
1 

  

Taming Spatial Queries – Tips for Natural Position Selection 
Eric Johnson 

 

1 Introduction 

Spatial query systems are powerful tools when leveraged effectively, giving developers the 

ability to craft sophisticated, complex movement behaviors quickly and concisely, while 

giving agents the power to move with intelligence and respond to changes with resilience. 

Even so, a query system brings with it unique challenges that can make it difficult to realize 

its full potential. In this chapter, we cover four specific position selection issues that can 

manifest themselves in spatial queries: Oscillation, artificial behavior boundaries, artificial 

spatial boundaries, and priority inversion via normalization. By recognizing and handling 

these cases, we can prevent several common classes of unnatural or immersion-breaking 

behavior, as well as improve existing behaviors with subtle nuances that make movement 

feel more natural and organic. 

Note that this chapter assumes a basic understanding of spatial query systems and 

query-based movement behaviors. For additional information, please refer to chapters 26 

and 33 in Game AI Pro, and chapter 26 in Game AI Pro 3 (Jack 13, Zielinsky 13, Johnson 

17). 

 

2 Preventing Destination Oscillation and Instability 

Because the purpose of a spatial query is to evaluate multiple positions around the game 

world and return the best location for a specific behavior, it is reasonable to expect that by 

executing the same query again, an agent can detect if it is out of position and reposition if 

needed. Further, by executing the same query repeatedly, agents can automatically maintain 

an ideal position for their behavior as the environment changes. Most of the time, this works 

as expected, and allows agents to move fluidly through a space over time. If the ideal 

destination is ambiguously defined, however, multiple locations can compete for the highest 

score, resulting in a destination that oscillates or moves erratically every time the test is 

updated. As a result, as we re-run the query, instead of staying in an optimal location, the 

agent continuously changes course, moving between two or more high-scoring locations but 

never arriving at either. 

Consider the task of creating a simple query that directs an agent to approach a target 

at an angle as the start of an orbiting behavior. We might start by generating a ring of points 

around the target, then rank them by directness using the dot product (agent → sample 

position) · (agent → target). The locations with the smallest scores will give us the most 

indirect approach angle. However, the results of this query will be symmetric: Approaching 

from the left is just as good as approaching from the right. Which direction will our agent 

prioritize? 

In practice, it will prioritize neither. As the agent moves, slight changes in the angle 

to the target can cause the opposite side to be favored, and if the query is executed at a high 



2 

  

enough frequency, every time we move left the right-hand side will gain value, and every 

time we move right the left-hand side will gain value. As the agent continuously changes its 

approach direction, it ultimately commits to neither and approaches the target head on. As a 

result, the behavior we intended to create fails to materialize entirely. 

 

 
Figure 1 Oscillation between two flanking positions on the left and right of a target 

cause an agent to approach the target head on while weaving back and forth. 

 

There are several techniques we can use to reduce goal oscillation. First, if a query 

suffers from oscillation due to symmetry, we can eliminate it by establishing a very small 

preference for one side. Adding a dot product test that applies a constant score to all 

positions on one side of the target acts as a tiebreaker when both sides would otherwise be 

equal. However, symmetry is responsible for only some types of oscillation; queries with 

competing tests, such as “get close to the player, but stay away from other agents”, or 

queries with tests that are strongly affected by movement or direction, such as “prefer 

positions behind me” will require other approaches. 

As a general-purpose solution, we can add hysteresis to the result to stabilize a fickle 

query. Hysteresis, or decision momentum, is the idea that once we have made a choice, we 

want to stick with it until we have a strong motivation to abandon it. When the top-ranking 

locations in a query all have similar scores, but are in wildly different locations, this will 

ensure that our agent ignores small fluctuations in the results and continues moving towards 

a goal as long as it remains one of the best locations in the query. However, there is more 

than one way to implement hysteresis in a query system, and each one brings with it 

different benefits and caveats. 

The most basic approach is to simply add a low-weighted distance test that 

prioritizes locations near our current destination (the previous winning location), creating a 

preference to keep moving towards the same general area. This method has two primary 

advantages: The size of this area can be tuned to give the agent more freedom to reposition 

locally while still maintaining overall global stability, and secondly, because it can add bias 

over an area, it works well in queries where the local optimal position can drift over time 

(for example, maintaining a position relative to a moving player). However, since this 

method implements hysteresis as simply another test, we are unable to precisely control the 

actual amount of bias. For example, if we have three tests, each with a weight of 1.0, the 

winning sample position can have a value anywhere between 1.0 (highest utility in one test, 

0.99 

1.00 



3 

  

lowest in the other two) and 3.0 (highest utility in all tests), depending on the state of the 

world when the test was executed. If we then add a destination bias test with a weight of 0.1, 

our current destination will receive a variable amount of decision momentum: 10% score 

bonus in the former case, but only 3% in the latter. 

