
1

Managing Pacing in Procedural Levels in Warframe
Daniel Brewer

1 Introduction

Warframe is a cooperative online action game where players take on the role of space ninjas

with machine guns and perform missions in procedurally generated levels. Over time players

gain experience and improve their characters, allowing them to take on more challenging

and numerous foes.

Since the levels are procedural, players will never experience the exact same level

layout. While this keeps the experience fresh, the changing size and layout means that

traditional hand-crafted level-design tricks, such as trigger volumes and spawn scripts,

cannot be relied upon to control the pacing. Instead, Warframe uses an AI Director to

understand the structure of the procedural level, monitor the intensity of the action around

the players, and track their progress (Brewer 2013). With this information, the system can

then intelligently spawn enemies to provide an interesting and appropriate challenge for the

players.

In this article, we will first describe the method used to generate the procedural levels

in Warframe. We will then discuss the data structures used by the AI Director to understand

the structure and flow of the generated level, how we measure the intensity of the action

around the players, and how we can control the pacing at runtime. Finally, we will cover

how designers can work with the AI Director to handle some of the special cases in the

game.

2

2 Procedural Level Generation

Warframe levels are generated by connecting pre-made blocks. Each block is crafted by a

designer with a number of external portals that act as sockets to connect the blocks together.

Only compatible portals of the same size can be connected, as shown in Figure 1. For

example, a 5x3 portal can only connect to another 5x3 portal and cannot be connected to a

wide, 9x3 portal. Level blocks can be rotated and transformed as necessary to line up

compatible portals.

Figure 1 Blocks can only be connected via compatible portals. Left shows a valid

connection between compatible portals of the same size. Right shows an invalid connection

between portals of different sizes.

Each block is categorized by a block-type that specifies its appropriate use. These

block-types include Start, Connector, Intermediate, Objective, and Exit. Levels always begin

with a Start block and end with an Exit block. Connectors are smaller blocks that link the

larger blocks together and space them apart. Finally, Intermediates are large, more complex

combat spaces. A segment is then a series of connected level blocks. Since most levels have

only one objective, we typically have two segments, one between the Start and the

Objective, and one between the Objective and the Exit. Segments can be a random length

and are made up of a combination of Connector and Intermediate blocks. Using the first

letters of each block type, an average level might be represented as the string,

“SCICOCICE”, or a longer one as “SCICICOCCICCE”.

For each mission, designers configure a procedural level template that prescribes

how the level should be generated at runtime. The template lists which blocks are available

and their block-types, as well as specifies the length and composition of each segment, as

well as the maximum branching depth. The layout generator will then use this template to

create a sequence of block-types. For each block-type, the generator shuffles and selects a

block at random, connecting it to the previously selected blocks to create the playable level.

The generator needs to ensure this level is valid and does not overlap itself, as illustrated in

Figure 2. To do so, a depth-first, recursive search is done, and if a block cannot be placed in

a valid position, we unwind the previous step and try a different selection. The algorithm is

described in pseudo code in Listing 1.

To reduce the chance that a procedural level template fails to produce any valid

levels, we use an automated test to attempt to generate thousands of layouts. This allows us

to detect if we fail to generate any complete layouts, or if an excessive number of rollbacks

3

are required to find a valid layout. When necessary to improve the success rate, level

designers either modify the portal locations or shape of existing blocks, or they create new

blocks that increase the variety of blocks available to generate the level. As a general rule,

we recommend a pool size that allows the algorithm to select approximately 15-20% of the

available blocks for any particular generated layout. As you might expect, more complex

blocks with bends or loopbacks can cause layout problems as they further constrain the set

of viable neighbors. Adding more blocks that simply have portals opposite each other can

help to create distance between blocks to avoid overlaps. We also try to keep to only one or

two portal types per procedural template as using too many different size portals can result

in too few valid options when trying to add a block.

Figure 2 Blocks are categorized into types such as Start, Connector, Intermediate and

Objective. When attempting to place a block in the level layout, no overlap with existing

blocks is permitted.

