
403

34
1000 NPCs at 60 FPS
Robert Zubek

34.1 Introduction

In this chapter we look at the AI used to implement characters in the game Project Highrise
by SomaSim, a skyscraper construction management sim where players build, lease out,
and manage a series of highrise buildings.

The AI goal in this simulation game was to implement a “living building,” simulating
the everyday lives of hundreds of inhabitants of the player’s skyscraper, their daily lives
and routines. As described in more detail in the next section, we gave ourselves a bench-
mark goal to hit: In order to meet gameplay needs, up to 1000 NPCs should be able to live
in the player’s building simultaneously, without dropping below 60 FPS on commodity
hardware.

This chapter will describe how we approached the AI implementation that achieves
this goal. We will first look at the game itself to illustrate the motivations and constraints
behind the AI problem, then in the subsequent section, we will describe two action selec-
tion mechanisms we implemented (and why we settled on using just one of them), and
following that, a performant system for actually executing these actions.

34.1.1 About the Game
Let us quickly introduce the game itself, as shown in Figure 34.1. The player’s job in Project
Highrise is to invest in the construction of highrise buildings, and then manage them
 successfully: Get tenants to move in, keep them happy, make sure everybody gets what

34.1 Introduction
34.2 Action Selection
34.3 Action Performance

34.4 Conclusions
References

Copyright Material – Provided by Taylor & Francis

404 34. 1000 NPCs at 60 FPS

they need, and pays rent on time. As in management simulation games of this type, the
game board is populated by an ever-increasing variety and number of units, such as offices
and restaurants renting space in the building, and characters going in and out of those
units, going to work, getting lunch, coming home at night, and so on.

We will not go into further details on the gameplay or the economic simulation in the
game, since they are beyond the scope of this chapter, except to point out that they all
introduced a common goal: We needed the building to feel alive, to be filled with com-
puter characters whose daily comings and goings would fill the building with irresistible
bustle. In addition to the aesthetic feel of that, the NPCs’ economic activity drives the
economy of the building, which provides the main challenge for the player, so we needed
the NPCs to be simulated on an ongoing basis instead of being simply instanced into view
and then culled.

We gave ourselves a concrete performance goal: The game needed to be able to simulate
and display 1000 NPCs, running at 60 FPS on a reasonably recent desktop-grade personal
computer. Furthermore, there was a resource challenge: We were a tiny team, and we
knew that during most of the development, we would only have one developer on staff
whose job would involve not just AI, but also building the entire rest of the game as well.
So we needed an AI system that was very fast to build, required very little ongoing main-
tenance once built—and primarily, helped us reach our performance goal.

Early on we decided to keep things very simple, and to split our character AI into two
parts, with action selection driving decision-making, and separate action performance
module acting on those orders.

Figure 34.1

Screenshot from early game in Project Highrise.

Copyright Material – Provided by Taylor & Francis

40534.2 Action Selection

34.2 Action Selection

Action selection is a fundamental decision process in character AI: What should I be
doing at the given point in time? During the game’s development, we actually tried two
different implementations of action selection: first, a propositional planner, and second, a
much simpler time-based scheduler of daily routine scripts.

The goal was to reproduce everyday human behavior: Office workers coming in to work
in the morning, maybe taking a lunch break, and working at their desk most of the time
until it is time to go home; apartment dwellers coming home in the evening and puttering
about until bedtime; maintenance and janitorial crews doing their nightly work, whereas
everybody else is sound asleep, and so on.

We did not have to worry too much about animation fidelity as the characters were
just 2D sprites. Rather, our focus was on overall character behavior, because the actions of
your residents and workers directly drive the in-game economy. For example, your food
court restaurants need those office workers taking their lunch breaks so they can turn a
profit, and you in turn depend on those restaurants paying rent, so you can recoup your
investment. Character behavior is central to the economy core loop.

34.2.1 First System: A Propositional Planner
The planning system was our first stab at action selection for NPCs. This happened early in
preproduction, and at that point we did not yet know how much “smarts” we would need
or want from our characters, but we knew flexibility was crucial. Since the game simulates
people with fairly simple goals, it made sense to use a planner to try to string together
sequences of actions to achieve them.