A more consistent method is to implement hysteresis explicitly, comparing the 

fitness of our current destination against the new winning position in the query. To do this, 

we must modify our query to re-insert our current destination into the generated set of 

sample positions in order to recalculate its score when the query is executed. We then 

compare its updated score against the score of the winning position. If the top-ranking 

location is better than our current destination by more than some threshold (say, 10%), we 

abandon our current destination and update it with the new highest scoring position, 

otherwise we discard the results, keeping our current destination. Compared to score biasing 

methods, which allow the destination to move freely within a localized area, hysteresis tends 

to create “sticky” destinations that resist any repositioning at all. This has the benefit of 

strong stability, and works especially well for queries that evaluate fixed locations such as 

pre-generated cover points, but the tradeoff is that we may hold on to stale, suboptimal 

positions if the hysteresis threshold is too high. Additionally, for queries where generated 

points may change position frequently, it is poorly suited to removing asymmetric 

oscillation: In our toy example, if the player moving towards us causes our current 

destination to lose enough value to be replaced by a new winner, it isn’t certain which side 

the agent will pick; instead of eliminating oscillation, we’ve only reduced its frequency by 

discarding the results of some of the query updates. 

 

 

 
Figure 2 Oscillation mitigated by biasing points on one side of a symmetric test by 5% 

(left), by biasing points by their distance from the previous winning location the last time the 

query was executed (center), and by using hysteresis to require a new destination to be at 

least 20% better than our current one (right). 

 

Oscillation and instability are commonly occurring problems in both simple and complex 

query-based movement behaviors, leading to chaotic character movement and interfering 

with an agent’s ability to execute important behaviors reliably. Even when we identify 

oscillation in a behavior, eliminating it is not always straightforward: The techniques 

0.99 

0.83 

 

1.00 

1.04 1.02 



4 

  

described above are each effective at preventing a specific type of instability, but none will 

work in all cases. Used appropriately, however, they are indispensable tools that give us the 

means to express high quality, elegant behavior that would otherwise be unachievable. 

 

3 Adding and Removing Tests at Runtime 

When creating a spatial query, our workflow is focused on how to best balance a group of 

tests that measure different aspects of a position to accurately determine the utility of 

different locations with respect to a specific goal: Finding suitable cover, surrounding a 

target, retreating from danger and so on. As the environment changes, the utility of a 

specific location increases or decreases accordingly. While robust and responsive, it limits 

us to a single definition of fitness for a specific goal: We will always find the same type of 

cover, settle into the same type of formation, retreat to the same type of safe spot. In this 

section, we will see how enabling and disabling tests at runtime allows a single query to 

switch between two or more definitions of fitness dynamically, how we can manipulate test 

weight to blend between these states seamlessly, and how to use increasing levels of 

indirection to manage the blend transitions themselves. 

 

3.1 Controlling Test Weight with Test Utility 

Let’s start with a hypothetical movement behavior for a group of low-level enemies 

designed to encourage a fast-paced, active playstyle: When the player is actively moving 

around the scene, they should spread out around the level, giving the player easy targets to 

pick off one by one. However, when the player lingers too long in one area, they should 

close in, descending on the location aggressively to punish idling. It does this with two 

separate queries, one that prefers locations away from other agents of the same type, and 

another that prefers locations near the player. 

Traditionally, we would implement these as separate branches in a behavior tree, 

using a decorator condition to determine which behavior to run. Expressed as code, it might 

read something like the following: 

 
if time_since_player_stopped_idling < 5.0: 

  moveToSwarmPlayer() 

else: 

  moveToSpreadOut() 

 

In this example, the decorator condition causes agents to give up chasing a moving player 

after a short while, but the boundary condition is easily visible to players: Enemies begin 

swarming instantly after even the slightest pause, but give up entirely if the player can 

continue running for exactly five seconds. Without increasing the complexity of the 

behavior tree, how can we make this transition look more natural? 