By adjusting how the open-portals list is constructed, it is possible to control how

many branches are generated. If the open-portals list is restricted to the last block placed,

this will result in a linear level with no branching, similar to pushing the blocks onto the end

of an array. Allowing the open-portals list to include unconnected portals from previously

placed blocks, however, allows the new block to generate a branch off another, earlier block.

Once the layout is complete, there may still be portals that do not connect to

anything. Caps are placed on these portals to seal the level and door fittings are placed on

Intermediates Objectives Starts Connectors

Invalid layout Valid Layout

Overlapping blocks!

4

portals that connect blocks together, covering up any seams.

Designers specify different templates for each mission and environment. An

“Exterminate” mission on a spaceship, for example, will have its own layout template that

will be different from a “Sabotage” mission on a planetary outpost. The layout template

ensures that only the appropriate blocks for the mission are selected and prevents selecting

an “Assassinate Objective” block for a “Sabotage” mission, or a spaceship block for an

outdoor level.

Listing 1 Pseudo code for the algorithm to generate levels for Warframe.
Generate blockTypeQueue, e.g. SCICOCCE

if PlaceNextBlock(0, blockTypeQueue, placedBlocks):

 #we have a successful layout but now we need to cap off

 #any remaining open portals and add doors to the portals

 #that join placed blocks

 for each block in placedBlocks:

 for each portal on block:

 if portal is open:

 push (cap, portal) onto placedBlocks

 else:

 push (doorFitting, portal) onto placedBlocks

 return placedBlocks

return emptylevel

PlaceNextBlock(depth, blockTypeQueue, placedBlocks):

 if depth >= blockTypeQueue.size:

 #all blocks placed successfully

 return true

 currentBlockType = blockTypeQueue[depth]

 availableBlocks = get list of blocks of currentBlockType

 shuffle availableBlocks

 for each testBlock in availableBlocks:

 if TryPlaceBlock(testBlock, placedBlocks):

 return PlaceNextBlock(depth+1,

 blockTypeQueue,

 placedBlocks)

 #failed to place any valid block at this depth

 #we need to undo our last attempt and roll-back

 pop (lastBlock, lastPortal) off back of placedBlocks

 mark lastPortal as open

 return false

TryPlaceBlock(testBlock, placedBlocks):

 if placedBlocks is empty:

 push (testBlock, root) onto placedBlocks

 return true

5

 for each block in placedBlocks:

 for each portal on block:

 if portal is open:

 push portal onto openPortalList

 shuffle openPortalList

 for each openPortal in openPortalList:

 if CanPlaceBlockOnPortal(testBlock,

 openPortal,

 placedBlocks):

 push (testBlock, openPortal) onto placedBlocks

 mark openPortal closed

 return true

 return false

CanPlaceBlockOnPortal(testBlock, openPortal, placedBlocks):

 for each testPortal on testBlock:

 if testPortal is compatible with openPortal:

 try place testBlock connecting testPortal to openPortal

 if testBlock does not overlap any placedBlocks:

 return true

 return false

3 Understanding Level Structure

For the AI Director to make pacing decisions at runtime, it needs a way to reason about the

structure and flow of any generated level. We need to identify which way the players should

go to reach their objective, if they are currently moving towards or away from this objective,

and where enemies should spawn to ensure they have a meaningful impact on gameplay. To

accomplish this, we use a tool called the Tactical Area Map or “TacMap”.

The TacMap is essentially a rough corridor map. It is a graph structure that

represents the structure and flow through the level, as shown in Figure 3, that can be used by

the AI Director. Each node in the graph is referred to as an area. The connections between

areas represent how one may move from area to area through the level. A TacMap is created

offline for each level block. At runtime, after generating the procedural layout, all the

individual TacMaps are then connected together into a single graph that represents the

structure of the entire level. Doors and connections between blocks are marked up in the

TacMap so we can identify chokepoints and make decisions based on whether the doors are

locked. The TacMap is coarser than the navigation mesh used for path finding, but finer than

the level blocks (see Figure 3) and provides a practical level of detail to make tactical

decisions.

