
471

40
Vintage Random
Number Generators
Éric Jacopin

40.1 Introduction

It will go like this. You are in a hurry and you need to generate random data structures, so
you turn to what your favorite programming language provides—it is C++ after all, how
could it hurt you? Or maybe it will sneak up on you. You are prototyping and do not want
to worry about implementation details. This graphical tool is so practical and elegant,
what could go wrong?

The answer to both questions is rand().
rand() can hurt your project because many implementations still use a linear congru-

ential random number generator (LCG), a family of random number generators that were in
use as early as 1949 (Lehmer 1949). Many tools still use rand()today to generate integers,
real numbers, and Boolean values. Such vintage random number generators are still here
because they are fast and simple, not because they work well.

The next section presents rand(). It explains what an LCG is, how it works, and how it
can hurt your project when used to generate random Boolean values, for example. The fol-
lowing section presents better LCGs than the ones built into most current-day compilers.
Finally, we present a technique that combines two LCGs to provide randomness you can
use. Code for this technique will be provided on the book’s website.

40.1 Introduction
40.2 rand(): When

Randomness Means
Cautiousness

40.3 Vintage LCGs You Could
Use

40.4 Combined LCGs: LCGs
You Can Use

40.5 Conclusion
Acknowledgments
References

Copyright Material – Provided by Taylor & Francis

472 40. Vintage Random Number Generators

40.2 rand(): When Randomness Means Cautiousness

In this section, we explain: Why are linear congruential random number generators lin-
ear? Why are they congruential? How can we visualize these properties? What about
rand(), how does it work?

A linear congruential random number generator is linear because it uses a linear equa-
tion to generate the next random number xn from the previous random number xn−1:

 x ax bn n= +−1

which gives:

x a x ban

n i

i

n

≥

=

−

= +∑0 0

0

1

where x0 is the seed of the random number generator. Consequently, with a b> ≥0 0, and
x0 0> we have:

lim
n

nx
→∞

= ∞

If we choose a b= =2 3, and x0 0= then x15 98301= is the first generated number, which
cannot be represented with an unsigned 16-bit integer, whereas x29 1610612733= is the
largest number, which can be represented by a signed 32-bit integer. We obviously need
more than just 29 possible random values.

A linear congruential random number generator is congruential because it frames the
generated numbers with the help of a modulus operation:

 xn n= +−()ax b m1 mod

For a positive integer m two integers a and b are said to be congruent modulo m when

 amod modm b m=

For example, you can choose b = a + m. Consequently, LCGs are periodic random number
generators: For some value of n, you will get numbers that have already been generated,
in the same order. The following LCG, originally proposed by Derrick Lehmer (Lehmer
1949), has a proven repetition period of 5 882 352:

 xn n= +−()23 1
8x mod (10 1)

When b = 0 the LCG is called multiplicative and one must be careful with the seed, since
x0 0= will force xn> =0 0 (that is, once one value is 0, then all following values will also be 0),
which is certainly not random. Consequently, seeds for multiplicative LCGs must be cho-
sen in the range [1,m)—that is, at least equal to 1 and strictly less than m. To avoid xn = 0
becoming true for some other generated value, multiplicative LCGs are designed so that
only x mn− =1 would give xn = 0, which is impossible by definition since all generated values
are strictly less than the modulus m.

Copyright Material – Provided by Taylor & Francis

47340.2 rand(): When Randomness Means Cautiousness

Both linearity and periodicity of LCGs can be easily visualized by plotting the points
made of the pairs (,)x xn n−1 of successive numbers that have been generated; if we further
divide the generated numbers by m, we get a normalized plot over the unit range (0,1), of
the linear and repetitive behavior of an LCG, as shown in Figure 40.1.

All LCGs repeat themselves for some value of n, including rand(). Visualizations for
ANSI C (X3J11 1988) and Visual C++ 2015 are shown in Figure 40.2.

0.0
0.0

1.0

0.8

0.6

0.4

0.2

0.05

a = 23 m = 108 + 1

Xn−1/m

X n
/m

0.1

Figure 40.1

a b= 23, = 0 and m = +10 18 has a repetition period of 5 882 352.

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0005
Xn–1/RAND_MAX

X n
/R

A
N

D
_M

A
X

X3J11/ANSI C/88–090 rand () VC++ 2015 rand ()

0.001 0.0
(b)(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.0005
Xn–1/RAND_MAX

X n
/R

A
N

D
_M

A
X

0.001

Figure 40.2

(a) rand() from ANSI C. (b) Visual C++ 2015’s rand().

