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AI-Driven Autoplay Agents for Prelaunch Game Tuning 
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1 Introduction 

Obtaining quantitative gameplay evaluation before the game is ready for open playtests is a 

common challenge. Simulating human players with AI-driven autoplay agents (or “agents,” 

for short), however, can provide a practical tool to inform design decisions, including 

evaluating player progression and in-game economy, discovering exploits and locked states, 

balancing combat, all before the game is ready to play. Agents also provide a natural way to 

automate tuning iterations. 

At EADP AI Applications (an R&D group at Electronic Arts), we collaborated with 

game teams to implement agents across various genres. While cutting-edge AI tools like 

Reinforcement Learning (RL) can contribute to agent-based game tuning, we found that 

even simple techniques can often drive critical decisions. Starting game design with the 

agents rather than retrofitting them later speeds up design iterations and result in a better 

game. This chapter overviews several agent-based methodologies we applied to the 

gameplay design process and some case studies that illustrate our prelaunch game tuning 

techniques. We advocate that the agent simulation should be the primary tool for designers 

and the starting point of any game development. 

Though we are focusing on mobile games here, interested readers may also wish to 

review our previous discussion of open-world games (Borovikov 20, 19a, 19b, 18), which 

follow a very similar approach. 

 

2 Methodology and the chapter overview 

Artificial agents are not a new tool to gaming.  Often used to advance science through 

optimizing game-playing performance, with famous examples including the AI behind 

AlphaGo (Go) and Deep Blue (Chess). Exploitative bots, on the other hand, are scripted 

agents that automate tedious tasks or exploit aspects of a game or gaming ecosystem to the 

user’s advantage, such as automated harvesting of resources in mobile games. The AI 

involved in such examples varies from virtually non-existent, as in simple scripted bots, to 

cutting-edge deep neural nets trained on specialized hardware. 

In both cases, gameplay agents rely on the same game interface that is available for 

humans. The algorithms’ input uses the render buffer, potentially enhanced with object ids, 

depth information, and other meta-data, but is otherwise visually the same or similar to what 

a player sees. The game’s input could be a direct emulation of joystick moves, button clicks, 

and screen taps, often relying on the actual location and behavior of the UI elements. Such 

low-level interfaces make learning more difficult because of the need to first extract the 

required information from the imagery before becoming inputs to a policy (state-action 

mapping). In contrast, when we introduce agents directly into the game-development 

pipeline, they allow us to expose different methods for agents to communicate with the 
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game and can serve very different goals.  

During development, automated game playing is primarily used to evaluate and 

improve gameplay mechanics and tuning. One of the oldest, non-trivial examples of this in 

games dates more than two decades back to the PC title Sid Meier’s Alpha Centauri (SMAC 

99), a “4X” game in which players build an empire alongside other human or AI players. In 

SMAC, developers discovered by accident that the computer players could play each other, 

thus removing the human player from the equation and fully automating the play process. 

The result was a valuable source of feedback that could be collected in hours compared to 

the multiple days it might take a human to play the full game. Today many more tools exist 

to enhance the utility and efficiency of autonomous play for game development. 

From a design perspective, agents can provide quantitative metrics to help assess and 

balance the play experience. Agents have the benefit of operating at a scale and depth 

inaccessible to the relatively few (and frequently biased) developers playing the game early 

in its development. Simulating player personalities with different agents’ policies can give 

insight into the expected player’s behavior after the game’s release.  

For example, a simple greedy agent might measure some of the metrics that 

characterize less engaged or more casual players. Often, such agents represent relatively 

shallow activity-driven gameplay and thus are not difficult to model. At the simplest end of 

the intelligence spectrum, entirely random autoplay backed up by critical observations can 

be valuable, too. While an optimized agent may be a good representation of a highly 

motivated player, an activity-driven agent may correspond to a large chunk of the player 

population and provide reasonable estimates of average progression measures. Probabilistic 

models of the agents following different policies can directly translate into the 

corresponding multi-agent simulations. Besides measuring progression speed and comparing 

various progression paths in the game, agents can also provide a strength comparison for 

factions (clans, alliances, et cetera) to help estimate the value of combat units both in 

isolation and in the context of the in-game economy. Agents can substantially facilitate in-

game economy analysis, identify limiting resources, and help avoid undesirable tuning 

extremes.  

On the more extreme end, with proper optimization objectives and policies, agents 

can even simulate a performance-driven player capable of discovering loopholes in the 

game's design or implementation. Finding the global optimum (or at least a reasonable local 

one), however, is a non-trivial learning task. 

Agents can access a complete game state, the tuning data, and embed hooks into the 

code, which gives them a distinct technical advantage. Such complete access dramatically 

facilitates information and flow of control by enabling a high level of abstraction. In the RL 

context, agents can directly and fully access the Markov Decision Process (MDP), which 

models the game. Such access simplifies and speeds up the learning of various policies, 

applying different learning methods, and optimizing diverse objectives.  
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In this chapter, we start with an investigation of the more fundamental engineering aspects 

then transition toward a more conceptual design-centric view. By first creating a game 

model we can simulate various agents’ behaviors, which can then be used to quantify and 

validate the gameplay mechanics before moving on to later development phases. In many 

respects, such an approach is, in essence, test-driven development (TDD), but at a higher 

level of abstraction with the designers driving change-validate iterations. Finally, we will 

explore several case studies to illustrate our agent-based approach as a powerful tool in 

game design. 

 

3 Instrumented game clients 

Instrumenting the game client is an obvious way to set it up for the autoplay agents. 

Implementing such instrumentation early, vs. as an afterthought, in the development cycle 

will unlock the benefits of agent-based testing from the very beginning. 