6

Figure 3. Comparing the granularity of the TacMap to the navigation mesh and level block.

We often need to search for entities in the level, such as spawn points, cover

locations, alarm panels, et cetera. To do so, we add references to these entities to the areas in

the TacMap graph. Critically, this allows the searches to follow the structure of the level and

not just straight-line distance.

Various forms of influence maps are used to track the runtime properties that the AI

Director can use to make pacing decisions. Rather than a traditional 2D grid, the influence

maps are setup on the TacMap to allow influence to both accumulate in areas and spread to

adjacent areas through the connections in the graph, which represents the actual flow

through the level. As an added advantage, since the TacMap is in 3D and not restricted to a

2D plane, it can also handle verticality.

Depending on the game, there are a number of potentially useful influence maps you

may want to consider. Below we discuss four of the more important maps, namely the

distance map, player-influence map, active-area map, and the visibility map.

3.1 Distance Map

The distance map is generated by seeding the area containing the objective with a

distance of zero and then performing a Dijkstra flood out from the object to fill the entire

graph along each connection between areas of the TacMap. This provides a reasonable

representation of the actual distance players are required to travel, which may not be a

straight line, and only needs to be updated when the objectives change.

Once calculated, the distance map provides the Director with the players’ progress

through the level and their remaining distance to the objective. By noting which neighboring

areas have lower distance scores, the Director knows the implied direction of travel toward

the objective. We can then determine whether they are moving towards or away from this

objective, by tracking the players’ distance to the objective over time. The distance map can

also be used to bias the enemy cover selection algorithm to encourage enemies to take up

positions between players and the objective.

NavMesh with 44 nodes TacMap with 17 nodes Level Block with 3 portals

7

3.2 Player-Influence Map

The player-influence map is seeded by setting a high influence in areas containing players

and then having the values decay linearly as they spread out from the players. This map is

updated multiple times a second and we use both the current value and difference with the

previous value. If the difference is positive, it means that the player influence is increasing,

caused by players moving towards this area. Likewise, if the difference is negative, the

player influence is decreasing as a result of players moving away from this area. This allows

us to select spawn locations for enemies ahead of the players, even if the players are

exploring and moving away from the objective. This means the enemies are far more likely

to be encountered by the players and have an impact on gameplay. If we spawned enemies

behind players as they moved through the level, there would be a high chance that those

enemies would never be encountered and would simply be a waste of resources.

3.3 Active Area Map

Since levels can be sprawling, an active-area map allows us to maintain a bubble of activity

around the players that moves with them as they progress. Enemies within the Active Areas

are considered relevant to the gameplay, while enemies outside this bubble can be

deactivated, destroyed or teleported to new positions to keep pressure on the players without

wasting resources.

To calculate the Active Area, any areas within the same block as the players or

within neighboring blocks are marked with an active score. The scores in all other areas

decay over time until they reach zero, at which point the areas are considered inactive. This

decay time provides a short delay before deactivating enemies in case the players are

moving back and forth across block boundaries.

3.4 Visibility Map

When the TacMap is built offline, the approximate visibility between areas is calculated by

casting many rays between areas. The size of the area determines the number of rays

required as they are distributed evenly across each area. If all the rays are blocked, we can

assume there is no line of sight between these Areas. If some of the rays are unhindered, we

can assume that the areas are potentially visible to each other. These results are encoded in a

lookup table.

At runtime, a visibility map is then calculated on the entire TacMap using this

visibility approximation lookup table and based on the players’ view cones. Areas that are

visible to players are marked with a score, which decay over time. From the perspective of

the Director, any area with a positive score might be visible to the players or may have

recently been seen. Having the score decay over time provides some hysteresis, thus if

players rapidly change direction this will prevent enemies from spawning behind the

players’ backs as they turn around.