Copyright Material – Provided by Taylor & Francis

474 40. Vintage Random Number Generators

Here is the portable implementation of rand() from ANSI C (a = 1103515245, b = 12 345
and 32768m =) :

static unsigned long int next = 1;

int rand(void) /* RAND_MAX assumed to be 32767 */

{

 next = next * 1103515245 + 12345;

 return (unsigned int)(next/65536) % 32768;
}

And here is the LCG which is still used by Visual Studio’s C and C++ (Lomont 2008):

 x xn n= +−()214013 2531011 21
31mod

Note that as b ≠ 0 for both previous LCGs, the seed x0 can safely be chosen in the range
(0,m) (i.e., greater or equal to 0 and strictly less than m) and xn− =1 561 051 201 is the only
value in the range (,)0 231 such that:

 ()214013 2531011 01
31xn− + =mod 2

The ith bit of this LCG has a period of 2i (L’Écuyer 1990), highlighted in gray in the fol-
lowing ()x0 0=

 xn≥0 & 1 = 1,0,1,0,1,0, ...

 xn≥0 & 2 = 1,1,0,0,1,1,0,0,1,1,0,0, ...

 xn≥0 & 4 = 0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0, ...

 xn≥0 & 8 = 0,1,0,0,0,1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0,1,1,1,1,0,1,1,1,0,0,0 ...

Since 2 2 2 231 16 15 16 15= = ×+ , Microsoft’s implementation of rand() divides xn by 216
which deletes the 16 least significant (and most rapidly repeated) bits so that rand()
returns values strictly less than 2 32768 115 = = + RAND_MAX. But the 17th bit neverthe-
less has a period of 217 and so on for the higher order bits of the numbers generated by
rand().

To illustrate one of the common pitfalls of working with rand(), we end this section
with a discussion on generating random Boolean values. Integer values 0 and 1 are typi-
cally used to represent Boolean false and true, respectively, so it makes sense to gener-
ate 0 and 1 values with rand() using a modulus operation:

bool RandBoolMod(void)

{

 return ((rand() % 2) == 1) ? true: false;

}

Copyright Material – Provided by Taylor & Francis

47540.3 Vintage LCGs You Could Use

It is also possible to divide rand() by (RAND_MAX+1), multiply by 2, truncate the result
and return the result as a Boolean value, which is the method used by the Unreal Engine 4:

bool RandBoolDiv(void)

{

 int b = (int) ((2.0f * rand()) / (RAND_MAX + 1));

 return (b == 1) ? true: false;
}

Both methods are valid; however, as predicted by the discussion above on the periodicity
of the ith bit and as shown in Figure 40.3 above, RandBoolDiv()will generate longer
series of the same Boolean value than RandBoolMod(), thus increasing the perception
that your game is cheating (Rabin 2004). As a result, on one hand the series of random
Boolean values generated with rand() has a smaller period than that of a better LCG
and on the other hand there are very long subseries with the same Boolean value, that is
either false or true.

40.3 Vintage LCGs You Could Use

Over the years, many empirical and theoretical tests have been developed to assess the
performance of LCGs, thus pushing forward the search for better LCGs. We begin with
two LCGs reported by NASA as two useful uniform random number generators with very
satisfactory performance (Howell and Rheinfurth 82, page 2):

 x xn n= −()16807 1
31mod (2 1)−

 x xn n= −()29903947 1
31mod (2 1)−

600,000

500,000

400,000

300,000

200,000

100,000

N
um

be
rs

 o
f s

er
ie

s o
f a

 g
iv

en
 le

ng
th

Length of a series of the same Boolean value

RandBoolDiv
RandBoolMod

0
5 10 2015

Figure 40.3

Which use of rand() do you want to generate Boolean values?

Copyright Material – Provided by Taylor & Francis

476 40. Vintage Random Number Generators

The LCG with a =16807 and m = −2 131 is sometimes considered the minimal standard
(Park and Miller 1988) for LCGs and both exhaustive search, and theoretical work has
shown that for m = −2 131 , the choice of a =16 807is one of the best possible values (L’Écuyer
1988) for the multiplier a. Other good choices include a = 742 938 285, a = 950 706 376
and a = 630 360 016. An even better option is the LCG:

 x xn n= −() ()40 692 2147 4833991 mod

which is reported to achieve excellent performance (L’Écuyer 1988). Both of these LCGs
are visualized in Figure 40.4.

40.4 Combined LCGs: LCGs You Can Use

Although the LCGs in Figure 40.4 are getting better and better, they still suffer from the
same inherent problems as rand(). One way to do significantly better is to combine the
output of multiple LCGs. Assume two distinct LCGs:

 x a x b mn n1 1 1 1 1 1, ,()= +− mod

 x a x b mn n2 2 2 1 2 2, ,()= +− mod

Here is how to combine x n1, and x n2, into one LCG (L’Écuyer 1988):

 x x x mn n n= − −− −(()), ,1 1 2 1 1 1mod

In theory you can combine as many LCGs as you want (L’Écuyer 1988) (with obvious run-
time costs), but two are enough to provide far better performance than one LCG alone.