 

3.1 Integrated autoplay agents 

Autoplay logic can be directly integrated into the existing code base and then compiled and 

run in the same executable. Such direct integration is a relatively small amount of work and 

opens several possibilities, like facilitating the implementation of a hint generator. 

Experimenting with reinforcement learning directly in the game code, however, is 

challenging. Supporting agents as part of the game code requires compiling the client and 

following studio production practices, potentially slowing down experimentation. Running 

simulations at scale on the game target platform is also rarely practical while collecting data 

beyond standard telemetry could be cumbersome or even infeasible, as well.  

Given the pros and cons, we opted for the integrated client approach for our brief 

collaboration with a mobile match-3 game. The game team implemented the core autoplay 

functionality allowing us to get the first practical results quickly. We ranked levels of 

difficulty with Dynamic Difficulty Adjustment technology in mind (Xue 2017), which 

allows adjusting the level of challenge depending on player performance. A somewhat 

unexpected discovery was that the relative difficulty levels did not notably depend on the 

autoplay heuristic—the relative difficulty measured from random autoplay was actually like 

that obtained from near-optimal agents. 

While the integrated autoplay allowed quickly picking some low-hanging fruit, we 

realized that it is not readily transferable to a project of higher complexity. 

 

3.2 Instrumenting for an external driver 

A more robust way to implement agents for a game is to expose controls to an external 

application. To be able to simulate human players’ behavior, the controls should be similar 

to those available to the player but exposed programmatically through some API. Figure 1 

shows a high-level diagram of the agents interacting with an instrumented game client. Such 

instrumentation can support multiple AI applications, but most closely, it follows a typical 

training setup for Reinforcement Learning (RL). The game client implements the Markov 

Decision Process (MDP), and the agent acts using the MDP in lieu of a human player. While 
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the observation-action loop is universally present in such simulations, the agents’ objective 

function will depend on the simulation goals. The instrumentation strategy details can vary 

depending on the game implementation’s specifics, but it can be as simple as the pseudo-

code on Listing 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Information and control flow for an instrumented game client. 

 

Listing 1 An instrumented game client update function. 

 
void Game::update(…) // called each frame 

{ 

    // Regular handling of game events, user input, etc. 

    … 

#ifdef AGENTS 

    // An RPC-like call to the external driver app and  

    // marshalling of the response: 

    const Action& action = RequestAction(); 

    switch (action.id) 

    { 

        // Handle actions (or no action could be the case) 

        // by calling directly into the game API or  

        // posting events into the internal events queue 

    } 

#endif // AGENTS 

}  

 

To connect Listing 1 and Figure 1, note that the pseudo-code passes a single selected 

action from the external driver application to the game client via RequestAction()with 

no arguments. This is intentional as providing an instance of the game object to 

RequestAction(this) call creates an additional dependency on the game class 
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interface. Instead, in Figure 1, we have information flow that delivers the agent’s game state 

to the control policy before it computes the next action. The specifics of transmitting state 

data may vary widely and depend on the concrete features of the game.  

One straightforward strategy is to pass state updates to the external agents’ 

application at the same time the client sends telemetry since state changes are much smaller 

and are easier to communicate compared to a complete state snapshot. That means that the 

agent must maintain a full description of the game’s initial state and can properly update it 

by reproducing game logic. This is unlikely to become a problem if the initial state is a well-

defined, relatively small piece of data and most of the updates have basic logic (e.g., 

“decrease health by 1”). While the agent can listen directly to the telemetry, we nonetheless 

found that custom messaging was more effective as we were able to combine a partial state 

snapshot with an update to validate the agents’ execution to simplify reporting. Also, custom 

messages can be fed directly into database tables for external aggregation and analysis 

without additional post-processing. 

Compiling and passing to the agent a list of available actions given the current game 

state can require additional work, depending on the game, because not all conceivable 

actions may be valid at an arbitrary state. It is particularly hard if the actions are not well 

decoupled from the UI and its state. One practical technique is to infer actions entirely or 

partially from the tuning data. These data are almost universally available in the game assets 

as parsable files, usually in JSON or XML format. While the semantics may depend on the 

gameplay logic, it is rarely ambiguous. The client application could also refuse to take 

actions not allowed in the current state or other fail-safe functionality. Sending feedback on 

failure to the driver can also help in debugging and learning valid actions. 

Note that in Listing 1, the proposed instrumentation plugs the agents’ related logic 

into the original event handling loop as an optional non-destructive addition. It preserves all 

of the original event-handling functionality, including capturing and processing user input. 

That ensures that the instrumented game updates closely correspond to the normal ones and 

their execution logic remains as unaffected as possible. Preserving user input handling helps 

with debugging and enables additional experimentation with the agent-driven game client. 

One application of maintaining user input in place is to play in an automated manner until a 

particular point and then pass control to a human player. This way, the designers can start 

the game from a later point without spending valuable time on early gameplay. Including 

idle action or throttling calls to RequestAction may be necessary to ensure correct 

update logic and proper pumping of the events. Making agents conditionally compiled 

combines the instrumentation with the base game code while stripping it from the 

production version as needed. 

A convenient way to implement communication between the agent and the game 

client is via sockets. Separation of the agents’ functionality from the base game by 

instrumenting and exposing RPC-like API allows implementing the external driver and the 

agents’ logic in your favorite programming language. We found that Python-based external 

driver hosting agents’ logic provides a reasonable trade-off between performance, ease of 

development, and simplicity of integrating agents’ code with databases for reporting and 

learning.  

It’s worth noting that many practical RL algorithms are easy to implement and need 

not be cutting-edge or unnecessarily complex to enable a valuable analysis of the gameplay, 
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as we discuss next. 

