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32
Paragon Bots 
A Bag of Tricks

Mieszko Zielin’ ski

32.1 Introduction

Paragon is a MOBA-type game developed by Epic Games, built with Unreal Engine 4 
(UE4). Relatively late in the project a decision was made to add AI-controlled players 
(a.k.a. bots) into the game. Limited time and human resources, and the fact that crucial 
game systems had already been built around human players, meant there was no time to 
waste. Redoing human-player-centric elements was out of the question, so the only way 
left to go was to cut corners and use every applicable trick we could come up with. This 
chapter will describe some of the extensions we made to the vanilla UE4 AI systems as 
well as some of the simple systems tailored specifically for Paragon player bots. In the end, 
we added a few enhancements to our basic behavior tree implementation, came up with a 
few useful MOBA-specific spatial representations, integrated all of those with our mature 
spatial decision-making system, the environment query system (EQS), and added a few 
other tricks. The results exceeded our expectations!
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382 32. Paragon Bots

32.2 Terms Primer

There are a number of terms in this chapter that might be unknown to the reader, so we 
will explain them here.

In Paragon, players control heroes. A hero is a character on a team that can use abilities 
to debuff or deal damage to enemy characters and structures, or to buff his or hers own 
teammates. Buffing means improving capabilities (like regeneration, movement or attack 
speed, and so on) whereas debuffing has an opposite effect. Abilities use up hero’s energy, 
which is a limited resource. Abilities also use up time, in a sense, since they are gated by 
cooldowns. Some abilities are always active, whereas others require explicit activation. The 
goal of the game is to destroy the enemy’s base, while protecting your own team’s base. 
Defending access to the base are towers which teams can use to stop or slow advancing 
enemies. The towers are chained into paths called lanes. A lane is what minions use to 
move from one team’s base to the other’s. Minions are simple creatures that fight for their 
team, and they are spawned in waves at constant intervals.

There is more to the game than that; there is jungle between lanes, inhabited by jun-
gle creeps (neutral creatures that heroes kill for experience and temporary buffs), where 
experience wells can be found. There is the hero and ability leveling up, and cards that 
provide both passive and active abilities, and much more. However, this chapter will 
focus only on how bots wrapped their heads around game elements described in the 
previous paragraph.

32.3 Extremely Parameterized Behavior Trees

An experienced AI developer might be surprised that all Paragon bots use the same behav-
ior tree. With the time and resources constraints we were under, we could not afford to 
develop separate trees for every hero, or even every hero type. This resulted in a specific 
approach: The master behavior tree defines the generic structure, specifying the high-
level order of behaviors, but details of behavior execution (like which ability to use, which 
spatial query to perform, and so on) are parameterized so that runtime values are polled 
from the AI agent when needed.

32.3.1 Vanilla UE4 Behavior Trees
Before we get into details of how Vanilla UE4 Behavior Trees (BTs) were used and expanded 
in Paragon, here is a quick overview. Since BTs have been in AI programmers’ toolkit for years 
(Isla 2005) the description will be limited to what the UE4 implementation adds to the concept.

UE4 BTs are an event-driven approach to generic BTs. Once a leaf node representing a 
task is picked the tree will not reevaluate until the task is finished or conditions change. 
Execution conditions are implemented in the form of decorator nodes (Champandard 
2007). When its condition changes, a decorator node may abort lower priority behaviors 
or its own subtree, depending on the setup.

The UE4 BT representation is closely tied to UE4’s Blackboard (BB). In UE4, the black-
board is an AI’s default generic information storage. It takes the form of a simple key-value 
pair store. It is flexible (it can store practically any type of information) and has a lot of 
convenient built-in features. Blackboards are dynamic in nature and are populated by data 
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38332.3 Extremely Parameterized Behavior Trees

at runtime. BB entries are the easiest way to parameterize behavior tree nodes; it makes 
it possible for a BT node requiring some parameters to read the values from a blackboard 
entry indicated by a named key. BT decorator nodes can register with BB to observe spe-
cific entries and react to stored value changes in an event-driven fashion. BB entries are 
also used to parametrize BT nodes. One example of parametrized BT nodes is the MoveTo 
node, which gets the move goal location from a blackboard entry.

