
1

Obstacle avoidance for robots of multiple sizes and forms in Horizon
Zero Dawn
Carles Ros Martínez

1 Introduction

The world of Horizon Zero Dawn is inhabited by a family of animal-inspired robots with
vastly disparate sizes and forms. While this gives the player a delightful experience, it
challenges traditional obstacle avoidance systems used in humanoid-based games like the
Killzone series. Traditionally, obstacles are approximated as circles to take advantage of the
rotational invariant nature of the circle, but in Horizon, the elongated nature of many of the
robots makes circles a poor-fitting choice. Having large robots only accentuates this
discrepancy even more. We needed a different solution for Horizon Zero Dawn because it
was unacceptable for the robots to stay so far apart. We opted for velocity obstacles [Fiorini
1998] using rectangular shapes.

Figure 1 Two Watchers can’t get close to each other if approximated by circles (left),
but if using rectangles the gap disappears (right).

The velocity obstacle (VO) concept is well known in the game industry. Most papers
and demos use circles to represent obstacles, but the VO formulation is actually shape
agnostic, and theoretically can be used with any shape. Once more, the benefit of circles is
their rotational invariant nature, which simplifies avoidance algorithms drastically, so the
challenge of using any shape other than a circle is factoring in the rotation of the shape.

Our first implementation of VOs using rectangles considered only the initial
orientation of the rectangles, and then assumed that the rectangle would not rotate for any
chosen avoidance velocity. Obviously this is not true, as entities will typically rotate to face
their movement direction. But we used this concept in our first prototype to have an idea of
how well it could perform. The pleasant surprise was that this approach turned out to be
good enough for Horizon, and it didn’t seem worth the extra effort (and most likely
performance cost) to factor in the rotation for different avoidance velocities. Although some
clipping can occur when a robot changes directions abruptly nearby another robot, this was
reduced by tweaking the scoring function to penalize rotations next to another obstacle, as

2

explained in detail later. The final game only very occasionally has clipping, and even then,
it is mostly on dense scenarios with a lot of movement, where the player attention is almost
always focused somewhere else.

In the next sections I go step by step through the final obstacle avoidance algorithm

implemented in Horizon Zero Dawn, pointing out when a certain step has been highly
tweaked for the specifics of Horizon, and if you should adjust it for your own game if
planning to adopt this algorithm. At the end I present some conclusions and personal
thoughts to move obstacle avoidance a step forward towards greater realism.

2 Gathering the most relevant obstacles

The first step of the avoidance algorithm is to gather those obstacles that are most relevant.
The cost of generating VOs for many obstacles, and especially generating the combined VO
that we’ll see later, can be expensive. Intuitively, when there are many obstacles we’re
interested mainly in the nearby ones, but measured in collision time, not in distance
[Karamouzas 2014]. Taking advantage of this, we limit the obstacle avoidance to a subset of
the obstacles. Specifically, in Horizon we select up to 5 obstacles every update.
 Obstacles are selected based on what we call the conservative collision time. This is
a rough estimate of the time it would take for an entity a to collide with an obstacle b in the
worst case (i.e. when a chooses a velocity that takes a the fastest possible towards b):

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑎𝑎, 𝑏𝑏) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎,𝑏𝑏)

𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎,𝑏𝑏)
 (1)

where

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑏𝑏) = 𝑑𝑑𝑎𝑎𝑎𝑎 − (𝑟𝑟𝑎𝑎 + 𝑟𝑟𝑏𝑏) (2)

and

𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎, 𝑏𝑏) = 𝑠𝑠𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑣𝑣𝑏𝑏����⃗ ∙ (𝑝𝑝𝑎𝑎����⃗ − 𝑝𝑝𝑏𝑏����⃗)𝑢𝑢 (3)

with dab being the distance between the center positions 𝑝𝑝𝑎𝑎����⃗ and 𝑝𝑝𝑏𝑏����⃗ of a and b respectively, ra
and rb the radii of the circumcircles of the respective rectangles of a and b, 𝑠𝑠𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 the
maximum speed at which a can move, and 𝑣𝑣𝑏𝑏����⃗ the current velocity of b. See Figure 2 for an
example where an obstacle farther away than a closer obstacle has a higher relevancy.