 

4 Case study 1: Progression paths in The Sims Mobile 

In this section, we discuss an example of applying the outlined methodology to a game with 

discrete states, similar to a board game. Such games have well-defined discrete states with a 

complete enumeration of valid actions. A discrete setup contrasts with open-world titles 

where the state-action space has continuous components, and its dimensionality can be 

vastly higher.  

In our case, we chose a very early version of The Sims Mobile (TSM). The gameplay 

consisted of atomic interactions that approximately corresponded with a player’s screen 

taps. Though modest, the selection of concrete interactions in various contexts required 

some skill. With that in mind, gameplay difficulty could be reasonably estimated via the 

number of times a player taps the screen. 

Among other activities, at different points in the game, a player must choose one of 

the available progression paths, build up their sims, upgrade the home lot, collect various 

items, and work on producing in-game resources. One example of a choice in TSM is 

selecting a relationship track, each of which has a corresponding strategy to progress, and 

serves.as a source of player experience (XP) and other rewards. 

 

 

Figure 2 Relative difficulty of the relationship tracks before (left) and after (right) the 

autoplay agents’ feedback. The optimized policy estimated the absolute difficulty (shown), 

which had the same relative nature as a near-random policy. 

 

As initially designed, the relationship progression had five distinct stages along each 

of the three tracks (see Figure 2). In an early version of the game, players had to complete a 
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corresponding “event” to progress to the next stage. Events consisted of a series of actions 

that generated experience points specific to the selected relationship track. While players 

could attempt events multiple times, a failed attempt resulted in lost progress and wasted 

resources. An event started with insufficient resources would “fail”, not delivering the full 

experience and preventing the player from advancing to the next stage. Thus, successful 

completion of events requires players to devise some strategy for entering them. 

 While iterating on the gameplay mechanics, a question among designers often arose: 

Do different relationship tracks provide similar benefits per tap? If not, players would 

quickly discover any imbalance and concentrate their efforts on the path with greater 

rewards. This skewed distribution of players would result in a less rich experience for the 

player as well as less efficient use of design, animation, and tuning efforts spent on the 

unpopular tracks.  

To answer this question, we simulated players’ progression using the instrumented 

game client described in the previous section. In doing so, one of the most insightful 

observations was that near-random gameplay with minimal heuristics revealed several new-

to-us and vital metrics, even though in relative terms. While the absolute number of taps we 

obtained was far from what was observed from human gameplay, the relative rate of 

progression did not notably change after we applied RL and learned more sophisticated 

gameplay policies. This meant that implementing RL across difficulty levels was not strictly 

necessary for our purposes and was in line with our observation that the relative difficulty of 

the match-3 game discussed earlier was invariant to the auto-play heuristic. Figure 2 shows 

progression speed and difficulty measured for the three relationship tracks we explored. The 

absolute values on the charts correspond to utility-based learned policy results, discussed 

next. The near-random gameplay generated similar graphs, albeit with a different scale on 

the Y-axis, showing taps. 
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Figure 3 Learning optimal policy for joining events to evaluate the difficulty of 

relationship tracks. A black box stochastic optimization allowed us to learn weights for the 

utility function using parallel execution on several cloud nodes in 700 episodes. The step-

wise shape of the plot shows the performance of the best learned so far policy. 

 

 

 Our initial learnings exposed and quantified two otherwise subjective problems 

experienced in manual play. In particular, the event difficulty for relationships did not 

follow the desired pattern of gradual increase shown by grey curves in Figure 2. The second 

stage (“sweethearts”) is substantially more challenging than desired and more challenging 

than the second stage on other tracks, peaking the difficulty too early in the relationship 

stages’ progression. As a result of this feedback, we were able to tune the game to take care 

of most of the discovered issues by the next iteration and match the target curves better at a 

qualitative level. The match we aimed at was about the progressive difficulty and 

comparable difficulty across the tracks.  

In our first implementation, the changes in tuning were done manually by designers. 

With manual tuning updates, however, achieving a numerical match to the target curves is 

very difficult. Returning for a minute to Figure 1, note the arrow going from the agents’ 

reports and dashboards back to the tuning data and gameplay logic that indicates tuning 

parameters. Nothing prevents automating this feedback loop. The collected metrics can drive 

the automatic optimization of specific objectives provided by the designers. In the example 

of the relationship track, we could aim to fit the design’s target difficulty (i.e., desired 

number of taps). The iteration time would be much faster than manual tuning changes and 

enable a tighter fit to the objectives. Though we did not automate feedback for TSM, we did 

do so for a different game, discussed later. 

 While the random policy was qualitatively useful, we still needed more accurate 

quantitative metrics that were similar to human players. That became possible by 
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introducing a simple version of RL with the goal to discover the optimal strategy of 

completing relationship events. As mentioned, players ideally need to accumulate resources 

through completing less rewarding activities, a version of “delayed gratification”. In doing 

so, the player would initiate the event, and given sufficient resources would have an 

opportunity to finish it with maximum rewards.  

