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39.1 Introduction

Players have a large amount of content to choose from across a variety of different game 
platforms and marketplaces. Some game storefronts now offer thousands of games, and 
finding relevant content can often be challenging for players. One of the newer ways in 
which AI is being used is to help players discover content through recommendation sys-
tems. A successful recommendation system should suggest content that a player finds rel-
evant and interesting, and that the player would not have otherwise discovered. In games, 
recommendation systems can be applied to a variety of tasks outside of selling content, 
including matchmaking systems and dynamic difficultly adjustment (Medler 2008).

The goals for a recommendation system vary based on the system user. For a player, a 
common motivation for browsing content suggested by a recommender is to find games that 
closely match the player’s preferences. Recommendations can be useful for finding similar 
titles that do not fit well into existing categories or genres. Another motivation for using 
recommendation lists is to discover new content that the player would not have otherwise 
considered. For platform owners that manage a storefront, a common goal is to improve the 
monetization of players on the system. This can include improving conversion rates, from 
viewing the store to making a purchase, increasing total daily sales on the platform, and 
increasing sales for a specific type of content. For game developers, the motivation is to get 
featured on the recommendation system, to drive additional sales and player engagement.
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462 39. Recommendation Systems in Games

This chapter will introduce some of the algorithms used to implement recommendation 
systems and provide examples of systems being used in games. Next, it provides source 
code examples for setting up a recommendation system using Java, Scala, R and SQL. It 
concludes by discussing how to test a recommender in offline and online experiments, and 
options for deploying a recommendation system.

39.2 Recommendation Algorithms

A variety of algorithms are available for suggesting content to players. The best algorithm 
to use will depend on the number of items in the marketplace, how quickly the market-
place changes, the number of users interacting with the service, and the richness of telem-
etry collected by the game and platform. An approach that works well for a small, curated 
game storefront may not transfer well to a marketplace with thousands of titles, millions 
of users, and constant updates. Additionally, algorithms that use gameplay data to find 
more relevant content for players, such as a player’s favorite class or items in an RPG title, 
may be too computationally expensive to use in practice.

There are three common types of approaches used for implementing recommenda-
tion systems. The first is content-based filtering, which uses information about a specific 
item, such as game genre, to find related items. The second is collaborative filtering, which 
uses common purchase patterns across players to make suggestions. The third is model-
based approaches that predict a player’s likelihood to purchase in order to suggest content. 
Hybrid approaches can also be used that integrate multiple algorithms.

39.2.1 Content-Based Filtering
Content-based filtering uses only information about an item to suggest related items. This 
is usually handled through metadata about the item, such as game genre or other item 
tags. For example, if a user decides to download Battlefield 4, a content-based recommen-
dation system might suggest related shooter titles, such as Battlefield Hardline. The Steam 
recommendation system behaves like a content-based system, because it usually suggests 
content within the same sub-genre. One of the benefits of a content-based system is that it 
does not need any prior data about the user in order to make suggestions. These systems 
do not suffer from the cold-start problem, since they do not try to make inferences about 
users. One of the challenges in using content-based filtering is that accurate metadata or 
tags need to be created and maintained for the entire catalog.

39.2.2 Collaborative Filtering
Collaborative filtering uses data collected from users and transactions to make inferences 
about which content users will find relevant. It is therefore making recommendations for 
you based on the preferences of other users, rather than the genres of the games that you 
have played. One of the benefits of collaborative filtering is that it can be used to reduce the 
amount of metadata that needs to be maintained about items in the catalog. For example, 
instead of specifying a genre for every game on a storefront, you can use data collected 
from players to determine which games are related.

The collaborative-filtering approach can be used for both item ratings and item rank-
ings. In an item rating system, the goal of the recommender is to predict how a user would 
rate a game that the user has not yet rated. A system that can accurately model a user’s 
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ratings can suggest new games to try by predicting the unrated games the user would rate 
highest. This is a form of explicit data collection, since the user is assigning scores to items. 
In an item ranking system, the goal of the recommender is to suggest content that the user 
is most likely to interact with next. Rather than assign specific scores to items, these types 
of systems provide an ordered list of content that the user may find relevant. This is a form 
of implicit data collection, since the user is interacting with the content but not assigning 
a specific score. Netflix is an example of an item rating system, since it predicts how users 
will rate new movies, whereas Amazon is an example of an item ranking system, since it 
suggests related items but does not show explicit scores.

