
1

Game Balancing using Genetic Algorithms to Generate Player Agents
Kazuko Manabe, Youichiro Miyake

1 Introduction

Quality assurance testing (QA) in game studios has become a major bottleneck with the

increasing development time, costs, and complexity of modern games. There is a growing

need for effective and scalable automated QA methods to replace or augment traditional

manual approaches. Advancements in computation power and AI intelligence have made it

possible now to automate most of the simple QA tasks, including game balance, designer

specification checks, and even bug detection in simple environments.

In this chapter, we introduce a method developed at Square Enix which leverages

state of the art artificial intelligence to help make life easier for our QA departments. By

way of illustration, we will discuss our experience reducing the QA cost for the game

Grimms Notes Repage [Square Enix 18].

For our method, only the fitness equation and decoding step need to be game specific

(described in 3.2.2 Fitness and 3.2.6 Decoding), which allows us to generalize the approach

to similar games while only changing the game-specific module. The gains from reducing

the QA cost meant our developers could spend more time improving other aspects of the

game such as design, optimization, graphics, and sound.

2 Grimms Notes Repage

Grimms Notes Repage is an updated re-release of the original game, Grimms Notes, and is a

real-time action battle game featuring characters from classic fairy tales. The game takes

place in a world brought to life by the Story Tellers, where players must defeat the Chaos

Tellers who seek to rewrite those original stories and bring misery to the inhabitants of this

world. Grimms Notes1 is free-to-play with in-app item purchases that was available on both

iOS and Android.

A battle in Grimms Notes consists of two parties fighting each other and is won when

the boss or all the enemies are defeated and lost when both heroes belonging to the party

leader die. A party is composed of multiple characters, each able to equip multiple items

such as weapons, accessories, and various outfits. Figure 1 shows the player’s party

structure, composed of four main characters each with two associated heroes. The game

supports an enormous number of possible party combinations with seven main characters,

four accessories and 65 skill cores, as well as approximately 80 heroes, 60 weapons (per

hero), and three outfits per hero. In addition, some equipment has a rarity level, with higher

1 We are discussing the version released on July 26th, 2017 and from here on will simply refer to the game as

Grimms Notes.

2

rarity levels meaning stronger equipment1.

Figure 1: Party structure

The overwhelming variety makes it difficult to manually balance the game to ensure

that no combination is overpowered. Making matters more complicated, new items and

characters are released every one to two weeks. Each new item requires tuning before

release; however, it is impossible to manually test all combinations within this limited

timeframe given the combinatorial complexity. Nevertheless, not tuning these items would

result in an unacceptable game experience for the player. Thus, we are left with the

challenge of how to realistically assure the balance of the game.

3 Our solution

Good game balance in Grimms Notes should allow for plenty of strong party combinations

while eliminating the overpowered ones. To find such balance-breaking combinations before

the release of new characters or equipment, we create virtual player agents in a pre-release

version of the game. We then use a genetic algorithm (GA) [Stuart 02] to progress and

strengthen those agents; genetic algorithms are well-suited for combinatorial optimization

and allow us to visualize the evolution of each party easily. (For other examples of using GA

for game balancing, see AiGameDev 12 and Tomobe 16.)

1 Note that although the game has some party items for sale, players also can acquire the same items through

battles without payment. For our discussion, we will assume all possible items are available.

Party

Main
character
(Leader)

Hero

Outfit

Accessory

Weapon

Skill core 1

…

Skill core 6

Hero

Outfit

Accessory

Weapon

Skill core 1

…

Skill core 6

Main
character

Hero

Outfit

Accessory

Weapon

Skill core 1

…

Skill core 6

Hero

Outfit

Accessory

Weapon

Skill core 1

…

Skill core 6

Main
character

Hero

Outfit

Accessory

Weapon

Skill core 1

…

Skill core 6

Hero

Outfit

Accessory

Weapon

Skill core 1

…

Skill core 6

Main
character
(Support)

Hero

Outfit

Accessory

Weapon

Skill core 1

…

Skill core 6

Hero

Outfit

Accessory

Weapon

Skill core 1

…

Skill core 6

3

3.1 Genetic Algorithms

A genetic algorithm is a probabilistic algorithm that generates an approximate solution

based on Darwin’s Theory of Evolution. The main process consists of producing new

solutions (offspring) from an existing population and then selecting the fittest among those

offspring to produce the subsequent generations. Genetic algorithms have been around for

several decades, and there exist many variations.