Additionally, we initialize all visibility scores to -1 at the start. This indicates that

they have not yet been seen by a player. This can allow the AI Director to continue to spawn

enemies in a room out of sight from the players until players have visited that room and can

also provide a metric for how much of the level has been seen and cleared by the players.

8

4 Measuring Intensity

In order to control pacing, we first need to measure it. However, pacing is difficult to

quantify: How much action is going on around the players? How engaged are the players?

Do we need to spawn more enemies or should we let off for a bit and allow the players to

collect themselves before continuing? In addition, players in Warframe gain experience by

completing missions and upgrading their characters and equipment over time. Thus, an

encounter that may have challenged them before might be too simple when the players play

the mission again later.

While we are always experimenting with more advanced intensity measurement

calculations, often simplicity is best. To that end, every time the player takes damage, her

intensity is raised. This amount is proportional to the normalized ratio of damage received to

her total health and shields. Every time the player kills an enemy, her intensity value rises by

an amount proportional to the distance from the player to that enemy. If a player is being

targeted by an enemy, we maintain the intensity, otherwise it decays over time. This is a

similar scoring metric to that used in Left 4 Dead (Booth 2009).

While not a perfect score, it reasonably estimates that players who are killing

enemies or taking damage themselves are most likely in the thick of the action compared to

players who are not receiving any damage and not killing any enemies.

5 Controlling Pacing

Now that we have a measure for the intensity of the action around the players, we can

attempt to shape the play experience. If we graph the intensity over time, we want this graph

to have a rhythmic rise and fall pattern similar to a roller-coaster. As the players explore and

encounter enemies, a fire-fight ensues, causing a rise in intensity. After the players dispatch

the enemies, the intensity dies down until the players encounter more enemies and the

intensity starts rising again, as shown in Figure 4.

Figure 4: Intensity will rise and fall during gameplay. If intensity reaches 100, it has peaked

and we hold off spawning more enemies until the intensity dies down, giving the players a

Intensity over time

Intensity rises

during combat

Peak

No spawns during

decay after peak

Restart spawns and combat

9

breather after intense combat.

Our primary tool for controlling the pacing in Warframe is spawning enemies. While

intensity is low, the AI Director should spawn more enemies ahead of the players, and

should continue to spawn enemies as intensity rises, until it reaches the maximum supported

value or peak. Once intensity peaks, we want to maintain the peak for short time and then

back off and stop spawning until the players have had a chance to dispatch all the enemies

and recover from the fight. The intensity then decays down until it reaches zero and the

spawning process begins again. This should drive the intensity back up again as the players

encounter the next group of enemies.

Varying the number of active enemies around the players allows us to control the

experience. As players are naturally attracted to conflict, we can thus subtly lead the players

towards the objective by having more enemies spawn if players are heading towards the

objective and fewer if they are moving away from the objective. If the players have not yet

been discovered, we use a lower limit on active enemy count. This allows our space ninjas

to perform some stealth gameplay and sneak through the few patrolling guards. Once the

players have been spotted and the alarm sounded, we want increased enemy activity and

therefore the active limit is increased.

Finally, the limit also depends on the type of block. Connector blocks tend to be

smaller and so have lower limits. Intermediate blocks, representing larger combat areas,

have higher limits and the Objective block will have the highest limit. Since our procedural

layout generation typically produces alternating connector and intermediate blocks leading

up to an objective or exit block, this helps modulate the enemy numbers and provides a

satisfying rhythm.

6 Spawning Enemies

After deciding to spawn, the AI Director then needs to decide which enemy and where to

create them. The mission will specify a list of available enemy types, their selection

probability and an optional maximum simultaneous limit. Using a weighted random

selection allows the AI Director to spawn many ordinary grunts and fewer specialist or rare

units. Having a maximum simultaneous limit for certain enemy types ensures players will

not stumble into a room full of extremely tough enemies and instead will encounter them in

more reasonable numbers.

