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Stochastic Grammars
Not Just for Words!

Mike Lewis

36.1 Introduction

Randomness, when carefully and judiciously applied, can be a powerful tool for augment-
ing the behavior of game AI agents and systems. Of course, purely random behavior is 
rarely compelling, which is why having some semblance of pattern is important. One way 
to do this is to simulate intent, making AI decisions based on some kind of deliberate 
design. Many excellent resources exist for creating the illusion of intentional behavior in 
game AI—and this very volume is not least among them.

However, there are times when it is useful to tap directly into the realm of randomness. 
Even if it is purely for the sake of variety, a little bit of random fuzz can do a lot of good for 
an AI character (Rabin et al. 2014). Occasionally, though, there is a sort of confluence of 
requirements that makes both purely intentional decision-making and heavily random-
ized decision-making problematic. It is at those times that structured randomness comes 
into play.
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424 36. Stochastic Grammars

Imagine a mechanism for generating sequences of actions. This mechanism can be 
tuned and adjusted, either at design-time, or on-the-fly at runtime. It creates a controlled 
blend between predictable patterns and random chaos. That is to say, the mechanism can 
be tweaked to create arbitrarily “random-feeling” sequences based on completely custom-
izable factors. Again, this can be done statically or dynamically. Moreover, it can generate 
any kind of structured data. Sound appealing?

Welcome to the world of stochastic grammars.

36.2 Formal Grammars

A formal grammar is a tool for describing and potentially manipulating a sequence or 
stream of data. Ordinarily, grammars are used for textual inputs, and operate on sequences 
known as strings. Although historically envisioned by Pān. ini, circa the 4th century BCE, 
as a tool for rewriting sequences, grammars are also instrumental in recognizing whether 
or not a string is valid according to the rules of the grammar itself (Hunter 1881).

This recognition of validity, along with parsing—extracting syntactic structure from a 
string—is a key component in both natural language processing and computer languages. 
A compiler, for example, typically uses a tool called a parser generator to convert a gram-
mar into code that can parse strings written by those grammatical rules—that is, pro-
grams (Brooker et al. 1963).

As an example, Table 36.1 shows a simple grammar that describes the natural numbers.
This grammar uses Extended Backus-Naur Form, or EBNF (Backus 1959, Wirth 1977). 

Each row of the table describes a rule. The third rule, “Natural Number,” can be thought of 
as the starting point for recognizing or generating a natural number. It specifies a sequence 
of symbols, beginning with a nonzero digit. The comma indicates that the following portion 
of the rule is concatenated with the leading portion. Next, the braces indicate repetition. In 
this case, any digit may appear, and that sub-rule is allowed to apply zero or more times.

Looking at the actual rule for nonzero digits, there is one additional important symbol, 
the pipe. This indicates alternations, that is, that a choice must be made from several alter-
natives. Each rule also ends in a semicolon, denoting the termination of the rule.

The net result is that the “Natural Number” rule specifies a nonzero digit followed by 
any number of digits (including zeros). This matches perfectly with the expectation for 
what a natural number looks like.

However, grammars need not be relegated to use with pure text or numbers. If a string 
is defined as a set of data symbols with some particular set of meanings, virtually any 
structured data can be defined with a suitable grammar. Allowing these symbols to carry 
meanings like “punch” or “attack on the left flank” opens the door for much richer appli-
cations than mere operations on words.

Table 36.1 Grammar Describing the Natural Numbers 
in EBNF

Name of Rule Rule Matches Strings of this Form
Nonzero Digit 1|2|3|4|5|6|7|8|9;
Any Digit Nonzero Digit|0;
Natural Number Nonzero Digit, {Any Digit};
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36.3 Generating Sequences from a Grammar

Grammars typically have a selected set of starting symbols which control the first rule(s) 
used when creating a new string. How does one choose which rules of a grammar to fol-
low in order to generate a sequence? If the goal is to exhaustively generate as many strings 
as possible, then the answer is simply “all of them.” Sadly, this is not useful for most non-
trivial grammars, because they are likely to contain recursive rules that just never stop 
expanding.