To begin, let’s move the transition logic out of the behavior tree entirely, and into the 

query itself. If the only difference between our two query behaviors is that one has an 

additional test that prefers locations near the player, then by enabling or disabling this test at 



5 

  

runtime we could author a single common query that activates this test only when it is 

relevant. In doing so, we can simplify our behavior tree to a single node that simply updates 

our position. We can accomplish this by assigning the distance test a measure of utility tied 

to the current movement goal, and multiply the test’s weight by this value. When it set to 

zero, a test has no utility and is disabled, while setting it to 1.0 enables the test, applying its 

full weight to the query: 

 
if time_since_player_stopped_idling < 5.0: 

  approachPlayerTestImportance = 1.0 

else: 

  approachPlayerTestImportance = 0.0 

 

By calculating this value in advance and assigning our test’s weight to this external variable 

(for example, via a blackboard key in the behavior tree), we can create queries that activate a 

test only when it is relevant, changing their behavior dynamically in response to the 

environment. We can now start to improve our behavior by changing the transition logic to 

be a bit more forgiving: 

 
if time_since_player_stopped_idling > 5.0: 

  approachPlayerTestImportance = 0.0 

elif time_since_player_stopped_moving > 5.0: 

  approachPlayerTestImportance = 1.0 

 

This is a good start. Now the player must remain still for several seconds before enemies 

begin to swarm, and must remain in motion for the same amount of time to get relief. Short 

bursts of movement and small pauses will both be ignored, adding some degree of stability 

to the transition between behaviors. 

 

3.2 Discrete Utility vs Continuous Utility 

Now that we can use test utility to change query behavior on the fly, we can continue to 

improve the quality of the transition by replacing the abrupt events that enable or disable the 

test with a continuous measure of utility that increases or decreases the test weight based on 

our confidence that the player is idling or in motion. One way to estimate this is to take a 

rolling average of the player’s current velocity, then compare the length of this vector 

against the player’s maximum speed. When the player is moving in a straight line, this value 

will approach 1.0, but when the player is stopped, moving erratically, or spinning in circles, 

this value will decrease and approach zero. Now, instead of a query that can toggle between 

the two different behaviors, we now can seamlessly fade between them by setting our test 

weight to this value, adjusting the relative strength of one or the other to match to the 

player’s perceived level of activity. In our example, the longer a player idles, the stronger 

the swarm behavior will become, and the longer a player moves, the stronger the scattering 

behavior will become. 

 



6 

  

3.3 Tuning Results with Response Curves 

While our behavior is far more natural and responsive than when we started, it can still be 

improved further. As we control a test’s final score by multiplying it by a weight, and 

control a test’s weight by multiplying it by a measure of test utility, and control test’s utility 

by multiplying it by a measure of confidence such as a rolling average, so can we control the 

measure of confidence by multiplying it with a response curve. 

Similar to how easing functions are used in animation to express different types of 

natural movement, adjusting the rate at which we blend in and out of different query 

behaviors lets us fine tune how our agents react to a changing environment. For example, by 

applying a sigmoid to the results, we can create a sticky or magnetic transition, where a test 

is slowly pulled away from zero or full utility, then quickly snaps to the other extreme. For 

our swarm behavior, we might want to use a cubic curve to adjust the leniency of the 

behavior, keeping enemies docile until the player stays in the same spot for a long time, 

while also quickly abandoning the swarm behavior once the player begins moving again. 

In this way, we can continue adding indirection indefinitely to control an agent’s behavior at 

increasingly higher levels of abstraction. For example, if we wanted our enemies to behave 

more aggressively later in the game, there is no reason why we can’t use multiple response 

curves to produce different levels of difficulty. We might then add yet another response 

curve to continuously tune the level of aggression at every point in the game. We can also 

continue expanding indirection laterally, creating queries with more than one utility-

weighted test to encode increasingly broad or abstract goals like “travel with player” or 

“apply pressure”, allowing us to create much more powerful and expressive behaviors than 

would be possible with fixed test weights. 

4 Selecting the Appropriate Test Normalization Method 

Spatial query systems generally process a request in the following order: First, sample points 

are generated to evaluate. Next, for each test in the query, each item is scored, the results of 

the test are normalized, and then each result is multiplied by a test weight. Finally, for each 

position, the query calculates the sum of weighted scores from each test, sorts the results and 

returns the highest-ranking location.  