Our BT implementation has one more auxiliary node type—the service node. It is a 
type of node that is attached to a regular node (composite or leaf) and is “active” as long as 
its parent node is part of the active tree branch. A service node gets notification on being 
activated and deactivated, and has an option to tick at an arbitrary rate.

32.3.2 Environment Querying System
In UE4, the EQS is the AI’s spatial querying solution and is mentioned here since it is 
mostly used by the BTs to generate and use runtime spatial information. EQS is used for 
tasks such as AI positioning and target selection (Zielinski 2013). EQS’ queries are built 
in the UE4 editor, using a dedicated tool, and are stored as reusable templates. The vanilla 
UE4 BT supplies a task node and a service node for running EQS queries and storing the 
results in the blackboard.

For Paragon, we made changes to the EQS so that it would be possible to point at a 
query template we want to use by specifying a key in the blackboard. The query templates 
themselves are regular UE4 UObjects, so no work on the blackboard side was required. 
The only thing that needed to be done was to extend the BT task that issues environmental 
queries to be able to use query templates indicated by blackboard values. We then used 
this new feature to implement different positioning queries for melee and ranged heroes; 
melee heroes want to be very close to enemies when attacking, whereas ranged ones (usu-
ally) want to be at their abilities’ range while keeping their distance so that the enemy does 
not get too close.

32.3.3 Blackboard Extension
Allowing the blackboard to store a new type is as simple as implementing a dedicated BB 
key type. For Paragon we added a dedicated key type for storing an ability handle, a value 
that uniquely identifies an ability the given hero could perform. With the new blackboard 
key type, we gained an easy way to configure BT nodes to use abilities picked for different 
purposes. Section 32.4 describes the way abilities are picked.

32.3.4 Behavior Moods
It is easy to think about the behavior tree as the final consumer of AI knowledge. The 
BT takes the data and decides on the best behavior, based on that knowledge. We do, 
however, have additional subsystems that need information regarding what is going on 
in the BT. It is not really about what the BT is doing specifically, just what its current 
“mood” is. We need to know if the bot is running away, attacking characters, attacking 
towers, and so on.

The current mood is set through a dedicated service node. The mood information is 
then used by some of the native code that is doing derived work, like setting AI agent’s 
focus or deciding which movement-related abilities are allowed.
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384 32. Paragon Bots

An example of how the described extensions and features mix together is shown in 
Figure 32.1. Names prefixed with BB indicate blackboard entries.

32.4 Ability Picker and Bot Ability Usage Markup

Deciding which ability to use in a given context, against a given target, is not a trivial task. 
The decision depends on multiple factors, like the target type, what we want to do to it, 
how much energy we have available at the moment, and which abilities are on cooldown. 
In addition, many abilities have multiple different effects. For example, there are abilities 
that damage or slow enemies, but they may also heal friendly heroes.

Abilities in Paragon are defined in UE4’s Blueprint visual scripting language. This 
gives designers great flexibility in terms of how exactly each ability executes its behavior. 
Although this is great for content creator iteration and expressing creativity, it makes it 
practically impossible to extract the ability’s usage information automatically. Besides, 
raw information about an ability is not enough to figure out how and when it makes sense 
to use it. To address that, we came up with a family of tags that designers used to mark up 
every ability an AI is supposed to use. We called those bot ability usage tags; examples are 
shown in Table 32.1.

?if BB_EnemylnAbilityRange is set

?if BB_BestAbility is set

PerformAbility: BB_BestAbility

Selector

Sequence

Set mood: Attack Enemy

Run EQS query: BB_PositioningQuery
Save result to: BB_CurrentDestination Move to: BB_CurrentDestination

Figure 32.1

Example behavior tree branch controlling use of offensive abilities.