Collaborative filtering can either directly model the relationships between users and 
items, often referred to as neighborhood methods, or indirectly model these relationships 
using inferred variables (latent factors). For direct relationships, user-to-user or item-to-
item based approaches can be used. For indirect relationships, solving for the latent fac-
tors is treated as a matrix factorization problem and alternating least squares (ALS) is 
commonly used (Ryza et al. 2015). Apache Mahout provides libraries for user-based and 
item-based collaborative filtering (Anil 2010), whereas Apache Spark provides an imple-
mentation using ALS.

In user-based collaborative filtering, the goal is to find a set of users with similar pref-
erences to the user that needs recommendations. Items that similar users purchased or 
interacted with are used to generate a list of recommendations. Items from users that 
are more similar to the user that needs recommendations are given more weight than 
less similar users. The algorithm works as shown in Listing 39.1. It computes a weighted 
average for each of the items rated by similar users and returns the items with the highest 
weighted averages.

Item-based collaborative filtering uses a similar approach, but builds recommendations 
by computing item similarities rather than user similarities. Pseudocode for this algo-
rithm is shown in Listing 39.2. When a user needs a list of recommendations, the sys-
tem uses prior item ratings and retrieves similar items based on a similarity measure. 

Listing 39.1. Pseudocode for User-Based Collaborative Filtering.

For every other user V
 Compute the similarity S between U and V
 For every item I rated by V
 Add V’s rating for I weighted by S to I’s avg. weight
Return the top rated items

Listing 39.2. Pseudocode for Item-Based Collaborative Filtering.

For every item I
 For every item J already rated by U
 Compute the similarity S between I and J
 Add U’s rating for J weighted by S to I’s avg. weight
Return the top rated items
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464 39. Recommendation Systems in Games

In  item-based  collaborative filtering, item similarity is usually computed based on the 
overlap of users that interacted with both items I and J. This approach differs from 
 content-based filtering, which computes item similarity based on metadata. This algo-
rithm was used to implement one of the previous versions of Amazon’s recommendation 
system (Linden et al. 2003).

Both item-based and user-based collaborative filtering use similarity measures to select 
items to recommend. One of the similarity measures that can be used by both algorithms 
is the Tanimoto coefficient (Anil 2010). For user similarity, the coefficient is defined as the 
overlapping number of items purchased by both users (intersection) over the total number of 
items purchased by the users (union). It returns a value of 1 for users with the exact same pref-
erences and 0 for users with no overlap. Different similarity measures are useful for different 
types of recommendations: Pearson correlation and Euclidean distance are commonly used 
for explicit feedback (item ratings), whereas the Tanimoto coefficient and Log Likelihood are 
frequently used for implicit feedback (item rankings) (Anil 2010). It’s best to experiment with 
different similarity measures on test data to evaluate which measures work best.

Alternating least squares is another algorithm used for collaborative filtering. It is 
a model-based approach in which the goal is to associate user and item relationships 
through latent factors rather than directly representing these associations. Latent factors 
are variables that are not directly observable, but assumed to have influence on users’ 
preferences for content. This approach uses two matrices: One where each user has k latent 
variables, and a second where each item in the catalog has k latent variables. ALS is used to 
solve for these variables, and the resulting matrices can be used to predict how users will 
rate new content (Koren et al. 2009). This approach is highly scalable and was used by the 
winning entry in the Netflix prize

39.2.3 Model-Based Filtering
Predictive models can also be used to recommend content for players. One approach that 
can be used is modeling a user’s likelihood to purchase a game, which can be represented 
as a classification problem. In order to create a recommendation list, a separate classifier 
needs to be created for each game, and the outputs of the classifiers are used to generate a 
sorted list of games for a user. One of the benefits of this approach is that if an eager model 
is used, such as logistic regression (Hastie et al. 2001), then recommendations can be com-
puted very quickly for a user. Some of the drawbacks of this approach are that it requires 
building a classifier per game in the catalog and may require significant offline training.