From all obstacles, we choose those which have a smaller conservative collision
time. The conservative_collision_time(a,b) function is highly inaccurate, but it’s fast and
sufficient to give us a good subset of the most relevant obstacles to consider for avoidance.

3

Figure 2 A farther obstacle is more relevant if it has a smaller estimated collision time.

In some situations we don’t want to avoid an obstacle, but rather delegate to the obstacle the
responsibility to avoid us. In Horizon there are three cases where this happens:

• The obstacle is at the back of the entity. During obstacle avoidance the entities
have omni-perception. This is convenient, but we don’t want an entity trying to avoid
an obstacle approaching from behind. To prevent this we filter out all the obstacles
within a 120 degrees arc at the back.

• The obstacle has a lower avoidance priority. In Horizon, the king of the robots
doesn’t step aside for puny robots. To achieve this, each robot is given an avoidance
priority and robots with smaller avoidance priority are ignored. This also means that
stationary robots will have to move out of the way of higher priority robots. The
details of this behavior are outside the scope of this chapter, but briefly it’s a
combination of placing a “danger area” in front of the higher priority robot and
having the stationary robots move aside when they detect that they are inside a
danger area.

• The obstacle is located beyond the target destination. We don’t want to try to
avoid collisions that would occur after reaching the destination. Velocity obstacles
can be built to ignore such collisions, but we’ll see in the next section that we don’t
use this extension, and why. In practice we found that just ignoring obstacles beyond
the destination is good enough. Of note here is that in Horizon the target destination
is the next point on the path, and the path is “string pulled” continuously as the robot
moves.

𝑣𝑣𝑏𝑏����⃗

𝑣𝑣𝑐𝑐���⃗

𝑟𝑟𝑏𝑏

𝑟𝑟𝑎𝑎

𝑟𝑟𝑐𝑐

𝑝𝑝𝑏𝑏����⃗

𝑝𝑝𝑎𝑎����⃗

𝑝𝑝𝑐𝑐���⃗

𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑎𝑎𝑎𝑎 𝑟𝑟𝑎𝑎 = 𝑟𝑟𝑏𝑏 = 𝑟𝑟𝑐𝑐 = 1

𝑠𝑠𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 2

𝑑𝑑𝑎𝑎𝑎𝑎 = 5
𝑑𝑑𝑎𝑎𝑎𝑎 = 2.5

𝑣𝑣𝑏𝑏����⃗ ∙ (𝑝𝑝𝑎𝑎����⃗ − 𝑝𝑝𝑏𝑏����⃗)𝑢𝑢 = 1.5
𝑣𝑣𝑐𝑐���⃗ ∙ (𝑝𝑝𝑎𝑎����⃗ − 𝑝𝑝𝑐𝑐���⃗)𝑢𝑢 = −1.5

𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑎𝑎, 𝑏𝑏) =
5 − (1 + 1)

2 + 1.5
≅ 𝟎𝟎.𝟖𝟖𝟖𝟖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑎𝑎, 𝑐𝑐) =
2.5 − (1 + 1)

2 − 1.5
= 1

4

3 Building the velocity obstacles

Once we have the most relevant obstacles, we have to build the velocity obstacle for each
one of them. A velocity obstacle is a well-known concept [Fiorini 1998], but in this section I
will still go over an overview of how a velocity obstacle is built, and especially the
particularities of how they are build in Horizon.

