
371

31
Behavior Decision System
Dragon Age Inquisition’s Utility
Scoring Architecture

Sebastian Hanlon and Cody Watts

31.1 Introduction

The real-time combat sequences of Dragon Age: Inquisition (DA:I) pit the player-controlled
Inquisitor in a fight to the death against shambling undead, fearsome demons, and—of
course—towering dragons. It is a tough job, but the Inquisitor is not alone; fighting along-
side his or her are three AI-controlled allies—fellow members of the Inquisition such as
The Iron Bull, a towering, axe-swinging mercenary, Varric Tethras, a smooth-talking
dwarf, and Dorian Pavus, a charming and quick-witted mage.

In Dragon Age, combat is driven by “abilities.” A typical combatant will have anywhere
from 2 to 20 abilities at their disposal, ranging from the simple (“hit your foe with the
weapon you are holding”) to the elaborate (“call down a rain of fire upon your enemies”).
Each ability has an associated cost expressed in terms of a depletable resource called “mana”
or “stamina.” Because mana/stamina is limited, abilities also have an implicit opportu-
nity cost—the mana/stamina consumed by one ability will inevitably preclude the use of
future abilities. This creates a challenging problem for human players and AI characters

31.1 Introduction
31.2 The Behavior Decision

System
31.3 Enumerating Potential

Actions
31.4 Evaluating Behaviors
31.5 Execution Step

31.6 Movement and Passive
Behaviors

31.7 Modularity and
Opportunities for Reuse

31.8 Conclusion
Acknowledgments
References

Copyright Material – Provided by Taylor & Francis

372 31. Behavior Decision System

alike: When faced with limited resources, a plurality of choices, and a constantly changing
game state, how can a combatant quickly identify the course of action which will yield the
greatest possible benefit? For DA:I, we created a utility-based AI system called the Behavior
Decision System (BDS) to answer this question and to handle the complex decision-making
which combatants must perform. In this chapter, we will describe the principles and archi-
tecture of the BDS, providing you with the necessary information to implement a similar
system and extend it to meet the needs of your own game.

31.2 The Behavior Decision System

The architecture of the BDS is based upon the following assumptions:

 1. At any given time, there is a finite set of actions which an AI character can
perform.

 2. An AI character can only perform one action at a time.
 3. Actions have differing utility values; some actions are more useful than others.
 4. It is possible to quantify the utility of every action.

When taken together, these assumptions naturally suggest a simple greedy algorithm to
determine an AI character’s best course of action: Start by identifying the set of actions
which it can legally take. Then, evaluate each action and assign it a score based on its util-
ity. After each action has been evaluated, the action with the highest score is the action
which should be taken (Graham 2014).

There are two major challenges to this approach. First, how can an AI character enu-
merate all the actions which it can perform? Second, how can an AI character qualify
the utility of an action? Before an AI character can answer these questions, we must first
impart it with knowledge—knowledge about itself and the world in which it lives.

Consider, for example, a simple action such as “drinking a health potion.” Most human
players know that it is useful to drink a health potion when their health is low. Unfortunately,
AI characters do not intuitively understand concepts like life, death, health, and healing
potions. They do not know that being alive is “good” and being dead is “bad.” They do not
understand that drinking a health potion at low health is good, but drinking a health potion
at full health is wasteful. And they do not understand that health potions are consumable
objects, and that one cannot drink a health potion unless one owns a health potion.

At its most basic level, the BDS is a framework which allows gameplay designers to
impart knowledge to AI characters. Specifically, the BDS exists to provider answers to the
following questions: Which actions can an AI character perform? Under what circum-
stances can they perform those actions? How should those actions be prioritized relative
to each other? And finally: How can those actions actually be performed?