Once we’ve selected the type of enemy to spawn, we want to determine where that

enemy will have the biggest impact on gameplay. There is no use spawning an enemy near

the start of the level if the players have already completed the objective and are heading to

the exit. We also don’t want to spawn enemies in a room recently vacated by the players. To

avoid breaking immersion, enemies should typically not spawn in plain sight of the players.

In general, an enemy should be created ahead of the players and close to them, but out of

sight.

Certain levels and enemies allow for special-case spawning. Examples are the

robotic deployment containers that have a special deployment animation when the container

opens and activates the robotic unit housed inside. In this case it is preferable to use a

10

special spawn point that is visible to the players, so they can witness the arrival event. The

AI Director first tries to find a special spawn points for the enemy, but if none are available,

it will fall back on selecting a normal, hidden spawn point.

The algorithm used by the AI Director to search through the TacMap for spawn

points is a breadth-first search, described in Listing 2. This search starts at the areas

containing the players and spreads out, keeping areas within the given constraints and

discarding unsuitable ones. Next, we collect valid spawn points from each valid area. Since

the search for valid areas expands out from the player, the list of valid spawn points will be

approximately sorted by increasing distance from the players. We select a point with a

Gaussian random number biased towards 0, which will prefer points closer to the players

instead of ones further away.

Listing 2 Algorithm used to search the TacMap for spawn points for an enemy. The

call to GaussianRand will generate a random number in the range from a Gaussian

distribution with the mean at 0 and the standard deviation of 0.5.
Add players’ areas to open list

While open list is not empty:

 Pop area off front of open list

 If area has not yet been visited:

 Mark area as visited

 If area is valid to keep:

 Push area onto keep list

 If area is valid to expand:

 For each neighbor of area in the TacMap:

 Push neighbor onto back of open list

For each area in keep list:

 For each spawnPoint in area:

 If spawnPoint is enabled and not in use:

 Push spawnPoint onto availableSpawns list

SelectedSpawnIdx = GaussianRand(0, availableSpawns.size)

Return availableSpawns[SelectedSpawnIdx]

7 Mission Specific Complications

The previous sections cover most situations handled by the AI Director. Some missions

require some special case handling, however, which we describe below.

7.1 Extermination

Extermination missions require the players to progress through a linear, non-branching

gauntlet and dispatch a specific number of enemies. The AI Director needs to not only

ensure that the required number of enemies spawn, but that they all have spawned before the

players have reached the end of the level, and that they are spread out through the level and

not clumped at the beginning or at the end. Additionally, we do not want the concentration

of enemies to be completely even, as this would be dull. Instead, there should ideally be

11

groups of enemies and some predetermined peaks of activity.

The first step is to determine the number of enemies required by the mission, keeping

in mind a reasonable density for the intended experience. If we require too many enemies in

a tiny level, we will need to spawn too many simultaneously in order to have them all

created before reaching the exit. Alternatively too few in a large level would result in very

sparse, uninteresting pacing. To achieve a reasonable density, we calculate the total number

to spawn based on the maximum distance to the objective, as read from the distance map,

ensuring a reasonable number of enemies for the size of the level.

A population graph is used to compare progress through the level with percentage of

total population required to have spawned by this point. The slope of this graph represents

the density of enemies encountered. The steeper the slope, the more enemies will be

encountered, the flatter the slope, the fewer enemies. As shown in Figure 5, we use a

piecewise linear graph with two peaks to ensure all the enemies spawn and that the players

encounter a good variety of concentrations of enemies on their way through the level.

Figure 5: The population graph for exterminate missions is fixed and provides two peaks of

activity to ensure all enemies spawn before reaching the end of the level. For crossfire

missions, the graph is shifted to match the position of the combat front in the level.

7.2 Crossfire

Crossfire missions operate just like Exterminate missions, except the players ally with one

faction to oppose a common enemy. An example is a boarding action between capital ships

of rival factions. The players start on one ship, and fight their way across onto the other. One

of the blocks in the level represents the main combat front where the enemies are clashing. It

would be disappointing if the players were to arrive at these battle lines only to discover a

lull in activity.