Table 32.1 Examples of Bot Ability Usage Tags

BotAbilityUsage.Target.Hero Use given ability to target heroes.
BotAbilityUsage.Effect.Damage Given ability will damage the target.
BotAbilityUsage.Effect.Buff.Shield Given ability will give the target a shield.
BotAbilityUsage.Mobility.Evade Given ability can be used to evade enemy attack.
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32.4.1 Ability Cached Data
When a bot-controlled hero is granted an ability, we digest the ability’s blueprint to extract 
information useful for the AI. We store the results in the bot’s Ability Cached Data, put-
ting a lot of care into making sure the data representation is efficient. Ability usage tags get 
digested and represented internally as a set of flags. Other information stored includes the 
ability’s range, type, damage, energy use, cooldown length, and so on. It also caches time-
stamps indicating when the given ability’s cooldown will be over and when AI will have 
enough energy to cast the given ability. Every active ability available to a bot-controlled 
hero has its representation in the ability cache. Ability cached data is the key to the Ability 
Picker’s efficiency.

32.4.2 Ability Picker
The Ability Picker is a simple yet surprisingly powerful service that is responsible for pick-
ing the right ability from a set of given abilities, given a certain target. The way the Ability 
Picker does that is extremely simple—actually, all the magic is already contained in the 
way the data is digested and stored as ability cached data. All the Ability Picker does is 
iterate through the list of abilities usable at a given point in time and checks if it matches 
the desired effect and target type. The returned ability is the one of “best cost” among the 
ones applicable. “Best cost” can have different meanings depending on the target type. 
When targeting minions, we prefer cheaper abilities, whereas we save the more expensive 
ones to target the heroes. Needless to say this scoring approach leaves a lot of room for 
improvement.

The core Ability Picker algorithm is extremely straightforward and is presented in 
pseudocode in Listing 32.1.

Listing 32.1. Ability Picker’s core algorithm.

FindAbilityForTarget(AIAgent, InTargetData, InDesiredEffects)
{
    BestAbility = null;

    for Ability in AIAgent.AllAbilities:
        if Ability.IsValidTarget(InTargetData)
            && (Ability.DesiredEffects & InDesiredEffects)
            && (Ability.CooldownEndTimestamp < CurrentTime)
            && (Ability.EnoughEnergyTimestamp < CurrentTime):
                Score = Ability.RequiredEnergy;
                if IsBetterScore(InTargetData, Score, BestScore):
                    BestScore = Score;
                    BestAbility = Ability;

    return BestAbility;
}
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AllAbilities is an array containing ability cached data of every ability available to 
the bot. The IfValidTarget function checks if a given target is of an appropriate type 
(Hero, Minion, Tower), if it is of a valid team, and if the target’s spatial density (described 
below) is high enough. IsBetterScore, as mentioned above, prefers lower scores for 
minions and higher scores for heroes, so that we go cheap while fighting minions and wait 
to unload on heroes.

32.4.3 Target’s Spatial Density
Some abilities are tagged by designers as usable against minions, but it makes sense to 
use them only if there is more than one minion in the area. This applies to Area-of-Effect 
abilities (AoE), which affect multiple targets in a specified area rather than a single target. 
Using such an ability on a single minion is simply a waste of energy and time.

To be able to efficiently test if a given target is “alone,” we find Spatial Density for every 
target we pass to the Ability Picker. Target density is calculated as part of influence map 
calculations, which is described later in this chapter, so getting this information at run-
time is a matter of a simple lookup operation.

32.4.4 Debugging
Having one system to control all ability selection had an added benefit of being easier to 
debug. It was very easy to add optional, verbose logging that once enabled would describe 
which abilities were discarded during the selection process, and why. The logged informa-
tion combined with the spatial and temporal context we get out of the box with UE4’s 
Visual Log allowed us to quickly solve many ability selection problems—which usually 
turned out to be bugs in ability markup. You can never trust those darn humans!