While test normalization is necessary to compare the relative importance of different 

aspects of a position, how we normalize is just as important as performing normalization 

itself. The normalization method we choose defines how our original measurements should 

be transformed into a degree of fitness, and by changing the method, we can change the 

definition. Should a specific value decrease in fitness if better candidates appear? Is there a 

minimum, ideal, or maximum level of fitness? By aligning the normalization method with 

the purpose of the test, we can ensure our test results match our intent. 

 

4.1 Relative Normalization 

Relative normalization is the easiest method to implement as it requires no domain 

knowledge about the data it receives. Test values are simply shifted and scaled such that the 

lowest-ranking sample position is assigned zero utility (0.0), while the highest-ranking 

position is given full utility (1.0). This is the default method to apply when we don’t have a 



7 

  

specific value or range of values in mind that represents a good or ideal result, and only 

want to express the subjective idea that larger values are better than smaller ones (or vice 

versa). However, as a consequence of this definition, as the range of values becomes larger 

the influence of a specific quantity diminishes. 

For example, say we have a ranged attacker that wants to position itself to have line 

of sight to its enemies, while also staying out of their attack range. Further, to prioritize 

safety, we would like the amount of danger at a particular location to reflect the number of 

enemies able to attack the agent at that position. With relative normalization, the most 

dangerous location will thus always be ranked “100% dangerous”, while less dangerous 

locations will receive a lower value. In practice, this means that when only one enemy is 

present, the area around it will be 100% dangerous, but when the attack range of multiple 

enemies overlap, the overlapping areas are technically the most dangerous location, and 

positions in attack range of only one enemy become relatively less dangerous by 

comparison. As seen in Figure 3, when two enemies overlap, positions in range of only one 

enemy are considered 50% dangerous, and when three enemies overlap, positions that once 

had a danger rating of 100% are now (relatively speaking) only 33% dangerous in the 

current environment. 

As a result, the perceived importance of an absolute value can diminish suddenly and 

unexpectedly as conditions changes, affecting the behavior of the query itself in turn. In our 

example, once three enemies gather in the same location, the importance of having line of 

sight to the target outweighs the danger of being in attack range of a single enemy, resulting 

in a ranged agent that correctly keeps its distance from isolated targets, but is happy to 

approach enemies when they cluster together. 

 

4.2 Clamped Normalization 

Clamped normalization defines the best and worst values possible for a test; anything 

beyond these ranges will be clamped to zero or 100% utility. For example, if we are looking 

for nearby cover positions, but all available cover is far away, then a distance test should 

return low scores for all positions to reflect that not even the closest among them are 

effective at satisfying our goal of being close to the agent. By using clamped normalization 

with a range of 0 to 20 meters, a query with two nearby cover positions at one and two 

meters away will assign them 95% and 90% utility, respectively, while one with two distant 

cover positions at 19 and 20 meters away will be assigned 5% and 0% utility. In this way, 

where relative normalization is a subjective measure of quality, by specifying in advance the 

desired best and worst case for a test we can ensure that the strength of a sample position’s 

score is objective and grounded to a concrete definition of utility.  

The caveat to this method is that determining a suitable range requires domain 

knowledge about the game, and even when tuned carefully may still not return viable results 

in all cases. In our example above, because all values outside this range will be treated 

equally (either zero or 100% utility), a cover point 21 meters away will appear just as 

desirable as one that is 100 meters away. If we add a new encounter where enemies stream 

in from the distance before entering cover, all cover points in the encounter area may appear 

to be equally valid, causing agents to attempt to take cover in seemingly random locations 

around the stage. 



8 

  

 

4.3 Unclamped Normalization 

Like clamped normalization, unclamped normalization defines values of zero and full utility, 

but does not restrict the utility of positions that exceed these limits. As a result, not only will 

a specific value always return the same amount of utility, its utility can be less than 0% or 

greater than 100%. This is especially useful when we want to allow a test to exert more 

influence than usual over the query results to respond to rare or extreme conditions. 

In our example, by using unclamped normalization we can express the idea that 

staying out of attack range of an enemy is always twice as important as having line of sight, 

but if a position can be attacked by more than one enemy, it is even more important to avoid 

that location. Further, this importance should grow without limit as the number of enemies 

in range increases to reflect the greater danger of the position. 

 

 
Figure 3 Comparison of different normalization methods, and their effect on a 

location’s final test score relative to other tests. Each query has a line-of-sight test with a 

weight of 1.0, and an enemy attack range test with a weight of -2.0. The normalization 

method used changes the perceived importance of a particular level of danger relative to the 

importance of maintaining line of sight. From top to bottom: Relative normalization, 

clamped normalization, unclamped normalization, and targeted normalization. 