Instead, to overcome the vagaries of the procedural layout, we tweak the

predetermined population graph based on the actual layout. First we look up the combat

front in the level’s distance map. We shift the second peak in our graph to this point to

ensure it lines up with the features of the level. We then shift our first peak halfway between

the start and the previously adjusted peak. This modified graph as shown in Figure 5, now

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

p
u

la
ti

o
n

 S
p

a
w

n
ed

Progress Through Level

Exterminate Crossfire Adjusted

12

matches the level layout better, and ensures the action is where we want it to be.

7.3 Survival / Excavation

Survival missions require almost constant, escalating pressure as the players try to survive

for as long as possible, while moving around the map to respond to new objectives.

Although the AI Director’s default pacing is designed more for exploring a level, it

works in conjunction with mission scripts by providing a number of functions that the

scripts can use to query the environment and spawn enemies. To help the Director support a

constant flood of enemies to harass the players, mission scripts can be customized to

override the spawn point search filters. Thus, in survival missions, spawns can be selected

closer to the players and all around them.

Enemies need to rush to attack the players, so having the flexibility to alter the spawn

selection is useful. There is little point spawning an enemy in a position where they cannot

navigate to the players, such as on the opposite side of locked doors.

The mission script also overrides the normal Director pacing decisions, instead

monitoring the active enemy count directly and making explicit requests to the AI Director

to spawn more enemies as required. In this mission, the search filter is provided by the

script, though the AI Director still handles the selection of enemy type and performs the

search for spawn points. The designers can escalate the intensity over time by setting the

script to request simpler enemies at the beginning and introduce more challenging enemies

as time progresses.

When it comes to selecting the next player objective, the AI Director provides

functions to search through the TacMap to find objectives matching the requirements, such

as distance from players and other active objectives.

8 Conclusion

As games embrace procedural generation, we can’t rely on traditional designer scripted set-

pieces. We need systemic and procedural pacing solutions. The AI Director in Warframe is

one approach to this problem. It handles the dynamic pacing requirements of standard

missions on procedural levels by monitoring the intensity of the action around the players,

tracking their progress through the level, and reasoning about the flow and structure of the

level at runtime in order to provide a compelling gameplay experience.

There will always be times when a fully automated system cannot handle specific

design requirements, but in these situations most of the information required is maintained

by the AI Director and the TacMap. This allows designers to script special case encounters

in a systemic fashion, without having to worry about the specifics of the level layout, which

can vary at runtime over repeat play-throughs of a mission and as players level up their

characters.

13

9 References

Booth, M. 2009. From COUNTER-STRIKE to LEFT 4 DEAD: Creating replayable

cooperative experiences. GDC 2009, San Francisco,

https://www.gdcvault.com/play/1422/From-COUNTER-STRIKE-to-LEFT

Brewer, D., Cheng, A, Dumas, R., Laidacker, A. AI Postmortems: Assassin's Creed III,

XCOM: Enemy Unknown, and Warframe. GDC 2013, San Francisco,

https://www.gdcvault.com/play/1018058/AI-Postmortems-Assassin-s-Creed

10 Biography

Daniel Brewer graduated in 2000 with a BScEng in Electronic Engineering, focusing on

Artificial Intelligence, Control Systems and Data Communications. Since then he has

become a veteran game developer. As lead AI programmer at Digital Extremes, he has been

instrumental in bringing the co-op, online, multiplayer action shooter, Warframe(2013) to

life, as well as continuing to further develop, maintain and upgrade the game AI systems in

the game. Other notable titles include Halo 4 multiplayer DLC packages(2012), Darkness II

(2012), BioShock 2 multiplayer (2010) and Dark Sector (2008). Over the years, he has

presented numerous talks about various facets of AI at the Game Developers Conference.

https://www.gdcvault.com/play/1422/From-COUNTER-STRIKE-to-LEFT
https://www.gdcvault.com/play/1018058/AI-Postmortems-Assassin-s-Creed