31.3 Enumerating Potential Actions

There are more than 60 abilities in DA:I, but many of these abilities can be used in different
ways to achieve different purposes. For example the “Charging Bull” ability allows a war-
rior to charge directly into combat, damaging and knocking-aside any enemy who stands
in his or her way. This is its intended, obvious purpose. However, this same ability can also

Copyright Material – Provided by Taylor & Francis

37331.4 Evaluating Behaviors

be used as a way for an injured warrior to quickly retreat from combat. Though the under-
lying ability is the same, the motivation for the ability is completely different. Therefore,
when enumerating potential actions, it is not sufficient to simply count the number of
abilities at a character’s disposal—we must also include the various ways in which those
abilities can be performed. In order to distinguish between the various ways an ability can
be used, we defined a data structure called a “behavior snippet.”

Behavior snippets are the fundamental unit on which the BDS operates. Each snippet
contains the information an AI character requires to evaluate and execute an ability in a
particular way. In a sense, a snippet represents a fragment of knowledge—and throughout
the game knowledge can be granted to characters by “registering” a snippet with to a char-
acter via the BDS. For example, a piece of weaponry may have one or more behavior snip-
pets attached which tell AI characters how to use the weapon. When an AI character equips
the weapon, these snippets will be registered to the character through the BDS. Similarly,
when the weapon is unequipped, the snippets will be unregistered from that character.

Behavior snippets make it simple for the BDS to enumerate the list of actions available
to a character; one merely needs to look at the set of registered snippets. The most complex
AI characters in DA:I have over 50 behavior snippets registered simultaneously, though an
average AI character will have 10–20 registered snippets.

31.4 Evaluating Behaviors

A behavior snippet contains the information an AI character requires to evaluate and exe-
cute an ability in a particular way—but what exactly does this mean? As stated previously,
the BDS is based upon the assumption that it is possible to quantify the utility of every
action. In order for this assumption to hold, each behavior snippet must contain within it
a method to quantify the utility of the action it represents. There are many possible ways to
quantify utility, but for DA:I, we chose to represent utility using a modified behavior tree
which we call an “evaluation tree.”

31.4.1 Calculating Utility
In the broadest possible terms, the purpose of an evaluation tree is simply to produce a
score value for its associated behavior snippet. These scores can then be used as a basis for
comparing two behavior snippets against each other in order to rank their relative utility.
Score values are assigned via “scoring nodes” embedded within the evaluation tree itself.
When the tree begins executing from its root node, it starts with a score of zero. As the tree
progresses from one node to the next, any scoring nodes it executes will add their value to
the tree’s total score.

Evaluation trees are evaluated “in context”—that is to say, the nodes within the tree
have access to information such as the AI character who is performing the evaluation.
This allows for the creation of evaluation trees which produce different scores depending
on the context in which they are evaluated (Merrill 2014). For example, Figure 31.1 shows
an evaluation tree which will return a score of 5 if the evaluating character’s health is less
than 50%, and a score of 0 otherwise.

When constructing our scoring system, we considered various schemes for automatic
normalization or scaling of scoring values. Ultimately, we chose to use (and recommend
using) a designer-facing scoring convention to provide a framework for how actions

Copyright Material – Provided by Taylor & Francis

374 31. Behavior Decision System

should be scored relative to each other. Note that these rules are guidance for content
creators and have no explicit representation in game data. Table 31.1 shows an example of
a scoring convention.

It is the responsibility of the designer constructing the evaluation trees for each snippet
to conditionally allocate score so that the tree will produce a value within the appropriate
dynamic range. In DA:I, each class of action uses a different set of scoring logic assets, built
to return score values within the appropriate range. For example, the evaluation tree for a
“Support” action starts by granting a baseline 25 points and conditionally adds contextual
score up to a maximum of 45.

31.4.2 Target Selection
Most abilities in DA:I require a target to function. For example, an AI character cannot
simply “cast Immolate”—they must cast Immolate on a specific foe. The chosen target of
an ability can greatly affect the outcome (i.e., the utility value) of executing that ability.
Consider: Casting Immolate on a target who is weak against fire will deal significant dam-
age, whereas casting it on a target who is fire-immune will do nothing but waste mana.
For that reason, target selection is a necessary part of the evaluation step; to accurately
represent the value of an action, we must consider all the potential targets of that action,
and then select the target which provides the greatest utility value. Therefore, in the BDS
framework, evaluation trees return not only a score, but a target too.

