
479

41
Leveraging Plausibility
Orderings to Achieve Extremely
Efficient Data Compression
Jeff Rollason

41.1 Introduction

Data compression is often blind to the meaning of the data and instead depends on detecting
pure, context-free patterns. It is possible, however, to exploit the structured nature of the
data to achieve extremely efficient compression. In this chapter, we show how we at AI

41.1 Introduction
41.2 The Core Requirement:

A Klondike Solitaire App
41.3 Assessing the Space

Requirement
41.4 Cutting the Space

Requirements, Step 1: Bit
Packing

41.5 Cutting the Space
Requirements, Step 2:
Table Lookup

41.6 Cutting the Space
Requirements, Step 3:
Plausibility + Morse/
Huffman Encoding

41.7 Cutting the Space
Requirements, Step 4:
Plausibility + Run-Length
Encoding

41.8 An Example Game
Record and the
Compressed Record

41.9 Beyond Data
Compression: Plausibility
Ordering as an AI Tool

41.10 Conclusion
References

Copyright Material – Provided by Taylor & Francis

480 41. Leveraging Plausibility Orderings to Achieve Extremely Efficient Data Compression

factory exploited this idea for our mobile Klondike Solitaire game Solitaire Free (Solitaire
Free 2016), using a very simple approach to achieve compression far in excess of that pro-
vided by conventional methods—with final compressed data that were about 100 × smaller
than the raw data! Given that this was destined for a mobile app, this was a game changer
for our team.

The underlying basis of our approach is to exploit the plausibility ordering, an attribute
that has been crucial in-game AI for the success of programs such as AlphaGo (Deepmind
2016). We show here how this ordering can be used to yield other benefits, beyond just bet-
ter gameplay.

41.2 The Core Requirement: A Klondike Solitaire App

Klondike Solitaire (Klondike 2016) is probably the world’s most popular solitaire game.
In order to build a successful mobile version of the game, we needed to provide the player
with a variety of solvable puzzles, ranging from easy to very hard.

By estimation some 15% of Klondike puzzles have no solution (depending on the rule
set). The principles needed to solve Klondike are well known but unfortunately not fast
enough to randomly create a reliably graded puzzle on-the-fly. Puzzles created this way
would tend to be of poor quality and most often unsolvable. Therefore we needed a library
of graded puzzles, created in advance.

41.3 Assessing the Space Requirement

Given that runtime puzzle generation was not an option, we set out to create a database of
graded puzzles for Klondike. We wanted a puzzle set for each of three difficulty levels. Each
puzzle set consists of two rule sets, and each rule set should have 2000 puzzles, so we need
to store the solutions for 3 * 2*2000 puzzles. The solutions vary in length, but the longest
of them require 198 moves, and the representation for a single Klondike move takes 8 bytes.
Thus, the simplest (and worst) solution would require 3 * 2*2000 * 198 * 8 bytes, or over
19 MB just for the puzzles! This is for a mobile app for a consumer market where users fill
up their phones with apps, music, and photos. Space is a highly coveted resource. Most of
AI Factory’s mobile apps are nowhere near this size and they have game code and artwork
as well, so clearly this is not an acceptable solution.

Of course this assumes that all solutions require the worst case size of move record,
which obviously could be compacted into variable length records. Doing this gives an
average record size of 125 instead of 198, which would reduce the overall size to 3 *
2*2000 * 125 * 8 = 12,000,000 bytes, but that is still too much.

41.4 Cutting the Space Requirements, Step 1: Bit Packing

As a first step, we took a look at the move format and saw that the 8-bit bytes are wasteful.
There are only 10 move types, so that can be stored in 4 bits. Klondike needs 52 possible
cards, which requires 6 bits. The tableau destination needs only 3 bits, and so on. Packing
the data more efficiently cut the move record from 8 bytes down to 3, which results in a

Copyright Material – Provided by Taylor & Francis

48141.7 Cutting the Space Requirements, Step 4: Plausibility + Run-Length Encoding

total size of 4,500,000 bytes. This was looking better, but 4.5 Mb is still quite a bit bigger
than the total size of our smallest released product. We can do better…

41.5 Cutting the Space Requirements, Step 2: Table Lookup

The next idea was to replace the coded moves with an index that gives the number of the
move in the list of legal moves at that point in the game. This means that the record cannot
be decoded without the actual game engine to determine what the move ordering is, as we
have reduced a move to a simple index, but this index has no meaning unless we know the
order in which the moves are generated in game. This makes the record context sensitive
but gives a radical improvement. Each move can now be stored in a single byte, reducing
the size to 3 * 2*2000 * 125 * 1 = 1,500,000 bytes.