While the game state space was relatively small and could be tracked using table-

based learning, tabular methods may not scale with future design iterations. And the tabular 

definition of an action-value function is not an “organic” model of the logic behind human 

players' decisions. Arguably, humans develop an intuitive feel for the action values which is 

similar to a contextual utility function. To model that, we used a utility function 

approximating value 𝑈 of an action a depending on the current game state s, expressed via 

rewards R and costs C as follows: 

 

𝑈(𝑠, 𝑎) = 𝑅(𝑎) ∗ 𝑣(𝑠) + 𝐶(𝑎) ∗ 𝑤(𝑠) 

 

For each action a, the game tuning explicitly specified reward R and cost C in terms 

of the resources gains and drains, experience points earned, and events triggered. The game 

state’s dependence comes as the learned weight functions v(s) and w(s) modifying actions’ 

utility. The state s included several commodities like energy, hunger, and an event indicator 

(0 for outside of the event and 1 otherwise) wrapped into a vector. We selected both v(s) and 

w(s) to be linear functions with coefficients p and q that we had to learn: 

 

𝑣 = 𝑝 ∗ 𝑠;  𝑤 = 𝑞 ∗ 𝑠 

 

To pick the next action, we used the SoftMax algorithm, a probabilistic decision rule 

with the probability of selecting an action 𝑎𝑖 being proportional to the exponent of its utility: 

 

𝜎(𝑎𝑖, 𝑠) =
exp(𝑈(𝑎𝑖, 𝑠) ∗ 𝜏)

∑ exp(𝑈(𝑎𝑗 , 𝑠) ∗ 𝜏)𝑗

 

 

Here 𝜏 = 1/𝑇 is the inverse of the “temperature” T parameter. A higher temperature 

results in the distribution of probabilities over actions close to the uniform, like in a random 

policy. Correspondingly, a lower temperature increases preference for the action with higher 

utility. Thus, the temperature may be interpreted as player skill. 

The optimal policy’s objective was to complete all events and reach the highest 

available relationship level in the least number of taps. Capturing that objective required 

rewards engineering. Experimentally, we discovered that the following expression for the 

total reward ℛ per episode worked well as the optimization objective: 

  

ℛ =
𝑟(𝑟 + ϵ)

(𝑎 + 𝜖)
 → 𝑚𝑎𝑥  

  

Here r is the number of rewarded events, a is the number of all attempted events 

during the episode, and ε is a small number (less than 1) to eliminate division by zero when 
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the policy did not try to start any event. Intuitively, the total reward expression penalizes a 

lack of attempts to initiate an event (denominator) and quadratically rewards the number of 

completed events (numerator). Other reward functions would work provided they encourage 

starting events, penalize unsuccessful ones, and reward better paths to completion. 

Due to the discrete nature of our learning problem, optimizing ℛ using gradient 

methods would fail, especially at lower temperatures. Finding gradient direction requires 

randomization of the weights we are trying to learn, whereas the graph of our function 

contains “flat” terraces that would interfere with this process. It turned out that black-box 

optimization with artificial noise added to the parameters, now popularized as Evolutionary 

Strategies (ES) (Salimans 17), worked very well. One of the advantages of ES optimization 

is the ease of using several cloud nodes to perform optimization. To ensure convergence, we 

had to tune meta-parameters, the initial values for the temperature, and the initial radius for 

the Gaussian sampler, as well as their decrease rate. Finding a practical combination of these 

parameters was straightforward, thanks to running simulations on several cloud nodes. In 

only 700 episodes the utility-based approach successfully learned an efficient policy for 

joining events (Figure 3). The results in Figure 2 are the metrics obtained from the 

optimized agent and were qualitatively in line with the results from the game-balancing 

specialists.  

We found that utility-based policy performance was close to the best theoretical limit 

directly estimated from the game tuning data. Unfortunately, this was not practically 

achievable given our approach. Still, finding global optimum is critical in evaluating a game 

for exploits and search-based methods can result in globally optimal policies that point to 

design loopholes, at least in principle. With this in mind, we revisit TSM with A-star as the 

primary search method for computing optimal gameplay in section 6.2. 

The following section describes a more practical alternative and looks at why agents-

based simulation should come first in the development process.  

 

5 Case study 2: Modular agents, rock-paper-scissors, and combat evaluation 

This section looks at an application of agents leveraging natural modularization engineered 

from the beginning of the game development. Our case study is based on mobile a 4X 

MMO.  Unlike an activity-based game like TSM, the 4X genre assumes highly competitive 

gameplay. We look at the problem of balancing the classic rock-paper-scissors (RPS) 

dynamics with the game economy in mind. 

The game implemented a standard client-server architecture, with the local client 

facilitating the player’s interaction with the game and any game logic is executed on the 

server. There is no simulation happening on the mobile device. As is typical for the 4X 

genre, players send armies consisting of units created on their bases to fight other players 

who belong to an opposing faction or clan. Since the combat logic is naturally separable 

from the rest of the gameplay, the game team implemented a wrapper to allow combat 

simulation in a standalone application while sharing the server’s codebase. Our goal was to 

facilitate tuning of combat units and general player progression. 

 The agents in our exploration communicated with the game using two different 

methods. One way to interact is using the server API, which already had exposed web 
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sockets and REST-ful calls. That required implementing headless client incorporating 

general agents’ logic, corresponding to the “driver” in Figure 1. Such agents conceptually 

would not differ from our experience with the instrumented game discussed in the previous 

sections, except we did not have to instrument the server code. The other kind of interaction 

was via combat simulation, which we still had to instrument like in Figure 1. In this section, 

we discuss combat simulation as an example of a modular agent-driven approach to design. 

Breaking a monolith black-box simulation of an entire game into its sub-systems provided a 

much more efficient way to answer combat-specific questions related to combat units' 

balancing. 

 

5.1 Combat mechanics 

Game combat involves two fundamental types of mechanics:  The Lanchester Laws, and the 

Rock-Paper-Scissors (RPS) power cycle. Seemingly, tuning same-type units is trivial but it 

goes against the intuition as soon as units have different powers due to the nature of the 

Lanchester Law. Moving from same-style units to RPS brings in even more challenges. 