 In this section, we will introduce the specific variant that we used in our research.

First, let us define some basic terms:

Gene – A single parameter of the search space.

Chromosome – Collection of genes.

Individual – Instantiated chromosome(s), i.e., a solution candidate.

Population – Collection of individuals.

Fitness – Evaluation function for an individual against the specified problem.

Crossover – Process to generate new individuals by breeding two individuals.

Mutation – Process to randomly change some genes to escape local optima.

Generation – A cycle in the iterative process of the GA (see the algorithm below).

The general algorithm is then as follows:

1. Generate an initial, random population.

2. Calculate fitness of every generated individual.

3. Copy the individual with the highest fitness to the next generation pool.

4. With a certain probability, mutate the genes of some individuals in the current

population.

5. From among this modified population, choose pairs of individuals according to their

fitness.

6. Generate new individuals for the next generation pool from the chosen parents via

crossover.

7. If the number of generations reaches a specified number, quit; else, go back to (2).

Typically, a probabilistic algorithm should iterate until there is no further improvement. For

a genetic algorithm, however, it can be difficult to know when or if there will be no further

improvement from a subsequent iteration because the random mutations can cause the

results to evolve suddenly and by design are impossible to predict. With this in mind, we ran

a few thousand generations from various initial populations and found that big

improvements almost never occur after about 300 generations. Considering the training time

required, we felt it reasonable to terminate each training run after 500 generations, which

took about 10 hours.

3.2 Applying a Genetic Algorithm to Grimms Notes

In the following section, we will take a look at our specific approach to game balance in

Grimms Notes using a genetic algorithm.

4

3.2.1 Chromosome
As our aim was to uncover overly strong parties, we used the party as our chromosomal unit. The

party composition then determined the genes. Specifically, there was a gene for every possible

selection within each the seven categories: main character, hero, support hero, outfit, weapon,

accessory, and skill core.

4.2 Data statistics

One of our key questions was which genes (main character, hero, weapon, et cetera) result in

strong parties. As one of indicators of strength, we used frequency, namely the number of

times a gene is used in the winning parties (individuals). The genes included in individuals

with high fitness have a high probability of being selected because many of the genes from

individuals with high fitness will be carried over to the next generation (3.2.5 Selection).

Given that, the frequency of appearance in the winning parties is a useful indicator of the

value of that gene.

We executed the GA simulation independently nine times to gather all the data from

the winning individuals. Using independent and multiple simulations helped us reduce the

influence from local optimums. We calculated the usage frequency of a character as a ratio:

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑒𝑠)/(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑒𝑠)

The frequency values are shown in Table 1. If the genetic algorithm does not work well or

all heroes are of equal strength the frequency should be 8 / 300 ≅ 0.027 since there are

about 300 heroes, and eight heroes in a party. The highest frequency is 0.71, which is much

higher than 0.027, indicating for us that the strength of the characters used in the GA are not

uniform and that the algorithm is working appropriately to help us uncover overpowered

selections. This table shows the frequency of use of individual heroes, but the same method

can be used for combinations with non-hero genes such as weapons.

Table 1: Frequency of use of hero genes included winning individuals

Rank Frequency Count Average of battle duration

1 0.71 138407 533.47

2 0.58 114426 536.66

3 0.45 87945 498.04

4 0.32 62871 517.22

5 0.32 61894 577.96

6 0.24 47642 501.91

7 0.23 46063 539.18

8 0.20 39933 502.56

9 0.20 39411 521.92

10 0.20 39135 505.16

 shows the resulting chromosome.