Consider the two robots shown in Figure 3, a Watcher and a Thunderjaw, each with a
different rectangle used for its obstacle representation, and let the Watcher be the one
avoiding the Thunderjaw. To generate the VO, we first want to reduce the two shapes
problem to a point and a shape problem. We do this by adding the two rectangles together in
an operation that’s called the Minkowski sum, in which each vector of one set (the rectangle
of the Watcher) is added to all the vectors of another set (the rectangle of the Thunderjaw).
Visually you can imagine it as if the rectangle of the Thunderjaw is being expanded by the
rectangle of the Watcher. Figure 3 shows this expansion by placing the Watcher’s rectangle
on each one of the vertices of the Thunderjaw’s rectangle, and then connecting all the
external vertices like if we were running an elastic band around them. The elastic band
conforms the perimeter of the shape resulting from the Minkowski sum.

Next, we create an infinite cone by intersecting rays from the position of the Watcher
with the outer bounds of the Thunderjaw (after computing the Minkowski sum). Finally, we
offset this cone by the velocity of the Thunderjaw. The resulting cone is the velocity
obstacle, and its main characteristic is that any velocity vector the Watcher takes which falls
inside the velocity obstacle means that the Watcher will collide at some point in time with
the Thunderjaw, as long as both robots keep the same velocities. On the other hand, if the
velocity vector falls outside the velocity obstacle then it’s guaranteed that there won’t be a
collision, again as long as both robots keep the same velocities.

Figure 3 Velocity obstacle (dark grey cone) for a Watcher induced by a Thunderjaw.

Typically when constructing a VO you perform one additional step, which consists of

𝑣𝑣𝑏𝑏����⃗

𝑣𝑣𝑏𝑏����⃗

Watcher

Thunderjaw

5

truncating the VO cone by an amount proportional to how far ahead in time you want to
look for collisions. So, some velocity vectors that result in collisions beyond the time
threshold will be considered collision free. Although we considered truncating the cones
based on the size of the obstacle to avoid, at the end we found that we always wanted to start
avoiding as soon as possible, so the VOs of Horizon are not truncated. Instead, we filter
obstacles beyond a collision time threshold during the object selection phase.

This VO is specific to this Watcher-Thunderjaw pair. A specific VO has to be built
for each other obstacle the Watcher has to avoid.

4 Selecting the avoidance velocity

We now have the velocity obstacles for the most relevant obstacles. This tells us which
velocities are collision free and which aren’t. At this point, we check if the desired velocity
(i.e. the velocity the entity would move if there were no obstacles) falls outside all the VOs.
If that’s the case then we know the entity won’t collide and we’re done.

On the other hand, if the desired velocity falls inside one of the VOs, then the entity
has to choose one of the velocities outside all of the VOs in order to avoid the obstacles.
Selecting the best avoidance velocity among all the ones that fall outside the VOs depends
on a combination of different and highly subjective criteria, but regardless of that criteria, it
makes sense to assume that this velocity will fall on the edge of one of the VOs [Guy
2009][Snape 2011]. Such a velocity will avoid the obstacle by a minimum margin, which
intuitively is what you’d expect.

4.1 Building the combined VO
Figure 4 shows the Watcher and Thunderjaw from Figure 3, and their VO (𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎). But now
there’s a second Watcher, which the first Watcher must also avoid, and so, a VO is created
for it (𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎). The union of the two VOs is what I call the combined VO, shown in thick lines
in Figure 4. We need to calculate the edges of the combined VO for the next step.

The following steps describe how the combined VO is generated in Horizon:

1. For each edge of a VO, find all the intersections among the edges of the other VOs.
2. Count how many VOs the start of the edge (the apex of the VO) is in.
3. After each intersection keep a count of how many VOs the edge is in.
4. Build a segment for each pair of consecutive intersection points outside all the VOs.
5. Repeat steps 1 to 4 for all the VOs.

All the segments from step 4 will form the perimeter of the combined VO, which is what
we're looking for. Note that you’ll have to deal with special cases like overlapping edges,
coincident intersection points and VOs with a coincident apex.

6

Figure 4 The combined VO (dark grey area) is the union of all the VOs.