The contextual nature of evaluation trees allows us to add target selection logic by
introducing a “target selector” node. This node iterates over a list of designer-specified

Filter

Is my health
less than 50%? Score: 5

Scoring

Figure 31.1

This evaluation tree returns different scores based on the health of the evaluating character.

Table 31.1 Scoring Framework Used in Dragon Age: Inquisition

Action Type Point Values Description

Basic 10 Preferable to doing nothing, and if multiple options are available, they are
equivalent to each other.

Offensive 20–40 As a class, always preferable to basic actions, and compared against each
other with 20 points of “urgency dynamic range” for prioritizing based on
situational influences.

Support 25–45 As a class, preferable to offensive actions with the same level of “urgency,” as
they are either preparatory and should be used before engaging offensively,
or used in reaction to emerging bad situations.

Reaction 50–70 All actions in this class have evaluation trees that respond to specific and
immediate execution criteria (typically responding to an imminent threat
to the AI character); if these criteria are present these actions should be
executed in priority over any other (and otherwise valid) choices.

Copyright Material – Provided by Taylor & Francis

37531.4 Evaluating Behaviors

targets, and evaluates and assigns a score to each of them separately. Figure 31.2 shows an
evaluation tree which makes use of the target selector node.

The target selector node maintains its own temporary evaluation state and record table,
and executes according to the following algorithm:

 1. Record the evaluation context’s current score value as the “initial score.”
 2. For each targetable specified by the iterator data:
 a. Reset the context’s score value to the initial score.
 b. Set the context’s “behavior target iterator” slot to the current targetable.
 c. Evaluate the child node.
 d. If the child node returns true, record the context’s current score value for the

iterator’s current targetable.
 3. If at least one targetable has been recorded with an evaluation score:
 a. Set the context’s Behavior Target slot to the targetable with the highest score.
 b. Set the context’s score value to the score associated with that targetable.
 c. Return true.
 4. If no targetables were recorded with an evaluation score, return false.

In this way, multiple targets are compared and only the target that generates the highest
score for each snippet is associated with that snippet in the main BDS evaluation table.

31.4.3 Comparing Snippets
As part of the AI character’s update, the evaluation tree for each registered behavior snip-
pet is run, and the score & target produced by that tree is stored along with the snippet
in a summary table. When all of the evaluation trees have been run, the snippet with
the highest recorded score is selected to be executed. This cycle is typically repeated on
every AI update pass, but can be performed as often as appropriate. Listing 31.1 contains a
pseudocode implementation of this evaluation step.

It is not strictly necessary to retain any of the per-snippet evaluation results beyond
the scope of the evaluation step; the execution step requires only a reference to the highest
priority snippet and the selected targetable. In practice, though, we found that retaining
the evaluation results in a debug-viewable table provides great insights when debugging
and iterating on AI behavior.

Target Selector
Evaluate each

enemy within 10 m
of me as a target

Filter

Is the target not
immune to fire? Score: 5

Scoring

Score: 5

ScoringFilter

Is the target
vulnerable to fire?

Figure 31.2

This evaluation tree specifically targets hostiles who are not immune to fire. Targets who are vulnerable to fire
are scored higher than those who are not.

Copyright Material – Provided by Taylor & Francis

376 31. Behavior Decision System

31.5 Execution Step

Having identified the highest scoring snippet, and a target for its associated ability, the
final step is to execute that snippet. Just as each snippet contains an evaluation tree to show
how the behavior should be evaluated, it also contains a behavior tree (termed the “execu-
tion tree”) to show how the behavior should be executed. The execution tree is responsible
for including any preparation or positioning required before performing the animation
and game logic for the effective part of the action: the “active execution” of the action.