We had some concerns about the runtime performance of a planner vis-à-vis the per-
formance goal, so we decided to implement it using a propositional planner, due to its
potential for very efficient implementation. A detailed description of such a planner is
beyond the scope of this short chapter, but we can describe it briefly at a high level. By a
propositional planner, we mean one whose pre- and postconditions come from a finite set
of grounded propositions, instead of being expressed as predicates. For example, a plan-
ning rule in a propositional planner might look like this (using “~” for negation):

Rule: Preconditions: at-home & is-hungry
 Action: go-to-restaurant
 Postconditions: ~at-home & at-restaurant

Compare this with a rule that uses predicate logic, which is more common in planners
descended from STRIPS (Fikes and Nilsson 1971):

Rule: Preconditions: (at-location X) &
 (desired-location Y) & ~(equal X Y)
 Action: (go-to Y)
 Postconditions: (at-location Y) & ~(at-location X)

Predicate rules are more compact than propositional ones—they let us describe rela-
tionships between entire families of entities.* At the same time, this expressiveness is

* Of course one can also convert predicate rules into propositional rules by doing Cartesian products of the
predicates and all the possible values for their free variables, at the cost of exploding the set of propositions.

Copyright Material – Provided by Taylor & Francis

406 34. 1000 NPCs at 60 FPS

expensive: The planner has to find not just the right sequence of actions to reach the goal,
but also the right set of value bindings for all those free variables.

Propositional rules allow some interesting optimizations, however. Since all proposi-
tions are known at compile time, pre- and postcondition can be represented as simple
bit vectors—then during planning, the process of checking preconditions and applying
postconditions reduces down to very fast bitwise operations. Another benefit is easy plan
caching: It is easy to annotate each propositional plan with a bitmask that describes world
states in which this plan could be reused, so that it can be cached and reapplied verbatim
in the future. At the same time, propositional rules also have a clear shortcoming: they
lack the expressiveness of predicate logic, and require more propositions and rules, which
complicates the decision of when it makes sense to use them.

Once implemented, the planner’s performance exceeded expectations. Although
this was early in production and we did not have a full set of NPCs defined yet, we
knew intuitively that search space fan-out was not going to be a big issue.* Even so,
plan caching was immediately useful: with the relatively small number of NPC types
living fairly stereotyped lives, only a handful of distinct plans actually got created
and then cached, so the planner only had to run that many times during the course
of the game.

We ended up switching away from planning for a reason unrelated to performance, as
discussed next. But even so, our takeaways were that (1) we had a positive experience with
planning as a way to prototype AI behavior and explore the design space and (2) there are
good ways to make it performant enough for use in games (e.g., using propositional plan-
ning, or compact GOAP planners such as presented in [Jacopin 2015]).

34.2.2 Second System: Daily Scripts
In the process of implementing character AI, our understanding of our own design
changed. We realized that we wanted to have our NPCs live very stereotyped, routin-
ized lives—they should be pretty predictable, because there were too many of them in
the building for the player to care about them in detail. We also wanted a lot of designer
control over our peoples’ daily routines, to enhance the fiction of the game: so that worker
and resident behavior would match the socio-economic status of their workplace or apart-
ment, but at the same time, have a lot of variety and quirks for “flavor.”

In the end, we realized that by employing planning, we were working on the wrong level
of abstraction. We were authoring individual planning steps and trying to figure out how
to turn them turn into the right behaviors at runtime—but what we actually wanted
to do, was to author peoples’ entire daily routines at a high level, so that we could have
strong authorial control over when things happened and how they varied. We needed
to author content not on the level of “how am I going to react to this situation,” but on
the order of “what does my workday look like today, and tomorrow, and the day after
tomorrow.”

The representation of behavior in terms of routines certainly has a rich history in
AI. Some of the anthropologically-oriented research (e.g., Schank and Abelson 1977,
Suchman 1987), makes a compelling case that our everyday human interactions are

* We saw this later re-affirmed by Jacopin in his empirical studies of planning in games (Conway 2015): in
many games, NPC planning tends to result in numerous short plans, and relatively small search spaces.

Copyright Material – Provided by Taylor & Francis

40734.2 Action Selection

indeed highly routinized: that given standard situations, people learn (or figure out) what
to do and when, without having to rederive it from first principles, and these stereotyped
routines drive their behavior.

Once we realized we were modeling behavior at the wrong level of abstraction, the
solution was clear: we decided to abandon planning altogether, and reimplement NPC
behavior as libraries of stereotyped scripts, which were descriptions of routine activities
such as going to the office, going to a sit-down restaurant and sitting down to eat, process-
ing a repair request from a tenant, and so on. Scripts would then be bundled together into
various daily schedules, with very simple logic for picking the right script based on current
conditions, such as the time of day and the contents of a simple “working memory” (e.g.,
info on where the NPC wants to go, where its current job is, where its current home is,
and so on). Below is an example definition of a daily script, for someone who works long
hours at the office:

 name "schedule-office.7"
 blocks [
 { from 8 to 20 tasks [go-work-at-workstation] }
 { from 20 to 8 tasks [go-stay-offsite] }
]
 oneshots [
 { at 8 prob 1 tasks [go-get-coffee] }
 { at 12 prob 1 tasks [go-get-lunch] }
 { at 15 prob 0.5 tasks [go-get-coffee] }
 { at 17.5 prob 0.25 tasks [go-visit-retail] }
 { at 20 prob 0.5 tasks [go-get-dinner] }
 { at 20 prob 0.25 tasks [go-get-drink] }
]