At this point we might have considered stopping as this is about half of the size of
our smallest mobile app, although note that this is just one table, not the complete app.
Regardless, we can still do better…

41.6 Cutting the Space Requirements, Step 3:
Plausibility + Morse/Huffman Encoding

If we had a strict ordering of the moves by expected quality (a plausibility ordering) we
could then take advantage of the fact that the distribution of possible move list indices
would not be random but rather highly skewed, so that the right move for the solution is
much more likely to be near the beginning of the list than near the end. In other words, the
first move in the moves list would be expected to be the most common, the second some-
what less common, and so on until we get to the least common move at the end of the list.
This would allow us to use a Morse Code-like encoding (Morse 2016) such that the most
common index (i.e., 1) would be the equivalent of the letter “E” in Morse, with a single bit
representing it, and later moves in the list would take up to 5 bits. This is, of course, essen-
tially a Huffman encoding (Huffman 2016), but we have chosen to express it in terms of
Morse Code (which somewhat predates Huffman) as that is a simpler concept with a wider
common understanding.

A Huffman encoding could result in a very high level of compression, with an esti-
mated four moves per byte and an overall size of 380 Kb. This would be very small, but a
better (and also simpler) solution is possible…

41.7 Cutting the Space Requirements, Step 4:
Plausibility + Run-Length Encoding

Examination of the plausibility orderings for the actual solutions showed that the order-
ings’ first move was right most of the time. This offers a better option: To use Run-Length
Encoding (Run-length 2016) on the move lists. With this approach a series of nine zeros
(i.e., 9 moves where the first move on the list is correct) could be reduced to a single byte
of the form 0 × 89 or 128 + 9. Such was the dominance of these first moves that other
moves could be left as-is, occupying 7 bits per index.

Copyright Material – Provided by Taylor & Francis

482 41. Leveraging Plausibility Orderings to Achieve Extremely Efficient Data Compression

With this approach, the entire set could be reduced to just 192,160 bytes—and this included
the start-up 6 bytes needed for each solution, the random seed (needed to define the card
deal), the length of record, and the number of moves. This is storing moves at an astonishing
12.8 moves per byte, ignoring the headers, and 7.8 moves per byte after header overheads.
This is almost 100× smaller than the uncompressed data, and makes the point very strongly
that plausibility ordering can have a dramatic impact on game database compression.

41.8 An Example Game Record and the Compressed Record

The impact of this method is most easily appreciated by examining a sample solution
record. Table 41.1 is the very first game in the database, minus the 6-byte header needed for
each solution. This complete 127 move game compresses to the following 3 byte sequence:

197,1,185

This is dramatically successful, although this particular example is a simple puzzle and
thus offers a better chance of high compression than our more complex puzzles do.
Nevertheless, it still seems quite remarkable!

41.9 Beyond Data Compression: Plausibility Ordering as an AI Tool

Generation of a good plausibility ordering, in which the early moves are the most likely,
is a critical topic. This point was illustrated by the recent success of AlphaGo. Almost cer-
tainly key to AlphaGo’s success was its capacity to pick an Expert chosen move in the first
move ordering 57% of the time, compared to a previous best of 44% by other groups. If this
margin had been only, say, 52% then it is quite likely that the human world Go champion,
Lee Sedol, would have easily won the match.

To do some simple calculations, consider the impact on a 6-ply sequence: at 57% the
chance of taking the “right” line on a rollout of six moves is a healthy 3.4%, but at 44% this
figure is a more modest 0.72%. When you project this out to the 20 plies that AlphaGo
searched, the divergence in performance is more dramatic: 57% gives you about a 200-fold
better chance of hitting the best line the first time.

This feeds back into our chapter in Game AI Pro 2, “Interest Search—A Faster Minimax”
(Rollason 2015). Again the key to the success of the product Shotest (Japanese Chess) was
its capacity to get the right move, or at least good moves, to the top of the moves list,
in a game with a serious issue with combinatorial search explosions. A good plausibility
ordering, combined with the interest search mechanism, allowed Shotest to quickly enter
the top rankings in Computer Shogi, even though it was authored by a programmer who
played a poor game of Shogi! Even a slightly better ordering resulted in a much more effi-
cient and effective tree search.