A handy trick that proved invaluable during bots’ ability execution testing was adding 
a console command used at game runtime to override ability selection to always pick the 
specified ability. Thanks to the centralized approach we were able to implement it by plug-
ging a piece of debugging logic into Ability Picker’s FindAbilityForTarget function 
that would always pick the specified ability.

32.5 One-Step Influence Map

The influence map is a concept well known in game AI; it has been around for many years 
(Tozour 2001). It is a very simple concept, easy to grasp, straightforward to set up, but 
produces great, useful data from the very simple information it is being fed. The idea is 
based on a notion that units exert a “spatial influence” on their environment, proportional 
to their strength, health, combat readiness, or anything else that decays with distance. 
The influence map is a superposition of all those influences and can be used to guide AI 
decisions.

Normally, building an influence map involves every agent going through two steps. 
First is to apply the agent’s influence at the agent’s current location. This usually is the 
place where the agent has the highest influence (although there are other possibilities [Dill 
2015]). The second step is influence propagation. We take the given agent’s influence and 
propagate it to all neighboring areas, and then to areas neighboring those areas, and so on. 
The agent’s influence distributed this way is a function of distance—the further from the 
source, the weaker the influence is.
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Influence propagation can be a very expensive operation; depending on the influence 
map representation and resolution (although there are algorithms supplying infinite- 
resolution influence maps [Lewis 2015]). Also, it gets even more expensive the more 
 influence sources we consider. Due to the constraints on processing for Paragon servers, 
the naive approach was not chosen.

There are multiple ways to represent an influence map. Performance is very important to 
Paragon bots, so we went for a very simple structure to represent influence on our maps. Since 
there is no gameplay-relevant navigable space overlaps on the vertical axis, we were able to 
represent the map with a simple 2D cell grid, with every cell representing a fixed-size square of 
the map. The size of the square used was a compromise between getting high-resolution data 
and not taking too much memory to store the map or using too much CPU when calculating 
influence updates. After some experimentation, we settled on using cells of 5 × 5 m which was 
a good compromise between memory requirements (320 kB for the whole map) and tacti-
cal movement precision. In addition, we have auxiliary information associated with every cell 
where we store influence source’s counters that are used in multiple ways. More on that later.

We cannot simply ignore the fact that different enemies have different range and 
strength properties, that would affect the influence map naturally with influence propa-
gation. In lieu of actual influence propagation, we apply influence of some agents to map 
cells in a certain radius rather than just in the one cell where the agent is currently pres-
ent. We used zero radius for every minion (even the ranged ones) and for heroes we used 
every given hero’s primary ability range. One could argue that applying influence in a 
radius rather than a point is almost the same as influence propagation, but there is a sub-
stantial performance gain when applying the influence to every cell in a radius compared 
to propagating it to consecutive neighbors, especially if the propagation would care about 
cell-to-cell connectivity. Applying influence to all cells in a radius does have a side effect 
of ignoring obstacles that would normally block influence, but due to the dynamics of 
Paragon matches and the way Paragon maps are built, this effect is negligible.

The main way we wanted to use the influence map was to determine bot positioning in 
combat. Depending on the hero type and situation, we might want a bot to keep away from 
enemies (the default case for ranged heroes), or on the contrary, keep close to enemies (the 
default for melee heroes). We can also use “friendly influence” as an indication of safer loca-
tions, or the opposite, to help bots spread out to avoid being easy AoE attack targets. It turns 
out that influence propagation is not really required for the described use cases because 
the influence range, defined as heroes’ effective range, is already embedded into influence 
map data. Propagated data would give us some knowledge regarding how the tactical situ-
ation may change, but in Paragon it changes all the time, so we went for a cheaper solution 
over the one that would produce only subtly better results. Influence propagation can also 
be faked to a degree by deliberately extending the radius used for every hero. The exten-
sion can even be derived from runtime information, like current speed, amount of health, 
energy, and so on, because we build the influence map from scratch on a regular basis.