To illustrate, we start with an informal introduction to the Lanchester Law of combat 

attrition. The main parameter of Lanchester Law is power, which is discriminating between 

“ancient” and “modern” combat. In an ancient battle, units interact on a one-on-one basis, 

while in modern warfare, all units fire at and can receive damage from all participants of the 

opposing side. The first case results in linear power in Lanchester equations of attrition, the 

other is quadratic.  

The linear law is straightforward. In ancient combat, an army’s power grows linearly 

with its size assuming equal strength of units. For the quadratic case, however, we must deal 

with the size/power multiplier squared. As an illustration, consider one unit with quadrupled 

power. Somewhat unexpectedly, it requires only two regular power units to achieve a tie, not 

four. It is easy to see that the stronger unit receives fire from two units, making the damage 

multiplier equal to 2. But the fire it returns also spreads over two units, hence the opponent 

damage multiplier is actually ½. We get a quadrupled attrition rate for the stronger unit by 

combining those, compared to the opponent units. With the law’s quadratic version, it is 

easy to misjudge the game balance by implying intuitively “obvious” (but incorrect) 

multiplier 2 in the quadratic case. With a concrete game fiction Lore, the Lanchester law 

may become very different from the classical ones, which designers would have no means to 

analyze directly. Analysis of attrition with agent-based simulations could get meaningful 

insights into the balance of units’ powers. 

The second critical component in tuning combat is an RPS-style specialization of 

units. The RPS mechanics is a venerable tool in combat units’ design, though it can come in 

many flavors and is usually multi-tiered. The RPS tuning objective is to assure that all 

combat units (or, at least, types of units) are essential for successful combat when the 

opposing army’s composition is unknown in advance. In traditional RPS gameplay, pure 

strategies (i.e., homogeneous armies) are not the best choices for the player, as the opponent 

can easily counteract them after their discovery. As such, we need to ensure that the agent-

based simulation generates “balanced” armies. One of the aspects of such verification is 

proof that there are no over- or under-powered units. Underpowered units would be 

impractical to build, while overpowered units would be preferred, thus reducing the 
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gameplay richness. The next subsection explores the problem of unit balance. 

 

5.2 RPS balance evaluation 

A starting point for evaluating RPS mechanics is computing units’ relative combat power 

via their matchups. A matchup of two unit types from two opposing factions requires 

constructing homogeneous armies for each unit type and determining which one wins in a 

battle against each other. The ratio of unit counts resulting in a tie gives the relative 

dominance (power) of units, which we will call the simple power ratio. Besides the simple 

power ratio, we also need to account for the limited capacity of the armies. If army size is 

the limiting factor, we need to compute the power ratio per unit size instead of the naïve per-

count value. 

Additionally, we want to capture the connection of RPS tuning to the in-game 

economy. In short, we want to ensure the absence of both dominant and inferior units from 

the production cost (or production time) perspective. Note that the construction time usually 

equates to some in-game currency costs via rush interaction. Thus, there are at least three 

metrics for RPS evaluation: (1) by count, (2) by unit size, and (3) by construction costs.  

Computing each of these metrics is a straightforward task. In the context of agents, 

the combat simulation represents an isolated sub-process of the game MDP. The agents’ 

policies limit them to the construction of homogenous armies only. With a fixed 

homogenous army of an opponent, the agent’s objective is to find a minimal homogenous 

army of the selected unit type that ties (or barely wins) in the matchup. The results of such 

matchups come in the form of three N×N “dominance matrixes” for the ratios of the count, 

size, and costs of units, correspondingly. Here N is the total number of unit types, usually 

the same for each faction or clan.  

Next, we interpreted these matrices as a complete bipartite graph, which we call a 

“dominance graph” with the nodes representing units. Naturally, the units of opposing 

factions belong to the two opposite parts of the graph. The weight of the directed edges is 

equal to the power ratio of the connected units. The edges point from a more powerful unit 

to the less powerful one (an arbitrary choice that can be inverted). With this, we can use 

graph-based algorithms to characterize the RPS relationship.  

The first general observation is that a cycle of a bipartite graph is always of even 

length (Skiena 90) and represents one of the RPS-style cycles: each unit in the RPS cycle is 

stronger than the next one in the order of the cycle traversal. If all nodes in a dominance 

graph belong to some cycle, we call it a complete RPS graph. For the analysis, we used the 

NetworkX Python package implementing Johnson’s algorithm for discovering simple 

cycles. By definition, a simple cycle does not visit the same node twice other than the 

starting and ending node.  

Our case-study game relied on multi-tiered units of three distinct power types, like in 

classical RPS. We found that the original dominance relationship is a complete RPS for the 

two most important metrics, unit size, and unit cost. This suggested that even lower-tier 

units could compete with the higher-tier units in combat when the limiting factors are 

production costs or the army size. It does not guarantee that a beginner could challenge the 

more advanced player in the game, though beginners’ alliances could get a good run for 

their efforts even facing a higher-level player in combat. It is a useful feature ensuring 
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rewarding experiences for the latecomers’ joining a mature MMO with a population of 

established older, more powerful players. 

Measuring units’ dominance is only a small part of the potential contribution that 

agents can offer to combat tuning. Using a simple power ratio, we discovered non-RPS units 

that did not belong to any simple cycle in the dominance graph. Forcing them into some 

RPS cycle with manual tuning changes could be extremely challenging. Automating the 

loop of changing-testing for improved metrics, however, is precisely where the AI-driven 

approach can provide substantial benefits.  