Suppose that each rule of the grammar is augmented with a weight value. As the output 
is progressively accumulated, there will (probably) be points where more than one rule 
from the grammar can be applied. In these cases, the next rule can be chosen via a simple 
weighted random number generation, using the weights from each available rule. This 
structure is known as a stochastic grammar or probabilistic grammar.

Supplementing a grammar with this random selection process is akin to describing 
how “likely” a given generated string might be. If a sequence describes actions taken by 
an AI agent, the probability weights control that agent’s “personality.” Some actions—and 
even subsequences of actions—can be modeled as more “like” or “unlike” that character, 
and in this way, a sort of preferential action generation process can be constructed.

Take, for example, a ghost wandering a Pac-Man-like maze. At each intersection, 
the ghost can turn left, turn right, continue forward, or reverse directions. Table 36.2 
 illustrates a simple grammar that describes these possibilities; note the addition of weights 
to the Direction Decision rule’s alternation pattern.

The ghost AI simply needs to generate a string of decisions and pop a decision from 
the front of the queue each time it enters an intersection. If an “L” decision is retrieved, 
the ghost turns left; correspondingly, the ghost turns right for an “R.” The “F” decision 
translates to moving forward in the same direction as before, and “B” indicates moving 
backward. Obviously in some cases a particular decision may not be applicable, so the 
ghost can simply pop decisions until one is possible. Should the queue become empty, just 
generate a new sequence and continue as before.

As described in the table, the stochastic grammar will have an equal chance of making 
each possible selection. However, the “personality” of the ghost can be adjusted to bias toward 
(or against) any of the options available, merely by tuning the weights of the grammar.

What other sorts of things can be done with a decision-making grammar? Consider 
a raid boss in a multiplayer RPG. This boss has two basic attack spells: one that makes 
enemies in a small region vulnerable to being set on fire, and a separate fireball which 
capitalizes on this vulnerability. Moreover, the boss has a third, more powerful spell that 
does huge bonus damage to any foe who is currently ablaze.

The naïve approach is to simply cast the vulnerability spell on as many players as possi-
ble, then fireball them, and lastly close with the finishing move. Although this is a workable 
design, it lacks character and can easily be predicted and countered by attentive players.

Table 36.2 Stochastic Grammar to Control a Ghost in a Maze

Name of Rule Rule Generates these Symbols
Direction Decision 0.25 L|0.25 R|0.25 F|0.25 B;
Navigation Route {Direction Decision};
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Instead, describe the available moves for the boss in the form of a grammar, such as 
that in Table 36.3. One possible sequence generated by this grammar might look like 
“Fireball × 3, Vulnerability × 5, Fireball × 4, Finisher, Fireball, Finisher.” More importantly, 
given appropriate probability weights for the rules, this grammar will produce different 
sequences each time the raid is attempted. Although the overall mechanics of the fight are 
intact, the specifics vary wildly. That is to say, players know they must come equipped to 
defend against fire, but the actual progression of the fight is largely unpredictable.

Although arguably the same results could be had with a more sophisticated AI system, 
it is hard to compete with the raw simplicity and easy configurability of a stochastic gram-
mar. Certainly, there will be applications for which grammars are not the best choice. 
However, when used appropriately, the ability to generate a structured, semi-random 
sequence is a compelling tool to have in one’s arsenal.

36.4 A Data Structure for Grammars

The actual implementation of code for generating (and parsing) strings is a rich subject. 
However, it is quite possible to work with simple grammars using basic, naïve approaches 
to both parsing and generation. Given a suitable data structure for representing the gram-
mar itself, it is easy to start with the trivial implementation and upgrade to more sophis-
ticated algorithms as needed.