As will be discussed below, the influence map integrates with EQS to impact spatial 
processes like positioning, target selection, and so on.

32.5.1 Other Influence Sources
Other game actor types can also alter the influence map. Let us first consider towers 
(defensive structures described in Section 32.2). All characters entering an enemy tower’s 
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attack range are in serious danger, since towers pack a serious punch, even to high-level 
heroes. However, influence information is being used only by hero bots, and heroes are 
safe inside enemy tower range as long as the hero is accompanied by minions—minions 
are the primary target for towers. For this reason, we include a given tower’s influence 
information in the map building only if the tower has no minions to attack; otherwise the 
bot does not care about the tower danger (or in fact, even know about it!).

One thing worth mentioning here is that since towers are static structures we do not 
need to recalculate which influence map cells will be affected every frame. Instead, we 
gather all the influenced cells at the start of the match and then just reuse that cached 
information whenever we rebuild the influence map.

One other influence source we consider during influence map building is AoE attacks. 
Some of those attacks persist long enough for it to make sense to include them in influence 
calculations. Having that information in the influence map makes it easy to “see” the dan-
ger of going into such an area! We do not annotate the influence map with short-lasting 
AoE attacks since the AI would not have a chance to react to them anyway—those attacks 
last just long enough to deal damage and there is practically no chance to avoid them once 
they are cast.

32.5.2 Information Use
As stated previously, the main use of the influence information is for bot positioning. This 
information is easily included in the rest of positioning logic by adding another test type 
expanding our spatial querying system (EQS). Thanks to EQS test mechanics, a single test 
that is simply reading influence information from specified locations in the world can be 
used to both score and filter locations a bot would consider as potential movement goals. 
Incorporating this one simple test into all bots’ positioning queries allowed us to get really 
good results quickly. Thanks to this change, bots gained the power to avoid entering enemy 
towers’ fire or running into groups of enemies and to pick locations close to friends, and so on.

Recall the auxiliary information associated with every cell of the map. That information 
is not strictly part of the influence map, but it is gathered as part of influence map build-
ing. The auxiliary information includes a list of agents influencing each cell. We use this 
information to improve the performance of minions’ perception by effectively reducing 
the number of targets they consider for regular line-of-sight tests. Querying the influence 
map for enemy minions or heroes in a given area boils down to a simple lookup operation.

One last bit of influence-derived data is something we called target density. It is a simple 
per-cell counter of enemies of a given type (minion or hero), and we use that to determine 
if a given target is “alone” or if we would potentially hit some other targets when attack-
ing the specific considered target. This is the information that hints to the Ability Picker 
whether using an AoE ability on a given target would be a waste of energy or not.

This kind of creative data reuse was necessary due to our time restrictions. We spent 
time building a system, so then we had to squeeze as much from it as possible.

32.6 Lane Space

A question we often had to answer was “how far bot X is from Y in terms of the lane it is 
on,” where Y could be an enemy tower, a hero, a minion wave, or just an arbitrary location 
in the world. We did not really care about actual 3D distance, just about “how far along 
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the lane” things were. This is extremely easy to answer if lanes are straight lines, but that 
is not quite the case in Paragon… unless we straighten them out!

Figure 32.2a depicts a regular MOBA map, where A and B mark locations of both 
teams’ bases. There are three lanes, with left and right lanes being not at all straight. This 
is where the concept of Lane Space comes in. Transforming a 3D world location into the 
lane space is a matter of projecting it to the line defined by AB segment. See Figure 32.2b 
for an illustration of this transformation.

Introducing lane space made it easy to add a new type of EQS test for scoring or filter-
ing based on relative distance to the combat line on a given lane. We used it for example to 
make ranged bots prefer locations 10 meters behind the minions.