In practice other models are often used in order to scale to a large item catalog. One 
example of a model-based recommendation system used in practice is the Xbox recom-
mender (Koenigstein et al. 2012). This system uses Bayesian inference with a bilinear 
model, where each user and item is represented as a vector and the inner product of a user 
vector and item vector predicts the user’s affinity for the item.

Another way models can be utilized for recommendations is by identifying different 
segments, or cohorts of users. For example, one segment of players may prefer RPG titles 
and purchase a large amount of RPG games and DLC, whereas another segment of players 
may prefer free-to-play FPS titles. If a model can accurately predict segments for players, 
then these segments can be used to recommend different content to different groups of 
players. This approach is often combined with content-based filtering or handcrafted rule 
sets for a small, curated game catalog.
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39.2.4 Algorithm Selection
Depending on the target deployment environment, a variety of different options may be 
available for implementing a recommendation system. When choosing what approach to 
use, it is useful to ask the following questions: 

 1. Is the system generating item ratings or item rankings?
 2. How large is the item catalog?
 3. Is the metadata for items well maintained?
 4. Is there a massive user base with tens of millions of users?
 5. Should the recommender include gameplay-specific events?

If the goal of the system is to generate predicted ratings for content, then collaborative 
is usually the best approach. For item rankings, several options can be well suited. If the 
item catalog is small, then content-based filtering may be the best approach if accurate and 
up-to-date metadata is available for the item catalog, such as tags that describe a game. 
Otherwise, if the catalog is small then model-based approaches such as a classifier per game 
may be useful. For large item catalogs, collaborative filtering can be useful. In the case of 
Amazon, with a massive user base, an item-based algorithm was used (Linden et al. 2003). 
For large user bases where additional information about player behavior should be used for 
recommendations, such as the favorite class of a player in RPGs, user-based collaborative 
filtering can be used. ALS provides an approach that can scale to a variety of use cases.

The recommendation algorithm used for the in-game marketplace in EverQuest 
Landmark is user-based collaborative filtering (Weber 2015). One of the unique challenges 
faced by this title is that user-generated content, published through the Player Studio pro-
gram, can be sold in the game’s marketplace. This resulted in a large item catalog where 
limited metadata are available to describe items. Additionally, one of the goals for the 
recommendation system was to incorporate gameplay-based metrics, such as the amounts 
of different resources collected by a player, when making suggestions for content. User-
based collaborative filtering works well for this approach, because the similarity metrics 
used can incorporate additional features about players, and this approach does not require 
accurate metadata about items.

39.3 Building a Recommender

There are a variety of open-source tools that can be used to prototype and deploy a recom-
mendation system. This section will present examples for generating a recommended item 
list using Mahout in Java (Anil 2010), MLlib in Scala (Ryza et al. 15), recommenderlab in 
R (Hahsler 2011), and directly in SQL. Each of these libraries has evaluation metrics that 
can be used to measure the performance of a recommender, such as precision and recall 
metrics. Some of these libraries are better suited for prototyping different system configu-
rations, whereas some are also suitable for deployment in a production system.

39.3.1 Java: Apache Mahout
Mahout is a machine learning library implemented in Java that provides a variety of col-
laborative filtering algorithms (Anil 2010). Using this library, it is possible to quickly evalu-
ate a variety of recommendation system configurations by combining different algorithms 
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and similarity measures. Mahout can be used on a single machine for prototyping, or 
deployed to a cluster for a production system. Daybreak Games used this library to test 
out different recommendation system configurations for the marketplace in EverQuest 
Landmark (Weber 2015).