Like evaluation trees, execution trees have access to contextual information when being
executed. Specifically, the BDS exposes information about the target which was selected
during the evaluation step and the ability that the snippet is associated with. In order to
simplify our execution trees, we defined a task node called “Execute Ability” which simply
triggers the AI character to use the contextually-specified ability against the contextually-
specified target. Figure 31.3 shows a typical “move-into-range-and-strike” execution tree.

Storing information about the ability and the target in the context (rather than explic-
itly referencing them in the execution tree) allows execution trees to remain generic, thus
enabling their reuse across several different snippets. For example, the execution tree
shown in Figure 31.3 could be applied to a punching attack, a stabbing attack, or a biting
attack—just as long as the behavior occurs at melee range.

The execution tree belonging to the behavior snippet selected during the previous BDS
evaluation pass will be executed once every AI update pass until the “Execute Ability”

Listing 31.1. Pseudocode for evaluating registered behavior snippets.

struct SnippetEvaluation
{
 BehaviorSnippet snippet;
 Boolean result;
 Integer score;
 Character target;
};

// This function evaluates registered behaviors
// and returns the one with the highest utility.
Optional<SnippetEvaluation> EvaluateSnippets()
{
 list<SnippetEvaluation> evaluatedSnippets;
 for (BehaviorSnippet snippet: registeredBehaviors)
 {
 SnippetEvaluation evaluation = snippet.evaluate();
 if (evaluation.result == true)
 evaluatedSnippets.push(evaluation);
 }

 sortByDescendingScore(evaluatedSnippets);
 if (evaluatedSnippets.empty() == false)
 return evaluatedSnippets.first();
 else
 return None;
}

Copyright Material – Provided by Taylor & Francis

37731.6 Movement and Passive Behaviors

node is fired, signaling that the execution of the behavior is complete. However, even
while an AI character is executing a particular snippet, it is still desirable for the BDS to
continue performing the evaluation step. Reevaluating in this way allows AI characters
to execute new snippets in response to changing circumstances rather than mindlessly
carrying out a previously selected snippet which has since become suboptimal. In fact,
the contract between evaluation and execution logic is that the evaluation tree is respon-
sible for identifying and guarding against any conditions which would make it impos-
sible to fulfill the directives contained within the execution tree. In circumstances where
an execution tree has become impossible to complete (e.g., if the target of the execution
dies before the ability can be used) then reevaluation ensures that the now-invalid snip-
pet will be replaced with a valid one. Having said that, once an AI character triggers the
“Execute Ability” node, it is reasonable to suspend AI updates until the ability finishes
executing; this minimizes wasted AI decisions that cannot be fulfilled while the charac-
ter is occupied.

31.6 Movement and Passive Behaviors

Although the BDS was originally designed to prioritize, prepare, and execute discrete
actions, in the course of developing DA:I, we discovered that the BDS evaluation-execu-
tion framework is also useful for regulating ongoing or “passive” behaviors.

For example, in DA:I if the player’s AI-controlled allies have nothing else to do, they
will simply follow the player, wherever he or she goes. This was incorporated into the
BDS by registering a snippet whose evaluation tree simply returned a constant score lower
than any action (e.g., a score of 0 in the context of the scoring system in Table 31.1) and
whose execution tree does nothing but trigger the “follow the leader” movement behavior.
This snippet is automatically invoked by the BDS when it becomes the character’s highest
priority (i.e., when no other snippets with scores of greater than 0 are viable.)

Further application of this approach allows us to use the BDS to choose between con-
textually appropriate movement behaviors by conditionalizing scoring logic just as we do
for combat abilities. DA:I uses this approach to apply variations on the follower behavior
if the party is in combat, or if the player has commanded a party member to remain at
a certain location; these evaluate conditionally to higher priorities than the basic party
movement while still yielding to active actions.

It can also be useful to create behavior snippets which conditionally exhibit extremely
high priorities, as this will suppress the execution of any other actions that might other-
wise be viable. DA:I uses this method on characters who are expected to remain within a

Filter

Is my target within
melee range?

