node, then the point is inside a large volume of 
empty space. If we arrive at a leaf node, then we can calculate which voxel within the leaf 
contains the point. We refer to this as the subnode index, and it ranges from 0 to 63 as it 
indexes a specific bit in the 64-bit voxel grid. In either case, a link can be used to represent 
this location.

To explore nodes in the SVO graph, we simply consult the neighbor links. Referring 
back to Figure 21.2, layer 1 node 4 has neighbor links to layer 1 node 0, layer 1 node 5, and 
layer 1 node 6. It is not a problem if a node has a link to a higher level node (e.g., layer 1 
linking to layer 2), as this means the search is moving into a larger open space. The search 
can freely jump between layers of the SVO as necessary.

A minor complication comes when moving from a low-resolution level to a neigh-
bor that has higher resolution children, such as going from layer 1 node 4 to layer 1 
node 6 in Figure 21.2. This is solved by pushing the low-resolution node (i.e., layer 1 
node 6) to the open list when first encountered. When this node is popped off, instead 
of processing it as normal, we find the higher resolution children that are neighbors 
of the previous node and score and push those onto the open list. In our Figure 21.2 
example, these new nodes would be layer 0 nodes 8, 9, 12, and 13. The search loop 
then proceeds as normal. Figure 21.4 shows a 2D example of the order of exploration 
of nodes jumping from higher level layers through lower level nodes and back up to 
higher level nodes again.
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Another complication to the search arises when we reach a leaf node. The voxel grid 
representing each leaf is a 64-bit integer. If this value is 0, it means the leaf node is a empty 
space, and it is treated like any other node in the tree. If the value is 0×FFFFFFFFFFFFFFFF, 
or −1, it means the leaf is entirely solid and will block all movement. This node is then 
marked closed, and the search will continue through the rest of the open nodes. Any other 
value means the leaf node contains some open space and some solid collision.

Each voxel can be treated as a separate node in the search graph. However, there are 
no explicit links in these tiny 4 × 4 × 4 voxel grids. Neighbors are calculated implicitly 
between voxels based on the 3D coordinates within the voxel grid. To avoid confusion 
between voxels and octree nodes, voxels inside leaf nodes are referred to by the subnode 
index, which is simply the 6-bit index into the 64-bit integer representing the voxel in 
the 4 × 4 × 4 grid. Once we reach edge of the tiny voxel grid, the search continues to the 
neighbor of the leaf node containing the grid.

21.6 Complications and Optimizations

It is easy to forget how big the 3D search space can get. Adding visualizations and sta-
tistics to the search will show how much space A* is actually searching. The results can 
be significantly larger than anticipated (Brewer 2015). The adaptive grid nature of the 
octree certainly helps the search jump over large tracts of open space. However, the 
plain A* search is designed to find the optimal path and will often get bogged down 
exploring all the tiny nodes in the densely populated regions instead of circling around 
them through larger nodes. Figure 21.5 shows a simple form of this “leap-ahead-and-
back-fill” problem.

It is possible to tweak the distances by using center of faces of the cubes instead of 
node centers and to use Manhattan distance instead of Euclidian distance. This tends to 
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Figure 21.4

Node expansion during A* search. To expand a node that has higher resolution children, 
add the children neighboring the previous node to the open list and expand each of them 
in turn through the usual search loop.
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only help in simple cases and does not provide as much benefit in more complex maps. 
It is important to experiment on your own maps to see which is better for your specific 
situation.

Another optimization is to bias the A* toward a greedier search by weighting the score 
more toward the estimation than the distance traveled. This is not an uncommon A* opti-
mization in games (Rabin and Sturtevant 2013) and adjusts the search to prefer exploring 
nodes it thinks are closer to the goal. This greedy approach does help significantly, how-
ever the search can still push through lots of tiny nodes instead of taking advantage of the 
larger, open ones.

The heuristic can further be adjusted with a node size compensation factor. In this 
approach, both the cost and estimation values are adjusted depending on the size of the 
node. Different compensation amounts are used for each component. The goal is to make 
it cheaper to go through large nodes and more expensive to go through small ones. This 
helps dramatically, but one final adjustment is to use a unit cost for distance traveled 
instead of Euclidian distance. This means that no matter how big the node is, traveling 
through it has the same cost. This effectively biases the search even more toward exploring 
through large nodes.

Using a greedy search and node size compensation are always at least an order of mag-
nitude better than straight A* and using unit node costs helps the search use the larger 
nodes and more often than not, gets an extra order of magnitude speed boost. The result-
ing path is not an optimal path. Agents will prefer to stay to open-space regions and will 
tend to avoid dense clusters of collision geometry, unless it is necessary to navigate into 
them.

The next problem that still hurts the optimized heuristic is an expected A* issue that gets 
exacerbated in 3D. This is the wave-front exploration pattern as A* tries to search around 
an obstacle. In 2D, when A* hits a line obstacle, it spreads out to either side in order to try 
find a way around. In 3D when the search hits an obstacle, it has to explore up and down as 
well as left and right. This can result in an expanding cone of explored nodes, spreading out 
behind the surface until a way around is found.

JPS (Harabor and Grastien 2011) is one approach to overcome the A* wave-front expan-
sion shortfall. It should be possible to extend our 3D search in the same way. We attempted 
this approach and found a great reduction in the number of nodes expanded during the 
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Figure 21.5

Vanilla A* search does not take advantage of exploring larger nodes and instead goes 
back to explore all the small nodes on a more direct route to the goal.
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search, however the time taken for the search was actually an order of magnitude slower 
than the tweaked heuristic A*. Our initial implementation of 3D JPS was admittedly quite 
naive and unoptimized, however JPS still visits a lot of nodes in 2D while finding the 
jump points, and in 3D, this becomes an O(n3) flood fill instead of O(n2). This optimiza-
tion was not pursued further, though a form of jump point expansion may prove to be a 
useful optimization. Caution must be taken to ensure that it does in fact improve perfor-
mance instead of hindering it. See (Sturtevant and Rabin 2016) for more discussion of 
these issues.

Another obvious optimization would be to use a hierarchical search. Since we already 
have a hierarchical graph structure, this does seem like an obvious choice. This approach 
would find a path at the lowest resolution and then refine the higher detail levels until a 
suitably detailed path has been found. However, doing this would require the search to 
know whether it can traverse from each face to every other face of each node at every level 
of the tree. Care needs to be taken, so this extra information does not end up bloating 
memory usage substantially. This is still an option worthy of future exploration, as it may 
substantially help the search performance.

21.7 Conclusion

As video game environments become more complex and detailed, players are becoming 
more demanding of new gameplay experiences. Using octrees for 3D navigation is not a 
particularly novel idea, however if you have never faced this problem, it can be a daunting 
problem space with many unforeseen traps. The advice provided in this chapter should 
provide you with a good starting direction.

If you do not take anything else away from this chapter, be sure to add visualizations 
and statistical reports to your algorithms to fully understand how they are functioning 
and ensure they are functioning as intended.
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