This definition is split into two sections. In the blocks section, we see that they work from
8 am to 8 pm at their assigned work station (e.g., their desk), and otherwise spend time at
home. Those continuous scripts such as go-work-at-workstation are performed as
simple looping activity, repetitive but with tunable variations. Then the oneshots section
specifies individual one-shot scripts that might or might not take place, depending on the
probability modifier prob, and each script itself will have additional logic to decide what
to do (e.g., go-get-coffee might start up and cause the NPC to go buy a cup of coffee,
thus spending money in your building, but if there are no cafes in the building it will abort
and cause the NPC to complain). Finally, all of these scripts bottom out in sequences of
individual actions, as described in the next section.

This knowledge representation is simple compared to our previous planning approach,
but it was a positive trade-off. Interestingly enough, early in preproduction we had also
attempted a more complex internal personality models for NPCs, which included physi-
ological state such as hunger or tiredness, but over time we removed all of this detail.
The reasons were two-fold: (1) internal state acted as “hidden information” that made it
difficult for both the designer and the player to understand why an individual is behav-
ing in a certain way and (2) when multiplied by dozens or hundreds of NPCs, this made
for many frustrating moments of trying to understand when entire populations behaved
unexpectedly.

Our main take-away was that the utility of detailed NPC representation is inversely pro-
portional to the number of NPCs the player has to manage. When the number of simulated

Copyright Material – Provided by Taylor & Francis

408 34. 1000 NPCs at 60 FPS

people is small, players appreciate them being complex. However, as the number gets
larger, this does not scale. Having to understand and manage them in detail becomes a
burden for both the player and the designer, so it is better to increase the level of abstrac-
tion as the number of NPCs increases, and limit the complexity that the player has to
deal with.

34.3 Action Performance

Both of our action selection systems—the planner, and the script scheduler—produced
sequences of actions that needed to be performed by the NPC. In this section we will look
at the flip side of this coin: action performance. We will also talk about two simplifica-
tions that enabled efficient implementation: open-loop action performance, and domain-
specific representation for pathfinding.

34.3.1 Action Queues and Open-Loop Action Performance
Many NPC AI systems are closed-loop feedback systems—they monitor the world while
actions are performed, and adjust behavior appropriately, primarily so that they can han-
dle failures intelligently. This comes at a price, however: checking the world has a nonzero
computational cost (based on the frequency of updates, the fidelity of the sensory model,
etc.), as does deciding whether to act on this new information. Some architectures like
subsumption (Brooks 1986) or teleoreactive trees (Nilsson 1994) accept constant resensing
and recomputation as the cost of doing business—while various behavior tree implemen-
tations, for example, differ greatly in whether the individual nodes revalidate themselves
in teleoreactive fashion or cache their activation for extended periods of time.

In our system we take this to a stark extreme: we run action performance almost
entirely open-loop, without trying to monitor and fix up our behavior based on changes in
the world. The main AI setup looks something like this:

 1. Action selection picks a script (e.g., go to work), and combines it with the NPC’s
working memory (e.g., I work at office #243) to produce a sequence of simple
actions: go into the lobby, wait for elevator, take elevator, walk into office #243, sit
down at my desk, etc.

 2. Actions get dropped into an action queue and executed in linear order. This is
detailed in (Zubek 2010), but anyone who has played The Sims or classic base-
building real-time strategy games will be immediately familiar with how this
works at runtime.

 3. Each action can optionally monitor for custom failure conditions. For example, a
navigation action will fail if a path to the destination cannot be found.

 4. If a failure is detected, the queue is flushed immediately, and optionally a fallback
script may be queued up instead (e.g., turn to the camera, play displeased anima-
tion, and complain about the conditions in this building).

 5. Once the queue is empty, the system runs action selection all over again, which
picks the next set of actions and refills the queue.

In effect the system only evaluates the world when it has nothing to do, and once a
course of action is decided, it runs open-loop until it either succeeds or gets interrupted.

Copyright Material – Provided by Taylor & Francis

40934.3 Action Performance

These sequences of actions also end up being rather short—for example, a script for going
to a restaurant and eating might produce a dozen individual actions, altogether taking
about an hour of game time (or: less than a minute of real time) to execute.

This works only thanks to the mostly benign nature of this game world: it is usually
okay to run open-loop without paying too much attention to the world. If something
unexpected does happen, action selection is so inexpensive that we can just abandon the
previous activity and start over. So the brief take-away is that, for game designs that allow
it, inexpensive action selection enables a whole host of other simplifications, such as skip-
ping proper failure handling in favor of just starting all over again.