Mahout implements user-based collaborative filtering with a UserNeighborhood class 
that specifies how similar a user needs to be in order to provide feedback for item 
recommendations. An example script that generates five game recommendations for user 
101 is shown in Listing 39.3. This example uses the Tanimoto similarity measure to find 
the similarity between users, which computes the ratio of the number of shared games 
(intersection) over the total number of games owned by the players (union). The script 
loads game purchase data from a CSV file, which lists game purchases as tuples of User ID 
and Game ID. This file is used as input to a data model which is then passed to the recom-
mender object. Once a recommender object has been instantiated, the recommend method 
can be used to create a list of game recommendations for a specific user. In this example, 
the top five game recommendations are retrieved for the user with ID 101. The import 
statement in this script shows a common directory shared by these classes, to find the fully-
qualified class names readers should refer to the Mahout documentation.

An example of item-based collaborative filtering with Apache Mahout is shown in 
Listing 39.4. The main difference in this example is that a different recommender object 
is instantiated, and UserNeighborhood is not specified. The item-based recommender 
provides the same recommend method that can be used to generate game recommen-
dations. One of the useful classes that Mahout provides not shown in these examples is 
RecommenderEvaluator, which provides functionality for computing the recall and preci-
sion of a recommender.

Listing 39.3. User-Based Collaborative Filtering with Mahout (Java).

import org.apache.mahout.cf.taste.*;

DataModel model = new FileDataModel(new File(“Games.csv”));
UserSimilarity s = new TanimotoCoefficientSimilarity(model);
UserNeighborhood neighborhood = new
 ThresholdUserNeighborhood(0.1, similarity, model);
UserBasedRecommender recommender = new
 GenericUserBasedRecommender(model, neighborhood, s);
List recommendations = recommender.recommend(101, 5);

Listing 39.4. Item-Based Collaborative Filtering with Mahout (Java).

DataModel model = new FileDataModel(new File(“Games.csv”));
ItemSimilarity s = new LogLikelihoodSimilarity(model);
ItemBasedRecommender recommender = new
 GenericItemBasedRecommender(model, s);
List recommendations = recommender.recommend(101, 5);
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39.3.2 Scala: Apache Spark
One of the tools becoming more popular for building recommendation systems is Apache 
Spark. In fact, many of the single-machine algorithms available in Mahout are being 
deprecated in favor of Spark. In addition to Mahout, Spark provides a built-in library 
called MLlib which includes a collection of machine learning algorithms. Currently, ALS 
is the only implementation of collaborative filtering available in MLlib (Ryza et al. 2015). 
Although Spark supports multiple languages, the example in this section uses Scala.

A Scala example using MLlib to perform user-based collaborative filtering is shown in 
Listing 39.5. This script first runs a query to retrieve game purchases in a UserID, GameID 
tuple format, and then transforms the data frame into a collection of ratings that can be 
used by the ALS model. Implicit data feedback is being in this example, which is why the 
trainImplicit method is used instead of the train method. The input parameters to the train 
method are the game ratings, the number of latent features to use, the number of iterations 
to perform for matrix factorization, the lambda parameter which is used for regulariza-
tion, and the alpha parameter which specifies how implicit ratings are measured. Once the 
model is trained, the recommendProducts method can be used to retrieve a recommended 
list of games for a user. In this example, five games are retrieved for the user with ID 101.

39.3.3 R: recommenderlab
If you are more comfortable programming in R, then the recommenderlab package provides 
a great framework for testing out different recommendation systems (Hahsler 2011). An 
example using this package for user-based collaborative filtering is shown in Listing 39.6. 

Listing 39.5. User-Based Collaborative Filtering with MLlib (Scala).

import org.apache.spark.mllib.recommendation._

val games = sqlContext.sql(“
 select UserID, GameID from GameOwenership
 group by UserID, GameID”)

val ratings = games.rdd.map(row =>
 Rating(row.getInt(0), row.getInt(1), 1)
)

val rank = 10
val model = ALS.trainImplicit(ratings, rank, 5, 0.01, 1)
model.recommendProducts(101, 5)

Listing 39.6. User-Based Collaborative Filtering with recommenderlab (R).

install.packages(“recommenderlab”)
library(recommenderlab)

matrix <- as(read.csv(“Games.csv”),”realRatingMatrix”)
model <-Recommender(matrix, method = “UBCF”)
games <- predict(model, matrix[“101”,], n=5)
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The package is available on the CRAN repository and can be installed using the standard 
install.packages function. Once loaded, the package provides a Recommender function 
which takes a data matrix and recommendation method as inputs. In this script, the data 
matrix is loaded from a CSV file, and the method used is user-based collaborative filtering 
(UBCF). The predict function is then used to retrieve five items for user 101.