Task

Set my movement
behavior to move
towards the target

Use the ability stored
within the context
against the target

Execute ability

Figure 31.3

This execution tree handles moving to achieve range and line-of-sight before executing a ranged attack and
stopping movement.

Copyright Material – Provided by Taylor & Francis

378 31. Behavior Decision System

certain “tethered” area. For these characters, we created a behavior snippet whose execu-
tion tree simply forces the AI character to return to the center of their assigned area. The
corresponding evaluation tree returns a score higher than any other combat ability—but
only when the character is positioned outside their assigned area. In this way, we ensure
that if an AI character strays too far from their assigned position, they will always dis-
engage from their current target and return home rather than allowing themselves to be
drawn further and further away.

31.7 Modularity and Opportunities for Reuse

Through its use of behavior snippets, the BDS emphasizes a modular approach to AI
design. A modular approach offers several benefits. When debugging, it allows developers
to easily isolate the evaluation logic for a specific behavior, or to compare an AI character’s
relative priorities by examining the results of the evaluation step.

The modular design also allows behaviors to easily be shared or moved between AI
characters and archetypes. DA:I leverages this functionality to allow human players to
customize their AI-controlled party members. Throughout the game, the player can add,
remove and modify AI characters’ equipment and abilities. By tying behavior snippets to
equipment and ability assets, and by following a consistent scoring system (as described
in Section 31.4.1) we can ensure that AI characters will be able to make effective use of the
equipment and abilities at their command—regardless of what those may be.

Although the desire for modularity was initially driven by the requirements of our
AI-controlled allies, the benefits extend to hostile AI characters too. During the develop-
ment of our hostile creature factions, we found that an ability or behavior which was devel-
oped for a specific AI character type could be easily shared with others, assuming that the
relevant assets (e.g., animations and visual effects) also available for the new characters.

In order to support the modular design of the BDS, it is important to implement the
evaluation and execution tree data structures so that they can be authored once and reused
across multiple behavior snippets. In developing DA:I, we found that most behavior snip-
pets could be implemented using a small pool of frequently-reused tree assets, whereas
only a small number of complex actions required specific evaluation or execution logic.
Modular decomposition and content-reuse can be promoted even further by separating
commonly-recurring subtrees into standalone tree assets which can then be referenced
from other trees. Consolidating scoring logic in this fashion can help reduce the ongoing
maintenance cost of implementing a standardized scoring system.

31.8 Conclusion

In this chapter, we have presented the Behavior Decision System: a simple but powerful
framework developed to support AI decision-making. At the core of the BDS are “behavior
snippets”—data structures which encapsulate the information required to both evaluate
and execute a discrete action. Snippets are both evaluated and executed using behavior
trees; “evaluation trees” are modified behavior trees, which return both a utility score and
a target, whereas execution trees contain the necessary instructions to carry out the action.

Copyright Material – Provided by Taylor & Francis

379References

At runtime, behavior snippets can be registered to AI characters via the BDS, with each
registered snippet representing a single action that the character can perform. By evaluat-
ing these snippets as part of the character’s update loop and regularly executing the snip-
pet which yields the greatest utility score, the BDS produces patterns of behavior which
are directed, purposeful, and reactive.

Acknowledgments

The authors would like to thank Darren Ward who implemented the behavior tree system
on which the BDS is based, along with Jenny Lee and Chris Dalton who adapted Darren’s
system to the Frostbite engine.

References

Graham, D. 2014. An introduction to utility theory. In Game AI Pro: Collected Wisdom of
Game AI Professionals, ed. S. Rabin. Boca Raton, FL: CRC Press, pp. 113–126.

Merrill, B. 2014. Building utility decisions into your existing behavior tree. In Game AI
Pro: Collected Wisdom of Game AI Professionals, ed. S. Rabin. Boca Raton, FL: CRC
Press, pp. 127–136.

Copyright Material – Provided by Taylor & Francis