34.3.2 Pathfinding over a Simplified Model
The second optimization had to do with pathfinding. The game takes place on what is
essentially a 2D grid—a cut-away side view of a building, which can be, say, 100+ stories
tall and several hundred grid cells wide, depending on the scenario. A naive implementa-
tion of A* pathfinding on the raw grid representation quickly turned out to be insufficient
when hundreds of NPCs tried to navigate the grid at the same time.

Naturally, we reformulated pathfinding to be hierarchical to reduce search space.
However, instead of using a generic clustering approach such as for example, HPA* (Botea
et al. 2004), we used our domain knowledge to produce a specialized compact representa-
tion, which made it easier to support the player making ongoing changes to the path graph
(as they built, altered or expanded their highrise). In short: based on the game’s design,
the pathable space divided up into distinct floor plates, which were contiguous sequences
of tiles on the same floor, such that the character could do a straight-line movement inside
a floor plate. Additionally, each floor plate was connected with those above or below it via
stairs, escalators, or elevators, together known as connectors. Floor plates and connectors
became nodes and edges in our high-level graph, respectively, and movement inside each
floor plate became simple straight-line approach.

This search space reduction was significant: for an example of a dense building 100 sto-
ries tall by 150 tiles wide with four elevator shafts, we reduced the space from 15,000 grid
cells to only 100 graph nodes with 400 edges between them. At this point, the data model
was sufficiently small to keep running A*, and additional tweaks to the heuristic function
prevented the open set from fanning out unnecessarily.

I should also add that we considered alternatives such as JPS and JPS+ over the raw grid,
but found them to be an uneasy fit given that the player would be altering the grid space all
the time. In particular, JPS (Harabor and Grastien 2012) effectively builds up a compact
representation as needed, in order to simplify its search, but as the player keeps changing the
game board it would have to keep redoing it over and over again—which seems less optimal
than just keeping the source data model compact to begin with. Additionally, JPS+ (Rabin
2015) gains a performance advantage from preprocessing the search space, but this is an
expensive step that is not intended to be reapplied repetitively while the game is running.

In the end, although we considered more complex approaches than A*, they became
unnecessary once we realized how to optimize the search space instead of optimizing the
algorithm. We used our domain knowledge to reduce the data model so drastically that
the choice of algorithm no longer mattered, and it was a very positive development. Many
areas of AI involve search, and model reduction is a classic technique for making it more
tractable.

Copyright Material – Provided by Taylor & Francis

410 34. 1000 NPCs at 60 FPS

34.4 Conclusions

Drastic simplifications of character AI allowed us to reach our goal of 1000 NPCs at 60
FPS, while keeping development costs down. It was a good example of the power of a
super-specialized AI implementation which, although not generalizable to more complex
behaviors or more hostile environments, was an excellent fit to the problem at hand, and
carried no extra computational (or authoring) burden beyond the minimum required.

This might be an interesting example of the benefits of tailoring one’s AI implementa-
tion to fit the problem at hand, instead of relying on more general middleware. Although
general solutions have their place, it is amazing what can be achieved by cutting complex-
ity mercilessly until there is nothing left to cut.

References

Botea A., Mueller M., Schaeffer J. 2004. Near optimal hierarchical path-finding. Journal of
Game Development, 1(1), 7–28.

Brooks, R. 1986. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, RA-2(1), 14–23.

Conway, C., Higley, P., Jacopin, E. 2015. Goal-oriented action planning: Ten years old and
no fear! Game Developers Conference 2015, San Francisco, CA.

Fikes, R. E., Nilsson, N. J. 1971. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3–4), 189–208.

Jacopin, E. 2015. Optimizing practical planning of game AI. In S. Rabin (ed.), Game AI Pro
2, CRC Press, Boca Raton, FL.

Harabor, D., Grastien A. 2012. The JPS pathfinding system. In Proceedings of the Annual
Symposium on Combinatorial Search (SoCS), Niagara Falls, Ontario, Canada.

Nilsson, N. 1994. Teleo-reactive programs for agent control. Journal of Artificial Intelligence
Research, 1, 139–158.

Rabin, S. 2015. JPS+: Over 100x faster than A*. Game Developers Conference 2015, San
Francisco, CA.

Schank, R., Abelson, R. 1977. Scripts, Plans, Goals, and Understanding. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Suchman, L. 1987. Plans and Situated Actions. Cambridge University Press, Cambridge.
Zubek, R. 2010. Needs-based AI. In A. Lake (ed.), Game Programming Gems 8, Cengage

Learning, Florence, KY.

Copyright Material – Provided by Taylor & Francis