39.3.4 SQL
If you have purchase history stored in a database, another option for prototyping a recom-
mendation system is to use SQL directly. This approach can be computationally expensive 
to use, but can be useful for spot-checking a few results for sampled data. It is also useful 
in situations where pulling data to a machine running Spark or R is slow or expensive. An 
example using SQL to perform user-based collaborative filtering is shown in Listing 39.7. 
In this example, the inner query computes the Tanimoto coefficient between users by find-
ing the ratio in overlapping games divided by total number of games purchased. The outer 
query returns an average score for each retrieved game. The result set of this query is five 
game recommendations for user 101.

39.3.5 Evaluating Recommenders
The scripts in this section have provided examples of how to retrieve game suggestions 
for a specific user. One of the ways to evaluate the quality of a recommender is to use a 
qualitative approach, in which the output of the recommender is manually examined for a 
small group of users. Another approach is to use the built-in evaluation metrics included 
in the different libraries. For example, recommenderlab and MLlib provide functions for 
computing receiver-operating characteristic (ROC) curves which can be used to evaluate 
different system configurations.

When evaluating a recommender, it is also a good practice to compare the performance 
of the recommendation system to other handcrafted approaches, such as a top sellers list. 
One of the metrics used to evaluate the recommendation system for EverQuest Landmark 

Listing 39.7. User-Based Collaborative Filtering in SQL.

select u. UserID, v. GameID, avg(Tanimoto) as GameWeight
from (
 select u. UserID, v. UserID V_ID,
 count(distinct u. GameID) Overlap,
 Overlap/(u. NumGames + v. NumGames - Overlap) Tanimoto
 from Purchases u
 Join Purchases v
 on u. GameID = v. GameID
 where u. UserID = 101
 group by u. UserID, v. UserID, u. NumGames, v. NumGames
) u
Join Purchases v
 on V_ID = v. UserID
group by u. UserID, v. GameID
order by GameWeight desc
limit 5
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was a holdout experiment, where a single item is removed and the goal of the recom-
mender is to identify the held-out item in as few suggestions as possible. This enabled 
different Mahout configurations to be tested against hand-authored rule sets. Also, rec-
ommender evaluation should not be limited to the prototyping stage. Once put into pro-
duction, the system should be compared against control groups, such as a top sellers list 
and other recommendation system configurations.

39.4 Deploying a Recommender

One of the challenges in building a recommendation system for a game is deploying the 
system so that it can retrieve item recommendations in near real time. A common method 
for achieving this level of responsiveness is setting up offline and online phases. In the 
offline phase matrices are precomputed as part of a batch process performed daily, and 
in the online phase a web service performs a lookup from the most recently precomputed 
matrix. Using this approach avoids the need to evaluate models in real-time when build-
ing game suggestions. Another approach is to set up a streaming recommendation system 
that computes items for each user in near real-time. For example, Spark can be configured 
in a streaming mode where new batches of users are evaluated every second. In this con-
figuration, the model needs to be responsive enough to ensure efficient retrieval of recom-
mendation lists. Another approach is to implement the logic for collaborative filtering on 
the game server. This is similar to the streaming approach, but the response is handled 
directly by the game server rather than through a recommendation library.

Once a recommender has been deployed, it is useful to measure the performance of the 
system versus a control group, such as a top sellers list. This can be done through A/B test-
ing where the majority of users interact with the recommendation system, and a holdout 
set of users serve as the control group and receive suggestions from a top selling items list.

39.5 Conclusion

Recommendation systems have transformed how users discover content and many games 
are now using these systems in practice. This chapter has provided an overview of com-
mon algorithms for building recommendations, provided examples for setting up a system 
in different languages and environments, and discussed options for deploying a system for 
a game. Recommendation systems can help improve monetization in a game or market-
place, and also have the potential to help players discover new games to play and find novel 
content that they would not have otherwise discovered.
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