For example, we can interpret the units’ dominance relationship as a “potential 

function” U on the dominance graph. If we traverse an RPS cycle, the potential U will 

always monotonically change until we reach the node where we started. Yet for a non-RPS 

unit, by definition, we cannot construct a cycle with such a property. Using potentials, 

though, we can instead measure the “RPS defect” for non-RPS unit U and build depth-first 

search (DFS) trees up and down the dominance relationship. We can then combine these 

trees into the single dominance tree rooted at the node n in question.  

Next, we consider each pair (a, b) of opposing bipartite nodes in the dominance tree 

and observe the potential change along the edge connecting the pair. The change of potential 

P=U(a) – U(b) will violate monotonicity along the path connecting the DFS tree nodes. We 

call P’s absolute value along the edge (a, b) an “RPS defect,” conditioned on the node n. 

The minimum value of the defects P across all such edges is the “RPS defect” of the unit n. 

Intuitively it describes how close we are to include n into an RPS cycle by flipping 

dominance in the least “defective” edge (a, b).  

By quantifying the defect, we can use optimization to find the most conservative (by 

some metric) tuning changes that will eliminate defects for all non-RPS units. The 

optimization would change the tuning of the units involved to minimize and eventually 

eliminate the RPS defect. This approach can result in a practical solution that removes the 

painful trial-and-error loop of manual tuning of the units’ parameters while chasing the 

complete RPS balance. 

 

5.3 Asymmetric units tuning 

So far, we have assumed that conflicting sides are symmetrical, but that is not always the 

case. It is unlikely, for example, that Orcs will exactly mirror Elves in combat. Though 

asymmetry makes achieving a complete RPS even more challenging, we can tackle this 

problem in a similar fashion to the RPS defects minimization just described. Also, we can 

extend the analysis of asymmetric tuning directly to non-homogeneous armies.  

One useful trick is to simplify asymmetric tuning by correlating or grouping unit 

characteristics to reduce the dimensionality of the search space. Consider, for example, the 

relationship between army size and attack power. Naturally, to preserve balance, a faction 

with larger unit power per unit should have a lower cap on the allowed army size. Figure 4 

demonstrates how army size must be larger if it provides more attack power than a would-be 

symmetric counterpart unit. In other words, it shows a conversion rate of the unit size to the 

unit attack power that preserves the balance of factions.  

The solid line in Figure 4 is an average of multiple stochastic simulations. In each 

simulation, we constructed mixed armies (i.e., armies can contain all unit types available to 
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the player) and matched them up against the opponent’s armies of the same size. Since we 

sampled only a limited number of armies, the individual curves contain noise. But their 

average shows linear dependence with high confidence, which is a useful observation. 

Generally, the strength-size dependence does not have to be linear, of course, but 

discovering the conversion curve is another example where agents can close the loop for 

automatic tuning. 

 

 
Figure 4 Asymmetric tuning with agents. The player can build more massive armies 

using weaker units to balance the opponent’s units’ stronger attack power. The grey lines 

correspond to player levels and show the army scale obtained from agents’ simulation. The 

agents’ objective is to achieve a tie in combat. The solid bold line is linear regression fitted to 

the tie data points. 

 

5.4 Nash equilibrium with modular agents 

Homogeneous armies are non-dominant in RPS scenarios given repeated interactions and 

assuming no prior knowledge of the opponent, forcing the player to instead explore 

heterogeneous composition strategies. In such a situation, the Nash equilibrium can be 

useful in identifying the optimal army composition for players. Still, even in simple games, 

the exact computation of a Nash equilibrium may be impractical due to its PPAD 

complexity (Nisan 07). It is worth noting that players nonetheless quickly discover the 

optimal ratio of unit types that constitute a Nash equilibrium via repeated trials, exposing 

this as a practical method to approximate a Nash equilibrium using agents and constructing 

“best responses.”  

 

Simulating how players discover the optimal composition of their armies with agents is 

straightforward. At the high level, we construct a population of armies of different 

compositions and observe their win-loss ratio. We then do a standard iteration through 

evolution by eliminating underperforming armies and randomly mutating the composition of 

the winning armies. With the right stimulation parameters, the iterations converge to a 

composition that statistically performs best against a random army of the opponent. Making 

this process computationally efficient requires some additional details which we outline with 
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the algorithm in Listing 2.  

 

Listing 2. Approximate a Nash equilibrium via evolutionary best response 
 

Army size = Entry-level army size 

for each faction: 

generate armies’ population with KDE sampler  

constrained by the army size 

while army size < maximum size: 

 for random pairs of armies from opposing factions: 

  compute combat outcomes 

 

 eliminate defeated armies from the populations  

  

 army size += army size increment 

 for each faction: 

resample armies’ populations constrained by 

both:  

   1. The new army size  

   2. Current army powers compositions 

 

The above algorithm starts with smaller armies, which imply smaller combinatorial 

complexity, and shorter battles. This way, we get an estimate of the equilibrium early in the 

simulations and we gain better precision in the later iterations because the collected metrics 

become more granular given the gradual increase in army size over time. We also mimic 

players’ progress in the game. In the internal loop, the algorithm in Listing 2 keeps the 

armies at equal sizes for the opposing sides, runs random battles between opponents, and 

eliminates losing armies. It is worth noting that the elimination of defeated armies happens 

at a rate that does not impact the population too radically. Overly aggressive removal of 

defeated armies leads to composition oscillations, similar to switching between pure 

strategies in the repeated play.  

To maintain population size, we add new armies generated by “mutating” more 

successful ones, like in Genetic Algorithms. The mutation happens via sampling armies 

using Kernel Density Estimator (KDE) with Gaussian kernels centered around victorious 

armies. The count of sampled centers for KDE corresponds to the same armies’ count in the 

current population. The army size increase also happens by generating new samples that fit 

the new size precisely by rounding the powers ratio to the exact units count. For 

convergence, the kernel radius needs to become small enough to keep armies from spawning 

far from the successful “parent.” Figure 5 shows a computed approximate Nash equilibrium. 