32.6.1 Lane Progress
A natural extension of the lane space is the idea of Lane Progress. It is a metric defined as a 
location’s lane space distance from A or B, normalized by AB  (distance from A to B). Lane 
progress is calculated in relation to a given team’s base, so for example for team A lane 
progress value of base A location would be 0, and base B location would be 1. For team B 
it is the other way around; in fact, for every team A’s lane progress value of x, the value for 
team B will be equal to (1 – x).

32.6.2 Front-Line Manager
It is important in a MOBA for heroes to understand positioning in a lane based on areas 
of danger and safety. In combat, the ranged heroes prefer staying a bit behind the minion 
line, whereas melee heroes should be at the front-line, where the brawling takes place.

To allow the bots to behave like real humans do, we created the Front-Line Manager. 
Its sole purpose is to track all the minions left alive, along with all the remaining towers, 
and calculate where the lane’s combat is. The Front-Line Manager is being fed information 
regarding minions by the influence map manager during influence map building. Based 
on that information and on the current state of a given team’s towers on every lane, the 
Front-Line Manager is calculating the front-line on every lane for both teams. The exact 
front-line value is expressed in terms of lane progress.
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Figure 32.2

(a) A traditional MOBA map. (b) Map transformed to align with one of the axes.
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Similarly, to the influence map information, we incorporate front-line information into 
the positioning logic by implementing another EQS test that measures locations’ distance 
to the front-line.

One other place the front-line information is relevant is during enemy selection. We want 
to avoid bots chasing enemy heroes too deep into the enemy territory, so the distance from the 
front-line contributes to target scoring. Again, this is done with a dedicated EQS test.

32.7 Other Tricks

Cutting corners was crucial due to time constraints, so there is a fair amount of other, smaller 
tricks we used. Those are usually simple temporary solutions that either work well enough so 
that players would not notice, or are placeholders for solutions that will come in the future.

The first one worth mentioning is perfect aim. The ranged hero bots aim exactly at their 
target’s location. This is not strictly speaking cheating, since experienced players do not 
have a problem doing the same. And it is not even as deadly as it sounds, since most ranged 
abilities used physical projectiles (meaning the hits are not instant) and some of them have 
ballistic properties (meaning they obey gravity). It is not a problem to add a slight aim 
angle deviation; Paragon’s easy-difficulty bots actually do that, it is just that the “perfect 
aim” helps revision-one bots to bridge the skill gap to human players. Besides, there are so 
many things humans have brain-hardware support for (especially visual processing), why 
should bots give up one of the few things bots are born with!

Another simple trick we used was to address a complaint we got from people playing in 
mixed human-bot teams. The problem was that as soon as the game started, all the bots 
were taking off to race down the lanes. It was suggested that bots should wait a bit, for 
example until minion waves started spawning. Since that would be a one-time behavior, 
considering it as a part of regular AI reasoning would be a waste of performance. Good 
old scripted behavior came to the rescue. We came up with a very simple idea (and imple-
mentation) of a one-time behavior that is triggered at the beginning of the match. It makes 
bots wait for minions to spawn and then flow down the lanes until they’ve seen an enemy, 
or reached the middle of the map, at which point bots simply switch over to the default 
behavior. Flowing down the lane involves using Paragon’s custom navigation flow-field, 
which makes movement fully pathfinding-free, and thus a lot cheaper than regular AI 
navigation. Once we had scripted behavior support, it came in useful in testing as well.

32.8 Conclusion

I feel that working on game AI is an art of using what is available and coming up with 
simple solutions to usually not-so-simple problems. In the chapter we’ve shown how this 
approach has been applied to work done on Paragon bots. Reusing and extending your 
AI systems is especially crucial when working under heavy time pressure, so investing 
effort ahead of time to make those systems flexible will pay off in the future. Using a single 
behavior tree for all bots in Paragon would not be possible otherwise. When it comes to 
solving game-specific problems, it is usually best to come up with a simple solution that 
isolates the problem and hides the complexity from the rest of AI code by supplying some 
easy-to-comprehend abstraction. The Ability Picker and Front-Line Manager are great 
examples of this. The “Keep It Simple” rule is always worth following!
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