
355

29
Petri Nets and AI Arbitration
Sergio Ocio Barriales

29.1 Introduction

A Petri net is an abstract, formal model of information flow in systems, particularly in 
those in which events can occur concurrently and where some form of synchronization or 
ordering is required.

In a video game, there are a variety of situations that require some sort of coordina-
tion or arbitration to decide what a group of agents should be doing and make sure their 
actions do not invalidate their peers’. Deciding who gets to use a special resource (e.g., a 
mounted gun) or how roles are selected in a combat scenario are examples of problems 
Petri nets can help resolve. Also, since these nets are represented as graphs and, at a first 
glance, can look similar to FSMs, they are easy for AI developers who are familiar with 
that approach to understand.

In this chapter, we will talk about Petri nets and how they can be used for arbitration 
in multiagent scenarios.

29.2 Petri Net Basics

Petri nets are a graphical and mathematical modeling language used to describe how 
information flows in a distributed system. They were developed by Carl Adam Petri in 
1962 (Petri 1962). A Petri net is a graph built using two different types of nodes: places and 
transitions. Places are connected to transitions via directed arcs and vice versa, but nodes 
of the same type can never be connected directly. A place represents a condition and a 
transition is a gate between places. There is a fourth element involved, a token. Tokens are 

29.1 Introduction
29.2 Petri Net Basics
29.3 An Example Arbitration 

Scenario

29.4 Conclusion
References

Copyright Material – Provided by Taylor & Francis 



356 29. Petri Nets and AI Arbitration

found inside places, and a single place can hold multiple tokens; when a token is present in 
a place, it means that the condition associated with that place is met.

In a Petri net, execution is controlled by the position and movement of the tokens. For 
example, in Figure 29.1a we have a single token in p1, which means that this node is the 
only one that is currently active.

Transitions have a number of preconditions, or input places. A token in an input place 
is interpreted to mean that the precondition is true. Transitions are fired when they are 
enabled; a transition is enabled when it has tokens in each of its input places. For example, 
in Figure 29.1a, t1 is enabled and can fire. Figure 29.1b shows the state of the net after the 
first transition is triggered. When a transition fires, it consumes the tokens in its input 
places and generates a new token for each of its output places. This new state—also known 
as a marking—of the net enables t2; t3 is not yet enabled, since it is missing a token in p3. 
The execution continues in Figure 29.1c. Finally, t3 is enabled, since both p3 and p4 have 
tokens. The net keeps running and p5 receives a token, as shown in Figure 29.1d.

(a)

Token

Place Transition

p1 t1

p2

p5

p4

t2 p3

t3

(b)

p1 t1

p2

p5

p4

t2 p3

t3

(c)

p1 t1

p2

p5

p4

t2 p3

t3

(d)

p1 t1

p2

p5

p4

t2 p3

t3

Figure 29.1

An example Petri net with five places and three transitions.

Copyright Material – Provided by Taylor & Francis 



35729.2 Petri Net Basics

Running a Petri net becomes more complicated if multiple transitions are connected 
to a single place. In this case, the evolution of the network is no longer deterministic; 
if we have one token in the place, every transition will be enabled. If we fire any of the 
transitions, the token will be consumed, invalidating the remaining, previously enabled 
transitions. In this case, we say the transitions are in conflict. Depending on which one we 
choose to trigger, we will have different resulting markings, as shown in Figure 29.2.

Arcs can be labeled with the number of tokens a transition requires in a particular 
input place before it can be enabled. After the transition fires, it will consume that number 
of tokens from the input place. Likewise, a transition can generate multiple tokens if the 
arc to the output place shows the label. This is depicted in Figure 29.3.

We can also have transitions without any input place—source transitions—that are 
unconditionally enabled and whose sole purpose is generating tokens, and transitions 
with no output place—sink transitions—that only consume tokens.

This section has only presented a few examples and key concepts, but a vast amount of 
work has been done with Petri nets over the past 50 years. Many resources are available 
on them; the articles by Peterson (Peterson 1977) and by Murata (Murata 1989) are good 
places to start.

p1
t1 p2

t2 p3

t1 p2

t2 p3

t1 p2

t2 p3

Figure 29.2

Both t1 and t2 are enabled in this markings; if either fires, the other will be invalidated.

p1

t12
2

p2

p3

p1

t12
2

p2

p3

Figure 29.3

Transitions can consume and generate multiple tokens as required.