Based on the examples so far, some kind of tree-type structure seems well suited to the 
task of representing the grammar itself. Each rule can be represented as a node in the tree. 
A “nested” rule can be pointed to as a child node. The nodes themselves can contain a list 
of parts, with each part being either a sequence of nodes or a list of weighted alternatives to 
choose from. Within this structure, nodes can be represented using an abstract base class, 
with derivative classes for sequences and alternations. The actual generated sequence (or 
input for parsing) can be represented with a container class such as std::vector or equiva-
lent. Each node should have an interface function for generating (or parsing) the sub-
strings for which it is responsible.

Leaf nodes are the simplest case; they will merely append an element to the sequence 
and return. These nodes represent the terminals of the grammar. Next up, sequencer 
nodes contain a set of node pointers. When they are asked to generate an element, these 
nodes traverse the container of child nodes in order, asking each one to recursively gener-
ate an element. This process can optionally be repeated randomly, so that the sequence 
itself appears some random number of times in the final output, in keeping with the rules 
of the grammar.

Alternations, or choices, are where the magic of a stochastic grammar really happens. 
These nodes store a set of child nodes, like before, but this time each child has an associated 

Table 36.3 Grammar Producing Attack Sequences for a Raid Boss
Name of Rule Rule Matches Strings of This Form
Vulnerability Combo Vulnerability, {Fireball};
Basic Sequence Fireball, {Vulnerability Combo}, Finisher;
Attack Sequence {Fireball}, {Basic Sequence};
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weight value. As the node is traversed, one child node is selected to be traversed recursively, 
based on a weighted random selection from the available children. (See the accompanying 
demo code at http://www.gameaipro.com/ for an example implementation.)

36.5 Streaming Sequences

The approach to generation thus far has focused on creating a finite-length sequence, using 
random weights to control the length and content of each generated string. However, it 
can sometimes be useful to generate infinitely long sequences as well.

Superficially, this might be denoted by setting a sequence node’s weight such that it 
never chooses to stop repeating. However, there is more to the problem—with the meth-
ods described so far, generating an infinite sequence in this way will just exhaust available 
memory and fail to return anything.

There are two basic approaches to “streaming” an infinite sequence based on a genera-
tive grammar. On the more sophisticated side, one might allow any sequence node to be 
infinite, regardless of its position in the grammar/tree. This requires some careful gym-
nastics to preserve the state of a pass when the output is retrieved midway through.

A hackier alternative is to simply allow only the root node to be infinite. Instead of 
configuring it as a truly infinitely-repeating node, however, it should be wired up to run 
exactly once. Then, the grammar simply invokes the root node some random number 
of times in order to generate a “window” into the current sequence. The resulting out-
put is buffered and can be consumed at any arbitrary rate. Conceptually, the sequence 
behaves as if it were infinitely long, but the process of generating new subsequences is eas-
ily accomplished in finite time.

It should be pointed out that grammars are hardly the only tool for generating such 
infinite sequences. In fact, if the characteristics of the sequence are context sensitive, 
that is, the upcoming output depends on the value of previous output; an approach like 
n-grams is probably much more useful (Vasquez 2014).

36.6 Grammars as Analogues to Behavior Trees

When considering the design and application of a stochastic grammar, it can be helpful 
to think of them as limited behavior trees (Isla 2005). As seen earlier, a grammar can 
often be represented as a tree (although a directed graph is needed in the case where rules 
form cycles). Each rule in the tree can be thought of as a node in a behavior tree, by loose 
analogy.

Sequences and alternations map directly to sequence and selection nodes in BTs. The 
primary distinction is that, for a stochastic grammar, the logic for choosing how to pro-
ceed is not based on examining game state, but simply rolling a random number. So a 
stochastic grammar provides a tool for mimicking more complex AI decisions using a 
weighted random behavioral pattern rather than something more intentional.