5

3.2.2 Fitness

Fitness represents the degree of success in an environment according to some measure and

the underlying fitness function is a key element in a genetic algorithm. For Grimms Notes,

the environment is a specified battle, and the fitness represents the strength of the party

during that battle.

We explored a few options before arriving at our fitness function. One initial

candidate was simply: (𝐷𝑒𝑎𝑙𝑡 𝑑𝑎𝑚𝑎𝑔𝑒) /(𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑑𝑎𝑚𝑎𝑔𝑒). While reasonable at first

glance, the algorithm ended up producing parties that were defeated quickly. Upon

investigation, we saw that the algorithm had found that the best way to achieve high fitness

is to set heroes with low defense and low vitality as the leader and simply lose as quickly as

possible to minimize the received damage. In another instance, we defined the fitness for

defeated parties as the length of the battle. This time, the algorithm produced parties that

were highly defensive. They were the results of the algorithm selecting for longer battles

even if the party ultimately lost. Ultimately, we arrived at the following fitness measure:

When the party wins, the strength is defined by the duration of the battle (how fast was the

party able to win). When the party loses, strength is defined by the damage dealt to the

enemies.

It is important to note, therefore, that the appropriate fitness function will depend on

the content and context of the game and needs careful consideration. In this case, our

function only applies to our specific use case in Grimms Notes.

Figure 2: An example of the chromosome

Weapon

Outfit

Accessory

Skill core

Main character

Hero

Support hero

6

3.2.3 Battle for Fitness

In calculating the party’s fitness (the result of the battle), we did not use the actual battle but

rather a simulation. In particular, the simulation replaces a few elements of the battle, such

as extra skills and the concepts of space and distance, by parameters which can be adjusted

by developers familiar with Grimms Notes. The biggest advantage of simulating a battle is

that the actual in-game battle consumes a few minutes, while this calculation needs only one

or two seconds on a standard computer.

3.2.4 Crossover

Crossover is an operation for breeding multiple individuals (parents) by mixing genes in

their chromosomes to generate offspring. There are different methods to cross parents. For

our game, a crossover is limited to within the same category (Figure 3). In addition, every

gene belongs to one of two types: unique or non-unique. Main character, hero, support hero,

and outfit are all unique categories in that players cannot have multiple of the same type

(e.g. a player cannot have two of the same hero). Weapon, accessories, and skill core, on the

other hand, are non-unique categories in which players can have more than one of the same

type.

We used two well-known methods for our crossovers to preserve the constraints

described above: Order Crossover [George 01] for the unique categories and Multipoint

Crossover [Brian 09] for the non-unique categories. Both decide a few points to cut. Order

Crossover simply swaps the appearance order of the genes, therefore, the same gene will not

be duplicated in their children. Multipoint Crossover swaps a part of the genes between the

cut points. As a result, their children can have two or more of the same genes.

3.2.5 Selection

The selection phase selects individuals for crossover according to their fitness. We used a

common method called “roulette wheel selection” [Brian 09], which changes the probability

of the selection relative to the fitness value. Higher fitness corresponds to a higher

probability of selection (Figure 4). The number of elements of one generation is 𝑛, the

fitness for individuals is 𝑓𝑘(k = 1. . n) and the probability of being selected as a parent for

an individual 𝑖 (1 ≤ 𝑖 ≤ 𝑛) is 𝑃𝑖 = 𝑓𝑖/ ∑ 𝑓𝑘
𝑛
𝑘=1 .

There is a drawback to this method: an individual with a very high fitness will

always result in a very high probability of selection. Thus, the next generation will be mostly

generated from this individual, leading to a local optimum. To avoid this, common practice

is to adjust the fitness value between generations.