4.2 Generating the candidate velocities
Once we have the perimeter of the combined VO, we have the subset of velocities that lie
along the edge of a VO, but this still gives us an infinite choice of velocities. We need to
reduce this to a small subset that can be scored in the next step. In Horizon we select as
candidate velocities those velocities that meet one of the following criteria:

• Any vertex of the combined VO
• For each edge E of the combined VO:

o The intersection of 𝑣𝑣𝑑𝑑𝑑𝑑������⃗ ∙ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 against E
o The closest point on E to 𝑣𝑣𝑑𝑑����⃗
o The points on E whose velocity vector has a magnitude of 𝑠𝑠𝑑𝑑, 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

with 𝑣𝑣𝑑𝑑����⃗ being the desired velocity, 𝑣𝑣𝑑𝑑𝑑𝑑������⃗ the unit vector of 𝑣𝑣𝑑𝑑����⃗ , 𝑠𝑠𝑑𝑑 the length of 𝑣𝑣𝑑𝑑����⃗ , and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 the entity’s minimum and maximum movement speed respectively (see Figure 5).

𝑣𝑣𝑏𝑏����⃗

𝑣𝑣𝑏𝑏����⃗

𝑣𝑣𝑐𝑐���⃗

𝑣𝑣𝑐𝑐���⃗

𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎

𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎

7

Figure 5 All the candidate avoidance velocities lay on the edge of the combined VO.

Even if there is a valid velocity that will avoid all the obstacles, entities have movement
restrictions that may forbid taking that velocity. In this case we have to filter out these
velocities. For example, in Figure 5 the two candidate velocities outside the allowed
movement speed range of the Watcher are discarded.

4.3 Scoring the candidate velocities
The next step is to score the candidate velocities. Equation 4 shows the exact scoring
function used in Horizon, but don’t try to read too much into it. It’s not based on any
mathematical proof, but rather it’s the evolution of a long story of tweaks specific to the
different robot sizes in Horizon and their particular behaviors. I provide it more for
inspiration than anything else, at the end you want to write your own.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (1 − 𝑝𝑝𝑜𝑜)(400𝛼𝛼𝑑𝑑 + 50𝛽𝛽𝑑𝑑 + 70𝛾𝛾) + 0.5(1 − 𝑝𝑝𝑡𝑡)(400𝛼𝛼𝑐𝑐 + 50𝛽𝛽𝑐𝑐) (4)

All parameters in Equation 4 are normalized to [0,1]. 𝛼𝛼𝑑𝑑 is the deviation from the desired
direction, 𝛽𝛽𝑑𝑑 is the deviation from the desired speed, 𝛼𝛼𝑐𝑐 is the deviation from the current
direction, 𝛽𝛽𝑐𝑐 is the deviation from the current speed, and 𝛾𝛾 is a binary parameter set to 1
when the candidate velocity turns against the current angular velocity. The equation is
governed by two main parameters: the proximity to a static obstacle (𝑝𝑝𝑜𝑜) and the proximity
to the target destination (𝑝𝑝𝑡𝑡). 𝑝𝑝𝑡𝑡 is a binary parameter set to 1 when close to the target
destination. Its purpose is to prefer velocities that take directly to the destination when
almost there. 𝑝𝑝𝑜𝑜 is a linear measure of how close the entity is from colliding with the VO of
a stationary obstacle, if following a linear trajectory towards the target destination. It

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆𝑑𝑑
𝑣𝑣𝑑𝑑����⃗

𝑣𝑣𝑑𝑑𝑑𝑑������⃗ ∙ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

8

encourages a robot to keep the same avoidance direction when avoiding much larger
obstacles or groups of obstacles forming a wall. It also helps prevent a robot from getting
trapped in local minima and reduces the chance of turning when next to an obstacle, which
is when clipping occurs.

Figure 6 The Watcher prefers to slow down a bit to avoid the obstacles than to turn.