The process for designing a stochastic grammar can closely parallel the process of 
designing a simple behavior tree. Clearly, the stochastic grammar will make far less delib-
erate and reactive actions in general, but with careful weight tuning, a fuzzy behavior 
model can look remarkably similar to a more intentional model.
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Choosing to use a grammar over a BT is primarily a matter of considering two factors. 
First, if the behavior tree is designed to carefully handle contingencies or special cases of 
world state, it is probably not suitable for replacement with a grammar. Second, the design 
of the agent being controlled may lend itself to a more randomized behavioral pattern, in 
which case grammars are an excellent choice. A simple way to recognize this is to check 
for heavy use of random selector nodes in the behavior tree.

One last potential benefit of the grammar model is that it is cheap to evaluate, since it 
does not require many world state queries and can operate purely on a stream of random 
numbers. This makes grammars an excellent tool for simulating large numbers of agents 
with low-fidelity “intelligence.”

36.7 Grammars as Scripting Engine

One of the more powerful ways of looking at grammars is as a tool for generating tiny 
scripts. If the generated symbols are miniature commands for a scripting engine, gram-
mars define the rules by which those commands can be combined into meaningful pro-
grams. Working with this analogy, the goal is to first specify a set of commands that are 
useful for handling a given AI problem, and then specify a grammar that will produce 
effective sequences of those commands.

The advantage of using a grammar to generate such script programs is that the scripts 
themselves need not be static. New scripts can be created on-the-fly as gameplay unfolds. 
Since the rules for creating a script are defined during the game’s implementation, any 
generated script has a reasonable chance of doing the “right thing”—assuming the rules 
are suitably constrained.

One way of looking at this is that grammars are a key part of dynamically reprogram-
ming a game’s behavior as it is played. As long as a given grammar is well-designed, it 
will produce new behavioral scripts that are effective within the game simulation itself. 
Controlling the weights of rules in the grammar yields the power to adjust the “success 
rate” of any given script on-the-fly. Clearly, the possibilities for this are endless.

Generally speaking, any time an AI system (or other game system!) expresses behav-
ior in terms of sequences of actions, a grammar can be deployed in place of handcrafted 
scripts. Moreover, given the relationship between grammars and deterministic finite 
automatons, it is possible for any behavior generated by a finite-state machine to also be 
expressed by a grammar (Zhang and Qian 2013).

There is clearly ample material in a typical game’s AI—and, again, other game 
systems—that could be supplanted by the crafty use of grammars. Grammar-like 
methods known as Lindenmayer-systems (or L-systems) are already in popular use for 
procedural generation of certain kinds of geometry, ranging from trees and rivers to 
buildings and even entire cities (Rozenberg and Salomaa 1992). Some creative users 
of L-systems have even explored creating gameplay mechanics based on the technique 
(Fornander 2013).

36.8 Tuning a Stochastic Grammar

One of the classic methods for computing appropriate weights for a stochastic grammar 
given a preexisting corpus of sequences is the inside-outside algorithm (Baker 1979). This 
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approach computes probabilities of various strings appearing in a given grammar, start-
ing from an initial estimate of each probability. It can then be iteratively applied until a 
training string’s probability reaches some desired point. Indeed, if a corpus of training 
data is available, this method is the definitive starting point for tuning a grammar.

But what if training data is not available? The primary difficulty of tuning the gram-
mar then becomes generating enough sample outputs to know whether or not the over-
all distribution of outputs is desirable. Strictly speaking, most stochastic grammar 
approaches use a normalized probability of each rule being selected in the output gen-
eration process. This is mathematically elegant but can make it difficult to estimate the 
overall traits of the grammar, since the human mind is notoriously bad at probabilistic 
reasoning.

As a compromise, the accompanying demo code does not adhere to a strictly normal-
ized probability model for all of the rules. Some shortcuts have been taken to simplify the 
tuning process. Namely, subsequences have a probability of repeating, which is indepen-
dently applied after each successful generation of that subsequence. If the random roll 
fails, the subsequence ends. Further, alternations (selections from among several options) 
employ a simple weighted random scheme to allow the grammar creator to control the 
relative “importance” of each option.