 

𝑒𝑛𝑒𝑚𝑦 𝑎𝑡𝑡𝑎𝑐𝑘 𝑟𝑎𝑛𝑔𝑒 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 

𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 

1.0 

-4.0 

-2.0 

1 2 3 

1.0 

𝐿𝑜𝑆 

-2.0 

𝑎𝑡𝑡𝑎𝑐𝑘 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 

1/1 1/2 1/3 

1.0 

-4.0 

-2.0 

1 2 3 

𝑢𝑛𝑐𝑙𝑎𝑚𝑝𝑒𝑑 1.0 

-6.0 

-4.0 

-2.0 

1 2 3 

𝑐𝑙𝑎𝑚𝑝𝑒𝑑 



9 

  

4.4 Targeted Normalization 

Targeted normalization defines an ideal value for a test that provides maximum utility, 

scaling the utility of locations based on the absolute difference between a location’s score 

and this optimal target. For example, if an agent’s ideal attack range is thirty meters, we can 

use targeted normalization to decrease the utility of areas both closer and farther than this 

distance from the target. This can also be combined with clamped normalization, if we want 

to specify a maximum distance from the ideal value at which the utility should drop to zero. 

 

5 Recovering Spatial Information Via Post Processing 

In any query system, each location is examined in isolation; each test measures the quantity 

of some particular quality without any knowledge about other locations in the query. For 

concepts that are inherently spatial, such as visibility, the lack of knowledge about 

neighboring positions causes us to lose information about the structure of the environment 

such as the size of a hiding spot or the distance to an exposed area. Without this awareness, 

a query is unable to recognize positions inappropriate for the intended behavior, such as 

hiding locations that are too small, or are not deep enough in cover and only hide the agent’s 

center, leaving half of its body exposed (Isla 09). 

Once our set of sample positions has been scored, however, we can use the location 

of each result to recover these spatial features from the environment, allowing us to produce 

a more realistic evaluation of a position and even to test for entirely new concepts. 

To recover this spatial information, let us borrow techniques from image processing, 

applying morphological operations such as blur, erosion, dilation, and gradient to find rough 

area boundaries and the distance from those boundaries, then manipulate those discovered 

features. The basic premise is simple: We first gather the set of results from a test, then we 

apply a morphological operation against it, looking at each position and its neighbors to 

compute a transformed score. Finally, we apply the results of the operation back to the 

original test set, overwriting it. 

The first and most basic operation is erosion: shrinking the size of a valid group of 

positions, so that potentially inappropriate locations near the edge of the group are removed 

from consideration. To apply this to a pass/fail test, such as a visibility raycast, we discard 

any successful position in the result set if there is at least one failed neighbor within a 

specified range. When complete, only locations that were completely surrounded by 

positions that passed the test will remain. As an alternative example, if we want to avoid a 

collision volume that applies poison damage to agents inside, after filtering out positions 

inside the volume itself we might use this operation to create a safe buffer zone around it by 

eroding away locations that are outside the volume, but close enough to the boundary to be 

dangerous if the agent were to overshoot its destination. 

 

 

 

 

 

 



10 

  

Listing 1 Pseudocode implementation of the erosion operator over the results of a test. 
def postProcess(results, range): 

  processedResults = results.copy() 

  for index, result in enumerate(results): 

    for other in results: 

      if (result.pos – other.pos).length() <= range: 

        processedResults[index].passed =  

          processedResults[index].passed and other.passed 

 

  return processedResults 

 

Dilation works in reverse, converting a failed item to a passing one if any of its 

neighbors in range have also passed the test filter. This expands the size of a group of 

positions, making it useful as a complementary operation. 

The gradient is the intersection of erosion and dilation. We apply both operations to 

the test set, and keep only those positions which were added by dilation or removed by 

erosion. This leaves us with points that define the border of the original area, helping us 

perform tasks such as exploring the frontier of a heatmap, or restricting wildlife to the beach 

and shallows surrounding a lake. 

Finally—but arguably most useful—is the blur operation. By blending the score of a 

position with its neighbors, we soften the edges of the area defined by a group of points, 

creating a smooth transition from desirable to undesirable areas. Not only does this 

encourage agents to move more definitively inside an area instead of holding positions at the 

boundary, it allows suboptimal positions to remain in the set but with reduced utility, 

allowing the agent to adapt resiliently to poor environmental conditions. A small hiding spot 

might be undesirable in most cases, but when nothing else is available an agent would still 

be able to perform a best-effort attempt. 