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0005
Xn–1/m

X n
/m

a = 16807 m = 2147483647

0.001 0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0005
Xn–1/m

X n
/m

a = 40692 m = 2147483399

0.001
(b)(a)

Figure 40.4

(a) Minimum standard LCG. (b) One of the best known LCGs.

Copyright Material – Provided by Taylor & Francis

477Acknowledgments

As you can see in Figure 40.5, a combination of two LCGs does not show the linear and
congruential properties we have seen in Figures 40.1, 40.2, and 40.4. Although not per-
fect, combined LCGs achieve the best randomness that LCGs can provide. If you want to
keep using vintage random number generators, combined LCGs are the approach that you
should use.

The code used to generate Figure 40.5 is available on the website, and can be plugged
directly in to your game.

40.5 Conclusion

Let us face it: stop using rand(). This can be difficult if not impossible as rand() can be
hidden in other random functions (such as those built into a third-party game engine), but
the effort is worth it. For example, consider combining LCGs as presented in Section 40.4!

Finally, please, take the time to read the papers published on the topic of random num-
ber generators for game programming (Lecky-Thompson 2004, Isensee 2001, Jones 2004,
Lomont 2008, Rabin 2008), and game artificial intelligence in particular (Freeman-Hargis
2004, Rabin 2004, Rabin et al. 2014).

Acknowledgments

Thanks to Marjan Petkovski for his comments, to Elric Jacquart for generating millions of
random numbers, and to Kevin Dill for his work editing this chapter.

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0005
Xn–1/(m1−1)

X n
/(m

1−
1)

a1 = 40014 a2 = 40692
 m1 = 2147483563 m2 = 2147483399

0.001

Figure 40.5

Combined LCGs for the randomness you should use.

Copyright Material – Provided by Taylor & Francis

478 40. Vintage Random Number Generators

References

X3J11. 1988. Draft ANSI C Standard 88-090. http://flash-gordon.me.uk/ansi.c.txt (accessed
February 15, 2017).

Freeman-Hargis, J. 2004. The statistics of random numbers. In AI Game Programming
Wisdom 2, ed. S. Rabin. Hingham, MA: Charles River Media, pp. 59–70.

Howell, L. W. and M. H. Rheinfurth. 1982. Generation of pseudo-random numbers. Nasa
Technical Paper 2105, 27 pages. Hampton, VA.

Isensee, P. 2001. Genuine random number generator. In Game Programming Gems 2, ed.
M. DeLoura. Hingham, MA: Charles River Media, pp. 127–132.

Jones, T. 2004. Zobrist hash using the mersenne twister. In Game Programming Gems 4, ed.
A. Kirmse. Hingham, MA: Charles River Media, pp. 141–146.

Lecky-Thompson, G. W. 2004. Predictable random numbers. In Game Programming
Gems, ed. M. DeLoura. Hingham, MA: Charles River Media, pp. 133–140.

Lehmer, D. H. 1949. Mathematical methods in large scale computing units. In Proceedings of
the 2nd Symposium on Large Scale Digital Calculating Machinery. Harvard University
Press, pp. 141–146.

L’Écuyer, P. 1988. Efficient and portable combined random number generator.
Communications of the ACM 31(6):742–749, 774.

L’Écuyer, P. 1990. Random numbers for simulations. Communications of the ACM
33(10):85–97.

Lomont, C. 2008. Random number generation. In Game Programming Gems 7, ed.
S. Jacobs. Hingham, MA: Charles River Media, pp. 113–125.

Park, S. and K. Miller. 1988. Random number generators: Good ones are hard to find.
Communications of the ACM 31(10):1192–1201.

Rabin, S. 2004. Filtered randomness for AI decisions and game logic. In AI Game
Programming Wisdom 2, ed. S. Rabin. Hingham, MA: Charles River Media, pp. 71–82.

Rabin, S. 2008. Using Gaussian randomness to realistically vary projectile paths. In Game
Programming Gems 7, ed. S. Jacobs. Hingham, MA: Charles River Media, pp. 199–204.

Rabin, S., J. Goldblatt and F. Silva. 2014. Gaussian randomness, filtered randomness, and
Perlin noise. In Game AI Pro, ed. S. Rabin. Hingham, MA: Charles River Media,
pp. 29–43.

Copyright Material – Provided by Taylor & Francis