Although not strictly compliant with the preexisting work on the subject of stochastic 
grammars, this approach is arguably far simpler to reason about intuitively. More impor-
tantly, the tuning process is as simple as generating a large number of outputs, and hand-
editing the weights and probabilities of various elements of the grammar to suit.

On an opinionated note, the transparency of the modified stochastic grammar con-
cept is tremendously important. Although probabilistic grammars are typically viewed 
as a machine learning technique, they need not provoke the negative reaction to machine 
learning that is so common in game AI circles—because they do not inherently carry 
the need to give up fine-grained control and intuitive results. Compared with other 
approaches, the lack of explicit training can actually be a huge boon, since it eschews the 
“black box” nature of many other learning tools. Designers can rest assured that the gram-
mar will produce comprehensible if not directly predictable results.

Moreover, it is trivial to dynamically exploit the direct relationship between weights 
in a stochastic grammar and the frequency of output patterns. If a grammar produces 
too many occurrences of some subsequence, the weight for that sequence can simply be 
decreased at runtime. Of course, the tricky part here is attaching sufficient metadata to the 
final sequence such that the rules responsible for a particular excessive subsequence can be 
identified easily. This flexibility (and transparency) is far more cumbersome to build into 
a system like an artificial neural network or a genetic algorithm.

36.9 Feeding a Grammar with Utility Theory

Another approach to generating weights for a stochastic grammar is to measure them 
using utility theory (Graham 2014). In this technique, the weight of a given node is com-
puted through a scoring mechanism that evaluates how “useful” that node is in a given 
context. For instance, suppose a turn-based strategy AI has three basic options: attack, 
reinforce defenses, or expand to new territory. This AI can be given a stochastic grammar 
for deciding its moves for the next several turns.
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When moves are needed, the AI recalibrates the weights of each option based on evalu-
ating the current battlefield. Depending on the grammar it uses, the AI can express vari-
ous “personality” differences. Consider the example grammar in Table 36.4.

In this model, the AI has three basic personalities to choose from. The Offensive per-
sonality will attack two times followed by a series of “smart” choices based on utility. AIs 
that prefer to “turtle” will reinforce their defenses for an arbitrary period, then make a few 
“smart” moves. Lastly, expansionistic AIs will attack and expand heavily, sprinkling in a 
few “smart” turns as well.

The default calibration for “smart” moves has Attack turns slightly preferred to 
Reinforce and Expand selections—but imagine if the AI could calculate new weights for 
these options on-the-fly. If the utility score for a particular move is exceptionally high, that 
strategy will dominate the AI’s play for several turns. Conversely, if the utility score is low, 
the AI is less likely to favor that selection.

Ultimately, the result is that AIs will tend to play according to a particular style, but 
also mix things up periodically with sensible moves based on situational reasoning. 
A moderate style could even be used which simply does the “smart” thing all the time. 
More sophisticated play styles can be constructed with almost arbitrary power and flex-
ibility, just by expanding the grammar.

36.10 Conclusion

Stochastic grammars are a widely used tool from natural language processing. They have 
seen limited use outside that field, despite being applicable to a number of interesting 
problems, when applied creatively.

By generating sequences of data in a controlled—but still random—fashion, stochas-
tic grammars enable the creation of highly structured—but not perfectly predictable— 
outputs. Such outputs can be suitable for many game AI and game logic tasks, ranging 
from design-time procedural content creation to actual on-the-fly behavior controllers.

Although slightly unorthodox in the realm of game AI, grammars offer a much higher 
degree of designer control than many other machine learning techniques. As such, they 
are a promising tool for the inclusion in every game AI professional’s toolbox.

For those interested in further research, the author highly recommends (Collins).

Table 36.4 Stochastic Grammar Decides How a Strategic 
AI Plays the Game

Name of Rule Rule Generates these Symbols
Smart Turn 0.4 Attack|0.3 Reinforce|0.3 Expand;
Offensive Attack, Attack, {Smart Turn};
Turtling {Reinforce}, {Smart Turn};
Conquest Attack, Expand, {Smart Turn}, Expand;
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