In our method we define the fitness function by the following polynomial:

𝑓𝑖
𝑏 = 𝑐1

𝑏 ∗ 𝑑𝑖
𝑏– 𝑐2

𝑏 ∗ 𝑡𝑖
𝑏 + 𝑐3

𝑏

This represents the fitness for an individual 𝑖 against battle 𝑏, where 𝑑𝑖
𝑏 is the damage that

the individual 𝑖 dealt in battle 𝑏, 𝑡𝑖
𝑏 is the time consumed in battle b of the individual 𝑖, 𝑐1

𝑏

and 𝑐2
𝑏 are arbitrary constants to decide the degree of impact of 𝑑𝑖

𝑏 and 𝑡𝑖
𝑏, respectively.

Although there may be other polynomial expressions to represent the fitness, any such

expression must contain constant numbers to adjust the selection probability for the battle.

7

Finally, 𝑐3
𝑏 is an arbitrary constant to decrease or increase the probability of selection to

avoid the problem of a dominant individual.

Figure 3: Crossover within the same category

Figure 4: An example of fitness and their selection probability in roulette wheel selection

1.0 (32%)

0.9 (29%)

0.6 (19%)

0.3 (10%)

0.2 (6%)

0.1 (3%) 0.04 (1%)

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Crossover

Main character

Hero

Support hero

Main character

Hero

Support hero

Chromosome1 Chromosome2

Crossover

Crossover

8

Given that there are hundreds of kinds of battles in Grimms Notes which have

different numbers of enemies each with different strengths, it is not realistic to determine the

constant values for each battle. Instead, to further avoid local optima as well as avoid

spending too much time adjusting the constants, the damage dealt, 𝑑𝑖
𝑏, and the duration of

the battle, 𝑡𝑖
𝑏, are mapped to a part of the fitness range as outlined in Figure 5.

Specifically, 𝑡𝑚𝑖𝑛is the minimum time, and 𝑡𝑚𝑎𝑥 is the maximum time in all winning battles

in a generation. The durations of all winning battles are mapped onto [𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥] (𝑝𝑚𝑖𝑛 ≠
𝑝𝑚𝑎𝑥) on the fitness axis. Fitness 𝑓𝑖 in [𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥] has the same relation as 𝑡𝑖 in [𝑡𝑚𝑖𝑛,
𝑡𝑚𝑎𝑥]. This relation is expressed by the following equation (some exceptions, such as zero

division are omitted):

𝑝𝑚𝑎𝑥 − 𝑓𝑖

𝑓𝑖 − 𝑝𝑚𝑖𝑛
=

𝑡𝑚𝑎𝑥 − 𝑡𝑖

𝑡𝑖 − 𝑡𝑚𝑖𝑛

𝑓𝑖 =
(𝑡𝑚𝑎𝑥 − 𝑡𝑖)𝑝𝑚𝑖𝑛 + (𝑡𝑖 − 𝑡𝑚𝑖𝑛)𝑝𝑚𝑎𝑥

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛
,

In the same way, the fitness function in the losing case is expressed as follows:

𝑞𝑚𝑎𝑥 − 𝑓𝑖

𝑓𝑖 − 𝑞𝑚𝑖𝑛
=

𝑑𝑚𝑎𝑥 − 𝑑𝑖

𝑑𝑖 − 𝑑𝑚𝑖𝑛

Figure 5: An example of the fitness mapping

Victory

(Second)

Defeat

(Damage)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2

0

200

400

600

800

1000

0 2

0

200000

400000

600000

800000

1000000

0 1 2

𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥

𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛

𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥

𝑞𝑚𝑖𝑛

𝑞𝑚𝑎𝑥

9

𝑓𝑖 =
(𝑑𝑚𝑎𝑥 − 𝑑𝑖)𝑞𝑚𝑖𝑛 + (𝑑𝑖 − 𝑑𝑚𝑖𝑛)𝑞𝑚𝑎𝑥

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
,

Here 𝑑𝑚𝑖𝑛 is the minimum dealt damage, 𝑑𝑚𝑎𝑥 is the maximum dealt damage in all losing

battles in a generation, and all dealt damage in losing battles are mapped on [𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥]

(𝑞𝑚𝑖𝑛 ≠ 𝑞𝑚𝑎𝑥) on the fitness axis.