It is worth pointing out that plausibility ordering, as used in tree search, is not what
you would exclusively use to pick a move to play. Its purpose is to provide candidates to
explore in a search, so it can afford to make colossal mistakes in its first choice as long as
these mistakes are uncommon. Put simply, as long as the search has a high probability
of a good choice, a low probability of a terrible choice may have a very limited negative
impact. This makes plausibility ordering much easier, since you need not put in the much

Copyright Material – Provided by Taylor & Francis

48341.9 Beyond Data Compression: Plausibility Ordering as an AI Tool

Table 41.1 First Solution in the Klondike Puzzle Database

01. T♣ Tabl->Tabl 5->1 (From 5)
02 4♠ Draw
03. K♣ Draw
04. 8♣ Draw
05. A♣ Draw
06. 4♦ Draw
07. T♦ Waste->Tabl->7
08. K♥ Draw
09. Q♥ Draw
10. 2♠ Waste->Tabl->2
11. 9♣ Draw
12. ?♥ Re-cycle
13. 4♠ Draw
14. K♣ Draw
15. 9♠ Waste->Tabl->7
16. 8♦ Tabl->Tabl 3->7 (From 3)
17. 7♦ Tabl->Tabl 5->3 (From 4)
18. 7♣ Tabl->Tabl 5->7 (From 3)
19. Q♠ Tabl->Tabl 5->4 (From 2)
20. J♦ Tabl->Tabl 1->4 (From 1)
21. 8♣ Draw
22. A♣ Draw
23. 4♦ Draw
24. K♥ Waste->Tabl->1
25. 2♦ Draw
26. K♠ Draw
27. Q♣ Waste->Tabl->1
28. T♠ Draw
29. ?♥ Re-cycle
30. 4♠ Draw
31. 6♦ Waste->Tabl->7
32. K♣ Draw
33. 9♥ Draw
34. A♣ Waste->Foundation->1
35. A♦ Draw
36. J♥ Draw
37. Q♥ Draw
38. T♠ Draw
39. ?♥ Re-cycle
40. 4♠ Draw
41. 5♣ Draw
42. 9♥ Waste->Tabl->4
43. 8♣ Waste->Tabl->4
44. 5♣ Waste->Tabl->7
45. 4♥ Tabl->Tabl 5->7 (From 1)
46. K♣ Waste->Tabl->5

47. Q♦ Draw
48. 7♥ Waste->Tabl->4
49. A♦ Waste->Foundation->2
50. Q♦ Waste->Tabl->5
51. 4♦ Draw
52. 2♦ Waste->Foundation->2
53. J♥ Waste->Tabl->1
54. 8♥ Draw
55. 9♣ Draw
56. T♠ Waste->Tabl->1
57. ?♥ Re-cycle
58. J♣ Tabl->Tabl 7->5 (From 7)
59. 3♦ Tabl->Foundation 7->2
60. A♥ Tabl->Foundation 7->3
61. 5♥ Tabl->Tabl 6->7 (From 6)
62. 2♣ Tabl->Foundation 6->1
63. 2♥ Tabl->Foundation 6->3
64. 3♠ Tabl->Tabl 6->5 (From 3)
65. 6♣ Tabl->Tabl 7->4 (From 4)
66. T♥ Tabl->Tabl 6->7 (From 2)
67. 6♠ Tabl->Tabl 6->3 (From 1)
68. K♦ Tabl->Tabl 4->6 (From 4)
69. 3♣ Tabl->Foundation 4->1
70. 3♥ Tabl->Tabl 2->4 (From 2)
71. 5♦ Tabl->Tabl 2->3 (From 1)
72. 4♣ Tabl->Tabl 4->3 (From 2)
73. 4♠ Draw
74. 4♦ Waste->Foundation->2
75. 8♥ Draw
76. K♠ Waste->Tabl->2
77. Q♥ Waste->Tabl->2
78. J♠ Tabl->Tabl 7->2 (From 3)
79. A♠ Tabl->Foundation 7->4
80. 2♠ Tabl->Foundation 3->4
81. 3♥ Tabl->Foundation 3->3
82. 4♣ Tabl->Foundation 3->1
83. 5♦ Tabl->Foundation 3->2
84. 3♠ Tabl->Foundation 5->4
85. 4♥ Tabl->Foundation 5->3
86. 5♣ Tabl->Foundation 5->1
87. 6♦ Tabl->Foundation 5->2
88. 5♥ Tabl->Foundation 6->3
89. 6♣ Tabl->Foundation 6->1
90. 7♣ Tabl->Foundation 5->1
91. 8♠ Tabl->Tabl 3->7 (From 2)
92. 9♦ Tabl->Tabl 7->1 (From 1)

(Continued)

Copyright Material – Provided by Taylor & Francis

484 41. Leveraging Plausibility Orderings to Achieve Extremely Efficient Data Compression

larger effort to avoid rare poor choices. The dynamic of this is significantly different from
the needs of the linear evaluation function that might ultimately be responsible for the
chosen move.