The identified army compositions can guide units’ production in the in-game economy 

simulations. 

 



16 

  

 
 

Figure 5 Approximate Nash equilibrium found with the best response evolutionary 

algorithm (only two axes are shown). Factions have symmetric units with unequal RPS 

powers, leading to an approximately 4:3:3 ratio of the optimal army types. Combat duration 

(measured in “atomic” interactions required to complete the combat) predicts the server load 

for the anticipated optimal players’ behavior. 

 

To conclude this section, we emphasize that AI agents can help solve tuning tasks in 

a modular game architecture very efficiently. We illustrated that with combat simulation and 

unit tuning in the RPS game mechanics. With modularity enforced in the gameplay logic, 

we can obtain extra mileage for agent-driven analysis. Modules expose better-defined API 

and are better suitable for the agents’ instrumentation than monolithic gameplay 

implementation. The results from the “modular” agents can be aggregated and used as 

probabilistic models in the complete game instead of running full live simulations. Such a 

bottom-up approach can reduce the complexity of the entire game simulation. Closing and 

automating the tuning loop is another goal, which is easier to achieve with a modular design. 

 

6 Simulating gameplay outside of the game 

While an instrumented game client helps to ensure the correct logic of agents’ interaction 

with the game, it has some drawbacks. The main disadvantage is relatively low performance 

and a high load on CPU and graphics. A headless client, such as the combat simulator from 

the previous section, can alleviate this issue. There the simulator encapsulates an essential 

part of the gameplay logic in a compact, high-performance application. In the absence of the 

headless client, however, we need more capable (hence, more expensive) cloud nodes for 

massive agents’ simulations. 

In this context, an issue more critical than CPU and GPU cycles is how the game 

manages simulation time. Many games can support a simulation speed multiplier, but this 

has limitations due to the main update loop requirements. Executing simulations at only a 

low multiple speed of the average human will significantly reduce the practicality of such 

simulations, and may create syncing issues, such as with physics simulation. If the algorithm 

cannot accurately approximate changes over larger time increments, it will generate 

incorrect results that potentially affect gameplay. That is true for any system that makes an 

implicit assumption of sufficiently small fixed-size time increments per update. Finally, 
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severe limitations arise from the necessity to load and save game states if we want to 

perform a look-ahead. In short, the game client carries excess baggage in the form of 

constraints hindering agents’ optimal application. 

 We can address most of these issues if we can implement the gameplay logic outside 

of the game application. Such an implementation must not require graphics and must 

implement state switching without disk operations, i.e., can store and switch look-ahead 

states in memory. Finally, it must also be able to perform events-based simulations without 

explicitly simulating time increments.  

Given this, sometimes the work to instrument a game client not designed for agents 

can outweigh the work to extract the necessary game logic directly from the game by 

following the design documents as well as the practical experience of playing the game. This 

latter approach is similar to the rough simulations that designers run in their spreadsheets. 

Additionally, the instrumentation of the client is affected by continuous changes to the game 

code and can require considerable effort to stay properly integrated with the agents. We 

learned that the cost of ongoing maintenance for the external application was less work, 

even if we factor in the additional scrutiny necessary for logic validation.  

Games with more discrete decision spaces are much easier to simulate in the 

described manner. The meta-game (i.e., the gameplay outside of real-time shooting and 

open-world exploration) of the open-world games can be a valid candidate for such an 

approach, too. This section describes our experience of simulating gameplay in a dedicated 

simulator created from the tuning data and gameplay description rather than from an 

integrated instrumented game client. 

 

6.1 Agents for 4X genre 

One of the design objectives in tuning our 4X game is to achieve the desired progression 

speed via adjusting resource generation and spending by player level. The early game should 

provide sufficient rewards and fast progression to keep the new players engaged. The late 

game is usually (exponentially) more difficult and slower in leveling up. The ideal difficulty 

curve keeps highly committed players in the game without losing them prematurely after 

reaching the “end game.” 

 A conventional approach to evaluating progression and in-game economy is 

authoring all the tuning data in spreadsheets and computing simple formulas for progression 

speed. Such equations usually cover a single scenario of a highly engaged player with 

maximized progression and resource gains and assume a unique strategy of gameplaying. 

For less engaged players, the metrics are simply scaled-down versions of the highly engaged 

players. This can give reasonable estimates but is limited in the ability to explore different 

progression paths, find exploits, or consider player personalities or play styles. To address 

this, it is reasonably straightforward to convert such spreadsheets into AI-driven simulations. 

This naturally introduces player-to-player interaction, different policies, and the opportunity 

to apply RL, including search-based techniques, to discover optimal or near-optimal paths. 

Additionally, we more easily simulate various distributions of players, such as by level.  
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Figure 6 A qualitative comparison of layer progression with a standalone economy 

simulator. Top-left: unlimited resources scenario sets the fastest progression limit. At the 

late game, the resources balance goes down, potentially into the negative, which is allowed 

by the unlimited resource assumption. Meaning, the passive generation without upgrades is 

not covering the resources use. Top-right: passive resources generation with no upgrades for 

resource generators. It is an unlikely scenario that shows the slowest possible progression. 

Bottom-left: greedy policy for upgrading resources generators is only 25% slower than the 

fastest progression. Bottom-right: finite horizon allows an early stop for upgrades. The 

policy discovered with NES utility-based agents is very close to the maximum possible 

progression speed. Resource A is the most limiting resource in these simulations. 