The mapping reduces the adjustment of the constants to only four parameters for all

battles: 𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥, 𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥. Currently we set 𝑝𝑚𝑖𝑛 = 1.0 , 𝑝𝑚𝑎𝑥 = 0.3, 𝑞𝑚𝑖𝑛= 0.04,

𝑞𝑚𝑎𝑥 = 0.2. Note that 𝑝𝑚𝑖𝑛 is bigger than 𝑝𝑚𝑎𝑥 because a faster time to win means higher

fitness. The broader the range for fitness in the winning case than compared to the losing

case, the greater the focus on the content of the winning battle; in other words, the difference

in duration for the winning battle is treated as a bigger effect than the difference of damage

dealt in the losing battle. In Grimms Notes, it is very common for players to win their battles

and the battle duration is one of most important guidelines to adjust difficulty of the game.

3.2.6 Decoding

The conversion from chromosomes to game-objects is called decoding. The process should

be deterministic, meaning a party decoded from the same chromosomes is always the same.

The decoding of the chromosomes in our project uses a greedy-like approach. It searches

and sets party elements from the upper layer of Figure 1 in the following order: main

character, hero, outfit, accessory, weapon, skill core, et cetera.

The biggest advantage of our chromosome structure and the decoding process is its

simplicity. While there may be more suitable chromosome structures for Grimms Notes that

would make our algorithm more efficient, such structures may not be applicable to other

games, lessening the flexibility of our approach. The simple structure allows us to not care

about the content of these updates and the kinds of battles. A re-execution of the algorithm

will result in getting agents which will meet the specification of this new environment,

which could be a change of hero, a change of battle specification and so on.

Another possible approach is genetic programming, which uses a tree structure for

the chromosome instead of a one-dimensional array and searches for an optimal program

that when executed will produce a solution. In this case the party of Grimms Notes would be

a tree structure and the crossover would then exchange their subtrees. This is equivalent to

swapping characters equipped with a particular weapon, for example, to plan a party

composition. Although this approach may seem more natural, this is only because it is easy

to envision the parties in Grimms Notes as a tree. This does not necessarily apply to other

games or to other problems, thus limiting its generalizability. At the expense of versatility,

genetic programming offered us only minimally better results for the game [Manabe 19].

Therefore, which structure ultimately depends on the size of the game project and the

number of the other relevant game projects in the company. One-dimensional arrays proved

easier to adapt to the problem than tree structures.

3.2.7 Avoiding local optima

Our system for mutation described above can help reduce the chance of a local optimum, but

it is not perfect. One simple and effective method to further reduce this risk is to evolve

10

multiple populations independently, also known as the island model [Kanakubo 21]. For our

purposes, we created nine “islands” and evolved the population in each of them. As a result,

the nine islands evolved into three different types: parties that focus on attack, parties that

focus on not taking damage, and parties that focus on recovery. The difference of the battle

duration between them is about 10%. The final step then tries to find a global optimum via

immigration, which mixes the island populations. Our exploration so far of this method has

yielded some initially promising results, though further study is needed.

4 Results

For Grimms Notes, we configured our battle to only have normal enemies instead of special,

strong enemies, such as bosses that can appear in the game. This is because the normal

battles account for more than 90% of all battles in the game and the bosses have powerful

personalities that are not appropriate for the first experiment.

In normal battles, the durations tend to be long because the battles have many

enemies. Therefore, the attack, defense and healing effectiveness must all be well balanced

for the parties to endure long-term battles. The victory condition is to wipe out all enemies

and the defeat condition is that both heroes of the leader are knocked out.