The candidate velocity with best score (or least effort if using Equation 4) is the avoidance
velocity the entity has to follow for this game update. In Horizon entities move following a
path, not velocity vectors. To have the entity follow the avoidance velocity we modify the
path to match the avoidance velocity for one update. This is quite ugly, but does the trick.

Finally, in some situations there won’t be any valid avoidance velocity. In this case a
null velocity is returned, causing the robot to stop. If, after a short while, there still isn’t any
valid avoidance velocity, then the desired velocity is returned instead. This is rare, but it’s a
safety mechanism to ensure that the robot doesn’t get trapped in an edge case.

5 Odds and ends

There are a couple of additional aspects related to obstacle avoidance worth mentioning.
These are not part of the obstacle avoidance algorithm itself, but they have a big impact on
the final avoidance quality, and movement overall.

One is the velocity of the obstacles. Instead of using the velocity of the last frame,
velocities for obstacles are averaged over their last half second. This eliminates any noise in
the velocity for a particular frame and also gives a more natural delayed reaction to those
obstacles that suddenly change their trajectory.

Another “trick” we use in Horizon is to have the civilians in idle behavior prolong
their stops when failing to find an avoidance velocity. This is inspired by observing the
civilian behavior in The Elder Scrolls: Skyrim, and gives the illusion that the civilians are
relaxed, which matches well with the relaxed movement they use to move around the city.

𝑣𝑣𝑑𝑑����⃗

15 16 32
34
33

31

52
83

97

9

Also, regarding civilians, we sometimes observed them performing a 360 degree
loop to avoid an obstacle. This looks very unnatural, so we detect when a civilian is
potentially starting a 360 degree loop and force it to stop instead. This, when combined with
the prolonged stop trick, results in more human-like behavior.

We must also point out that, despite this chapter being focused on rectangular-shaped
robots, Horizon also has humans and robots that are better approximated by circles. We do
perform the Minkowski sum between two circles, but when the VO involves a rectangle and
a circle we just convert the circle to a rectangle first. The situations where both shapes mix
is rare in Horizon, so it didn’t seem worth the extra development time to address this more
precisely.

So far, no mention has been made about static geometry. Horizon uses a navmesh for
path planning and constraining entities inside the navigation space. Despite this, obstacle
avoidance in Horizon entirely ignores the navmesh. Due to the open nature of the world,
where most of the movement occurs in open space, the extra development time required to
support this was determined to be better spent in other areas. In those cases where the
avoidance hits a navmesh boundary, the entity just stops. When it starts moving again the
collision usually resolves itself in one of three ways: either the obstacles the entity was
trying to avoid have moved and the way is now clear, the entity chooses to avoid away from
the navmesh boundary, or the entity insists on avoiding towards the navmesh boundary. If
the last case keeps repeating the visual effect is an entity “squishing” through an obstacle
and a wall. There were concerns that this could be too noticeable in the cities, so the
decision was risky, but in retrospective I think it was the right decision. Still, I wouldn’t
recommend neglecting the static geometry if you can afford it - this problem will occur too
frequently in games with many narrow areas. An option is the solution proposed by [Snape
2011] to handle static obstacles, where each navmesh edge would be a line static obstacle,
and then a velocity obstacle would be generated for it as per usual.

One last aspect worth mentioning is the performance cost of the obstacle avoidance
algorithm presented in this chapter. Its implementation in Horizon takes about 60µs per
entity in dense areas (e.g. a herd of 20 robots fleeing), running on a PlayStation 4. This
accounts for about ⅓ of the CPU time spent in movement, excluding animation logic.

Finally, even though Horizon uses the basic VO algorithm, it is worth mentioning
variations of this algorithm which we did not use. A popular variation is ORCA [van den
Berg 2011], which incorporates the knowledge that other entities are also avoiding, while
also focusing on improving the performance. Then, outside the domain of velocity obstacles,
some developers have favored animation driven avoidance algorithms due to the conflict of
combining a steering based avoidance solution (like velocity obstacles) with an animation
driven locomotion system [Anguelov 2013].