41.10 Conclusion

This case study shows that plausibility ordering, where better moves are mostly ordered at
the top, offers a way to impose a highly structured skew on the data, making it amenable to
compression far in excess of what is possible from context-free data compression. Huffman
encoding would have allowed the original database of raw solutions to be compressed, but
this would have depended on detecting moves common to all solutions. This moves list
would have included a relatively vast number of possible moves. However, reclassifying the
solutions, not by move content, but by chance of the move being correct, offers a substan-
tially more efficient structure for compression. The complexity of move structure is then
completely removed from the database and replaced by a minimalized move index.

In this case our plausibility ordering skewed very heavily to the first move in the list,
but another inferior ordering might also perform very well, utilizing either a Huffman
encoding or a modified Run-Length Encoding. To get the optimum compression for
the latter would probably need some simple hand coding. If the second move had a high
chance of being correct then the byte structure might use the top 2 bits, leaving 6 bits for
uncompressed moves. This would allow the three top moves to use Run-Length Encoding.
If a move sequence of the same positions exceeded 6 bits then it could simply be split into
an additional byte for the rare overflow. In our encoding, for example, we might have done
better by encoding the top three moves instead of just the top move—but we had already
achieved plenty, and time is money!

Of course in more complex distributions the run-length option might simply not work,
but the Huffman encoding would almost certainly work in these cases.

93. 7♠ Tabl->Tabl 3->5 (From 1)
94. 9♣ Draw
95. 9♣ Waste->Tabl->2
96. 8♥ Waste->Tabl->2
97. 6♥ Waste->Foundation->3
98. 4♠ Waste->Foundation->4
99. 5♠ Tabl->Foundation 4->4
100. 6♠ Tabl->Foundation 1->4
101. 7♦ Tabl->Foundation 1->2
102. 7♠ Tabl->Foundation 5->4
103. 8♠ Tabl->Foundation 1->4
104. 8♦ Tabl->Foundation 5->2
105. 9♦ Tabl->Foundation 1->2
106. 9♠ Tabl->Foundation 5->4
107. T♠ Tabl->Foundation 1->4
108. T♦ Tabl->Foundation 5->2
109. 7♥ Tabl->Foundation 6->3
110. 8♥ Tabl->Foundation 2->3

111. 8♣ Tabl->Foundation 6->1
112. 9♣ Tabl->Foundation 2->1
113. 9♥ Tabl->Foundation 6->3
114. T♥ Tabl->Foundation 2->3
115. J♥ Tabl->Foundation 1->3
116. J♠ Tabl->Foundation 2->4
117. Q♥ Tabl->Foundation 2->3
118. T♣ Tabl->Foundation 6->1
119. J♣ Tabl->Foundation 5->1
120. Q♣ Tabl->Foundation 1->1
121. K♥ Tabl->Foundation 1->3
122. J♦ Tabl->Foundation 6->2
123. Q♦ Tabl->Foundation 5->2
124. K♣ Tabl->Foundation 5->1
125. Q♠ Tabl->Foundation 6->4
126. K♠ Tabl->Foundation 2->4
127. K♦ Tabl->Foundation 6->2

Table 41.1 (Continued) First Solution in the Klondike Puzzle Database

Copyright Material – Provided by Taylor & Francis

485References

References

AlphaGo. https://deepmind.com/alpha-go (accessed June 18, 2016).
Rollason, J. 2015. Interest search—A faster minimax. In Game AI Pro 2, ed, S. Rabin. Boca

Raton, FL: CRC Press, pp. 255–264.
Klondike (solitaire). https://en.wikipedia.org/wiki/Klondike_(solitaire) (accessed June 18,

2016).
Morse code. https://en.wikipedia.org/wiki/Morse_code (accessed June 18, 2016).
Run-Length Encoding. https://en.wikipedia.org/wiki/Run-length_encoding (accessed

June 18, 2016).
Huffman coding. https://en.wikipedia.org/wiki/Huffman_coding (accessed June 18, 2016).
Solitaire Free. https://play.google.com/store/apps/details?id=uk.co.aifactory.solitairefree

(accessed June 18, 2016).

Copyright Material – Provided by Taylor & Francis