Blur differs from the previous tests in that it is not a binary operation and treats 

results as continuous values. To implement it, we weight the contribution of each point in 

range proportionally by their distance to the target point, then calculate a final blurred score 

as a fraction of the total possible contribution. The following is a pseudocode 

implementation of a Gaussian blur that performs this operation: 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

  

Listing 2 Pseudocode implementation of a gaussian blur operator over the results of a 

test. 
def postProcess(results, range): 

  processedResults = results.copy() 

  for index, result in enumerate(results): 

    weightedScores = 0.0 

    totalWeight = 0.0 

    for other in results: 

      if (result.pos – other.pos).length() <= range: 

        weight = gaussian_pdf(result.pos, other.pos, range) 

        totalWeight += weight 

        totalWeightedScore += weight * other.score 

 

    processedResults[index].score = totalWeightedScore / 

totalWeight 

 

  return processedResults 

 

// Normal distribution probability density function 

def gaussian_pdf(x, m, s): 

  return exp(-0.5 * pow(((x – m).length() / s), 2)) * (1 / 

(sqrt(2 * PI) * s)) 

 

Adding a post process operation to a spatial query exposes new spatial information, allowing 

us to add new types of subtlety and robustness to movement behaviors. However, we can go 

even further, chaining them together and applying multiple operations to a test in sequence. 

Following erosion with a gradient operation on a visibility test can produce a shrunken 

border representing all locations that are solidly hidden, but able to move into a location 

with line of sight easily—for example, when developing a procedural spawning system that 

should place new enemies not only out of view, but also where they can quickly engage the 

player. Following dilation with blur can produce buffer zones with a smooth falloff, giving 

agents the flexibility to position themselves closer to dangerous areas when no other suitable 

position is available. 

Finally, we can apply morphological operations at different scopes to gain additional 

flexibility over how spatial areas are manipulated. The examples above operate on a single 

test, but are also powerful when executed over the results of a subset of tests in a query, or 

over the final results of the entire query, acting as a global post-processing step. 

 

 



12 

  

 
Figure 4 Post-processing operators applied to the results of a visibility test that scores 

locations hidden from the player. From left to right: Original data, post processing with 

erosion, dilation, gradient, and Gaussian blur operations. 

 

5.1 Performance and Optimization 

In order to identify all points in range of each sample point in the query, the naïve 

implementations in Listings 1 and 2 execute in O(n2) time, and as a result will be too slow to 

use in practice for all but the smallest queries. For a production-ready implementation, it is 

necessary to minimize this lookup time by first placing the test results a spatial partitioning 

data structure such as a quadtree or octree, then perform nearest neighbor search over the 

partitioned space. Even for queries that span large areas, by taking this step the cost of 

performing a post processing operation can be reduced to a small fraction of the total 

execution time. 

 

6 Conclusion 

A query is more than a collection of tests. Every component, from test weights to 

normalization to result selection plays an important part in producing rich, nuanced 

movement behavior, and by knowing when to adjust each piece we can leverage the full 

expressive power a query system provides. In this article, we learned how to prevent goal 

instability with hysteresis, blend between multiple query behaviors using test utility, ensure 

that our test scores are weighted correctly by selecting different normalization methods, and 

extract additional spatial information from tests to make decisions based on the shape of the 

results using post processing operators. In this way, by tuning individual components to 

ensure that the results reflect our intentions, we can make finicky behaviors reliable, good 

results even better, and put complex, sophisticated behaviors within practical reach. 

 

 

 

 

 

 

 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝐸𝑟𝑜𝑠𝑖𝑜𝑛 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑏𝑙𝑢𝑟 



13 

  

7 References 

[Isla 09] Isla, D., Dill, K., Champandard, A. 2009. Lay of the Land: Smarter AI Through 

Influence Maps. GDC 2009. 

 

[Jack 13] Jack, M. 2013. Tactical Position Selection: An Architecture and Query Language. 

In Game AI Pro, ed. Steve Rabin, 337-359. CRC Press. 

 

[Johnson 17] Johnson, E. 2017. Guide to Effective Autogenerated Spatial Queries. In Game 

AI Pro 3, ed. Steve Rabin, 309-325. CRC Press. 

 

[Zielinsky 13] Zielinski, M. 2013. Asking the Environment Smart Questions. In Game AI 

Pro, ed. Steve Rabin, 423-431. CRC Press. 

 