6 Conclusion

This chapter presented how Horizon Zero Dawn uses velocity obstacles for obstacle
avoidance, and it shows how constructing velocity obstacles from rectangles can give good
enough results for elongated obstacles, even without fully factoring in the rotation of the
rectangles. All in all, I’m quite pleased when I see two long robots walking side by side
without leaving any large gap, as it would have happened if we’d use circles instead of

10

rectangles. The biggest caveat I have is that we use a velocity based system for avoidance,
while our path following solution prioritizes animation over velocity vectors, meaning path
following and avoidance systems are fighting against each other. Also, velocity obstacles
result in vehicle-like movement, which looks, ironically, robotic, when applied to life-like
entities. These two points are something that we’d like to solve in a future game.

After Horizon was released we concluded we were pleased with how the robots
move and avoid, but not entirely with the humans, especially the crowds in the cities. It was
not so much the glitches in the avoidance, but their lack of realism. Even when civilians
perform a perfect avoidance, in many occasions it still looks weird for a human observer,
something that doesn’t occur with the robots. Our conclusion was that this is caused by our
familiarity with human avoidance in real life, while we don’t have such association with the
robots. Subsequently I spent a few days looking at videos of real crowds, hoping to find
patterns we could implement to improve our crowds. Looking at these videos it convinced
me that stepping away from an algorithmic approach is the only way to achieve a big leap
forward in obstacle avoidance realism and crowd simulation in general when it comes to
humans. Too many irregular perturbations in their movements, too many gestures whose
context is hard to pinpoint, too many differences among characters of the same crowd, too
many differences depending on the location, mood, age, personality, social norms, goals,
weather, culture, and on and on.

Another important conclusion from observing real crowds is that humans are not that
good at avoidance. Even though we have the capability of performing perfect avoidance, in
a real crowd you can observe many different levels of avoidance quality. What humans are
excellent at is at recovery behavior from a late avoidance, or even a failed avoidance. Again,
the set of ‘recovery’ behaviors and movement is huge, with many nuances depending on the
person, context, etc.

Given the difficult nature of defining what realistic obstacle avoidance is, I feel like a
better approach is try to imitate real life human avoidance. This is the field of machine
learning, and it’s what we’re currently researching at Guerrilla.

References

[Anguelov 2013] B. Anguelov. 2013. Collision Avoidance for Preplanned Locomotion,
Game AI Pro: 297-305.
[Fiorini 1998] P. Fiorini, and Z. Shiller. 1998. Motion planning in dynamic environments
using Velocity Obstacles. International Journal of Robotics Research 17, no. 7 (July): 760-
772.[van den Berg 2011] J. van den Berg, S. J. Guy, M. Lin, D. Manocha, C. Pradalier, R.
Siegwart, and G. Hirzinger (eds.). 2011. Reciprocal n-body Collision Avoidance. Robotics
Research: The 14th International Symposium ISRR, Springer Tracts in Advanced Robotics
70: 3-19. Springer-Verlag.
[Karamouzas 2014] I. Karamouzas, B. Skinner, and S. J. Guy. 2014. Universal Power Law
Governing Pedestrian Interactions. Physical Review Letter 113, no. 23 (December): 238701.
[Guy 2009] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and P. Dubey.
2009. ClearPath: Highly Parallel Collision Avoidance for Multi-Agent Simulation.
Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer

11

Animation: 177-187.
[Snape 2011] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha. 2011. The Hybrid
Reciprocal Velocity Obstacle. IEEE Transactions on Robotics 27: 696-706.

	Obstacle avoidance for robots of multiple sizes and forms in Horizon Zero Dawn
	1 Introduction
	2 Gathering the most relevant obstacles
	3 Building the velocity obstacles
	4 Selecting the avoidance velocity
	4.1 Building the combined VO
	4.2 Generating the candidate velocities
	4.3 Scoring the candidate velocities

	5 Odds and ends
	6 Conclusion
	References