 

Consider the utility model for upgrading base buildings in a 4X game. Updating and 

adding new buildings to the player base is an essential part of the player activity, and 

strategically choosing which building to upgrade can increase progression speed 

considerably. Alternatively, buildings that generate less limited resources can stop on the 

upgrade path early if the player has a finite horizon within the game, such as victory 

conditions that do not depend on a particular resource. To illustrate this relationship, we 

consider a naïve greedy utility-based policy where buildings’ utility depends on the scarcity 

of the resources they produce. The plots in Figure 6 show the player level progression with 

(1) unlimited resources, (2) passive resource generation while using naïve upgrade strategy, 

(3) greedy strategy, and (4) optimized utility-based strategy. 

For our utility-based optimization, we computed building utility for the optimal 

policy using the current building level and player level. Since the upgrade loop 
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dependencies do not change from level to level, we assumed that utility depends only on the 

difference between the player level and the building level. Learning weight for these 

differences turned out to be straightforward with ES (Evolutionary Strategies, discussed 

previously) and revealed a superior policy to the naïve greedy one. In one of the 

experiments, shown in the bottom right in Figure 6, we made some resources less limiting 

for the player and assumed a finite horizon for the player. The result was an early stop for 

the upgrades of some buildings for the corresponding resource-generators. Of course, such a 

scenario is not desirable from a design point of view. Identifying such a  tuning problem 

using RL helps to eliminate the resources imbalance.  

 

6.2 Search based method in The Sims Mobile 

Running simulations entirely outside of the game client also opens an opportunity to apply 

search-based algorithms, like A-star. We implemented A-star to discover various optimal 

policies for an early version of The Sims Mobile (TSM) discussed in section 3 (Silva 18). 

Given an admissible heuristic and a proper objective, e.g., progression path “length” or 

“cost,” we can discover the optimal strategy that is more difficult and expensive to uncover 

with the mainstream RL approaches like Q-learning. One of the advantages of having a 

globally optimal policy is that comparing the progress for different activity-based game 

paths is more representative than an evaluation based on other, non-global gameplaying 

policies. It is also guaranteed to discover exploits as they must be part of the globally 

optimal solution. 

 Since A-star is deterministic, we can run a single simulation to describe optimal 

progression, unlike in soft-max MCMC or other iterative algorithms; such stochastic 

algorithms require many simulations to provide statistically significant results. While being 

generally more efficient, search-based simulation can slow down significantly due to the 

high level of degeneration of the actions available to a player. Specifically, multiple actions 

might differ only visually but would take the same amount of time, cost the same, and 

reward equally. Such multiplicity would inflate A-star’s priority queue as such action’s 

contribution to the costs would be equal. Hand-tuning of the heuristic (e.g., adding small 

preferences to break the tie between actions) could alleviate this situation but may also skew 

results. We decided to pay the higher computational costs and achieved a practical trade-off 

by limiting the allowed size of the priority queue in some simulations. This reduced our 

memory footprint but violated the theoretical guarantees of optimality. The result was a 

near-optimal policy, which was still competitive or better than ES learning on utility 

functions. A detailed account of this exploration appeared in (Silva 18).  

 To conclude this short section, we emphasize that simulating logic outside of the 

game offers many advantages. It is especially true when we rely on advanced simulation 

techniques beyond simple spreadsheet computations. Besides just inherently faster 

simulation, we gain the ability to save and load game states efficiently, enabling search-

based algorithms like A-star. Search can discover globally optimal policies and has a higher 

power to detect exploits or tuning oversights. The downside is the necessity to reproduce the 

gameplay logic and ensure the new implementation’s correctness. We can alleviate that 

problem by creating the gameplay model first before its full-scale development. 
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7 Leveraging agents as a primary design tool 

Our approach to agents was driven by technical feasibility and the considerations of a game 

already under development. We also looked for more efficient ways to introduce agents and 

increase their feasibility as a designer’s primary tool. The integrated, instrumented game 

client was a big step towards better practices, while moving to a modularized representation 

of the gameplay, providing the additional advantage of testing the design balance by sub-

systems. The final step was performing gameplay simulation entirely outside of the game 

itself. Doing so proved to be the most promising, flexible, and robust method to apply 

agents. We also explored several applications of the AI-driven agents in the game 

development pipeline that we’re able to deliver benefits for gameplay modeling and balance 

even when introduced late in the development process.  

Ultimately, we found that if game design starts with the simulator and the agents, the 

designers will have more powerful tools from the beginning and throughout the 

development process. Given the advantages of the agent-enabled design, we advocate a 

systematic bottom-up approach to a game development process that starts a game project by 

developing the simulation agents’ framework encapsulating the central gameplay concepts. 

It is especially valuable when this is completed before the actual game client or server is 

implemented. Having a framework capable of code generation for including directly in the 

game itself would eliminate repeating work on programming the modeled features. In short, 

having gameplay logic implemented in a simulator driven by agents could be the best 

starting point for making game design testable.  

 

8 Summary 

While conceptually like spreadsheets, agents nonetheless introduce a powerful approach to 

game modeling and tuning, allowing the execution of many possible scenarios to learn 

optimal strategies. Even better, agents can close the change-test loop and automate tuning, 

which can optimize objectives specified by the designers while staying within imposed 

constraints. Where historically such approaches were infeasible, today massive cloud-based 

computing makes such simulations entirely practical and even simple modeling and RL can 

generate valuable results. Search-based methods also may be available from the beginning 

of the design process. The computational power available to the developers at the current 

state of the industry enables all spectrum of AI algorithms to drive the proposed agents: 

from the most straightforward to the cutting-edge, sophisticated algorithms. We anticipate 

that agents-leveraging AI will become an indispensable tool in the game design process. 
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