4.1 Simulation

Our GA simulation is done by generating 50 individuals per generation and 500 generations.

The number of generations is set so that the simulation can finish within about 10 hours on

our computers (Intel® Core™ i7-8700K CPU 3.70GHz, 32GB RAM and others with

equivalent specifications).

We experimented with three types of simulations. First, we executed the genetic

algorithm with all characters and equipment. For our second simulation we excluded

characters and equipment with lower rarities. Finally, to test the magnitudes of the effect of

the genetic algorithm, we ran simulations without the genetic algorithm. For all the

simulations, we set the number of islands to nine. We showed the best of the results in

Figure 6.

Simulation 1 This simulation uses all categories of characters and items. Figure 6 shows the

change of the minimum duration of the winning battles. Although all individuals in the first

generations typically lose quickly, the battle durations rise sharply up to the 17th generation,

where the first winning individual appears. After the appearance of the winning individual

the time to win shortens significantly from 816.5 seconds in the 17th generation to 571

seconds in the 494th generations, or about 30%.

Simulation 2 It was found that the evolved individuals in Simulation 1 resulted in the

inclusion of some low rarity (common) characters and equipment, which is a problem since

we’re trying to make strong parties. We removed these clearly weaker characters and

equipment components and applied our algorithm again in Simulation 2. The results show

greater damage in earlier generations when compared to Simulation 1, and the shortest battle

11

time to win reaches 467.75 seconds in the 359th generation, which is about a 20%

improvement over Simulation 1. Figure 6 shows the results of removing low rarity items.

Simulation 3 To measure the magnitude of the effect of the genetic algorithm in the results

in Simulation 1 and 2, we generated 25,000 individuals, which is the same number of

individuals in Simulation 1 and 2 (50 individuals multiplied by 500 generations) and let

them fight a battle. We limited their characters and equipment to only those with high rarity.

This yielded the shortest time to win of 600.5 seconds. The second and third shortest times

were 644.25 seconds and 671 seconds, respectively. These results are worse than the ones

from the Simulations 1 and 2. The difference of the time shows the magnitude of the effect

of our GA. The components of a party with the shortest time to win make it possible for

game developers to quickly find the existence of a disproportionately strong party

combination before releasing new equipment and characters.

Figure 6: Change of battle time. The horizontal axis represents the generation number, and the

vertical axis represents the time (seconds).

4.2 Data statistics

One of our key questions was which genes (main character, hero, weapon, et cetera) result in

strong parties. As one of indicators of strength, we used frequency, namely the number of

times a gene is used in the winning parties (individuals). The genes included in individuals

with high fitness have a high probability of being selected because many of the genes from

individuals with high fitness will be carried over to the next generation (3.2.5 Selection).

Given that, the frequency of appearance in the winning parties is a useful indicator of the

value of that gene.

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 0 100 200 300 400 500
 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

B
at

tl
e

T
im

e
(s

ec
o

n
d

)

Generation

Minimum of the battle time (Victory) (With all rarity)
Minimum of the battle time (Victory) (With only upper rarity)

12

We executed the GA simulation independently nine times to gather all the data from

the winning individuals. Using independent and multiple simulations helped us reduce the

influence from local optimums. We calculated the usage frequency of a character as a ratio:

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑒𝑠)/(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑒𝑠)

The frequency values are shown in Table 1. If the genetic algorithm does not work well or

all heroes are of equal strength the frequency should be 8 / 300 ≅ 0.027 since there are

about 300 heroes, and eight heroes in a party. The highest frequency is 0.71, which is much

higher than 0.027, indicating for us that the strength of the characters used in the GA are not

uniform and that the algorithm is working appropriately to help us uncover overpowered

selections. This table shows the frequency of use of individual heroes, but the same method

can be used for combinations with non-hero genes such as weapons.

Table 1: Frequency of use of hero genes included winning individuals

Rank Frequency Count Average of battle duration

1 0.71 138407 533.47

2 0.58 114426 536.66

3 0.45 87945 498.04

4 0.32 62871 517.22

5 0.32 61894 577.96

6 0.24 47642 501.91

7 0.23 46063 539.18

8 0.20 39933 502.56

9 0.20 39411 521.92

10 0.20 39135 505.16

5 Discussion and Conclusion

5.1 Discussion

Our method can not only be applied to Grimms Notes but also to other games and game-

balancing tasks that can be expressed in terms of genes, chromosomes, and with an

appropriate fitness function. We used 500 for the population size and nine for the number of

islands, but the appropriate values will vary depending on the complexity of the problem,

available computer resources, and time available in the development workflow. It is a good

idea to experiment beforehand when you have enough time and can better estimate how

many resources you will use.

Also, it bears emphasizing that the design of your fitness function is very important.

In our case, we used the time spent in battles for formulating the fitness function because the

game used the time a player spends in a battle as a measure of difficulty. A discussion with

the game designer is a great place to start.

Visualizing the output of GA is another challenge. In our case, we found that our GA

output so many candidates with high fitness values and potentially overpowered elements

13

that it was not realistic to check all of them by hand. Eventually, though, you will want the

game designers to investigate chromosomes according to the visualized data, so narrowing

down the number of candidates is important. Our future efforts will be focused on improving

visualization and the application of this method to different battles in this and other games.

We showed the part of our results in the experiment using genetic programming [Manabe

19], however, we must continue to try to improve how to show the data.

5.2 Conclusion

Like many games, the high complexity of Grimms Notes, combined with frequent updates,

makes manual approaches to QA and specifically game balance infeasible. The purpose of

our work was to find a way to automate the process of identifying disproportionately strong

party combinations in the game that could suggest imbalanced items or abilities before they

are introduced to players. To do so we applied a genetic algorithm, leveraging party strength

as a measure of fitness to efficiently identify outliers. Previous to this approach, our game

designers were required to judge whether the party compositions would imbalance the game

by checking as many party candidates as possible by hand. By introducing our GA method,

however, they can now limit their searches to only the strongest party candidates identified

by the GA, significantly reducing the time and therefore the QA cost to balance the game.

6 References

[AiGameDev 12] AiGameDev.com. 2012. Making Designers Obsolete? Evolution in

Game Design, http://aigamedev.com/open/interview/evolution-in-cityconquest/ (accessed

February 12, 2018).

[Brian 09] Brian Schwab: AI Game Engine Programming, Second Edition, Charles River

Media, 2009.

[George 01] George F. Luger: ARTIFICIAL INTELLIGENCE - Structures and Strategies

for Complex Problem Solving, Addison Wealey, 2001.

[Kanakubo 21] Masaaki Kanakubo, Shima moderu to MGG moderu (Island model and

MGG model),

https://www.sist.ac.jp/~kanakubo/research/evolutionary_computing/island_mgg.html

(accessed January 28, 2021).

[Manabe 19] Kazuko Manabe, Balancing Nightmares: An AI Approach to Balance Games

with Overwhelming Amounts of Data, Game Developers Conference 2019.

[Square Enix 18] SQUARE ENIX CO., LTD.: Gurimu nôtsu (Grimms Notes) Repage |

SQUARE ENIX, http://www.grimmsnotes.jp/ (accessed February 12, 2018).

[Stuart 02] Stuart Russell, Peter Norvig: Artificial Intelligence - A Modern Approach (2nd

14

Edition), Prentice Hall, 2002.

[Tomobe 16] Hironori Tomobe, Toyokazu Handa: AI ni yoru gêmu apuri unyô no kadai

kaiketsu eno apurôti (An approach for solving problems of game management by AI),

CEDEC2016, http://cedil.cesa.or.jp/cedil_sessions/view/1511 (2018-1-31 referred).