Copyright Material – Provided by Taylor & Francis 



358 29. Petri Nets and AI Arbitration

29.3 An Example Arbitration Scenario

Now that we know the basics, let us discuss how we can use Petri nets to coordinate multi-
ple characters in a setup where they must utilize a finite number of nonshareable resources 
(i.e., resources that can only be used by a single agent) to accomplish their goal. To do so, 
we will choose an example and analyze how we would model it with Petri nets.

Let us depict a scenario where a group of agents that were unaware of enemy presence 
are suddenly attacked by the player. After an initial reaction, the agents must decide how 
to deal with the attacker. A quick analysis of the surroundings reveals there is a mounted 
gun nearby, and the AI decides controlling that weapon is the key, but only one character 
can use the special weapon at a time. So how do we decide who goes first?

One option is to use a first-in, first-out solution, so the first agent that gets updated by 
the system selects and locks the gun, whereas the others select other actions. However, this 
could lead to the AI that is farthest from the weapon being chosen, making the characters 
look stupid and inefficient. We could also modify this approach and have each AI ask the 
rest of the group “is there anyone closer than me to the gun?” and skip the assignment 
until the closest agent is updated and selected. This method generates a better looking 
result, but the behaviors and decision-making logic of our agents gets polluted by these 
interagent communication requirements.

Trying to resolve every potential scenario by having individual behaviors take into 
account every other possible AI and their desires and intentions can be problematic. 
Having a higher level AI entity—that we will call arbiter—help agents resolve these 
resource management disputes can help simplify the system. It is the arbiter’s job to track 
and manage resources and assign them to the appropriate actors.

Going back to our example, a Petri net controls the arbiter. For simplicity, we will just 
focus on assigning the mounted gun, and will not model how other points are chosen 
for the NPCs, so the net will just queue AI agents’ requests and put them on hold until 
the special weapon is available. In a more complete solution, our agents would not really 
directly know about the mounted gun—they would be running a behavior that would 
try to use the best possible point to attack the enemy, and this point would be returned 
by the arbiter. Agents would not be reserving this point directly, but just registering to be 
assigned the best possible one.

Initially, this net’s marking is as shown in Figure 29.4a, a single token in the “gun avail-
able” place, which indicates nobody has requested using the gun and thus it is still unused. 
When the agents in the group start reacting to discovering the enemy, they register with 
the system. For each registered actor, we get a new in the “ready to assign” place. Once the 
“n” agents in the group are registered, the “start assignment” transition is enabled and 
run, getting our “n” tokens transferred to the “ready to use gun” place. This is shown in 
Figure 29.4b and c.

In order for the “assign gun” transition to run, we need the gun to be available and at 
least one actor to be ready to use it. When both conditions are met, the transition runs 
some logic to select the best agent to fill the role—based on factors such as proximity 
to the gun, archetype and capabilities (e.g., an AI agent with better accuracy would be 
preferred)—and a token will be transferred to “gun busy,” while the “gun available” and 
one of the tokens “ready to use” are consumed. We show this in Figure 29.4d.

Copyright Material – Provided by Taylor & Francis 



35929.3 An Example Arbitration Scenario

If at any point the agent manning the gun is incapacitated, the “agent incapacitated” 
transition will trigger, moving the token to “gun available,” as shown in Figure 29.4e. As 
long as we have other agents to reassign, the process will continue, just as depicted in 
Figure 29.4f.

Register
Ready

to assign
Ready to
use gun

Agent
incapacitated

Gun
available

Start
assignment

n n

Assign
gun

Gun
busy

Register
Ready

to assign
Ready to
use gun

Agent
incapacitated

Gun
available

Start
assignment

n n

Assign
gun

Gun
busy

Register
Ready

to assign
Ready to
use gun

Agent
incapacitated

Gun
available

Start
assignment

n n

Assign
gun

Gun
busy

Register
Ready

to assign
Ready to
use gun

Agent
incapacitated

Gun
available

Start
assignment

n n

Assign
gun

Gun
busy

Register
Ready

to assign
Ready to
use gun

Agent
incapacitated

Gun
available

Start
assignment

n n

Assign
gun

Gun
busy

Register

(a)

(b)

(c)

(d)

(e)

(f)

Ready
to assign

Ready to
use gun

Agent
incapacitated

Gun
available

Start
assignment

n n

Assign
gun

Gun
busy

Figure 29.4

The arbiter runs a simple Petri net that controls the status of the mounted gun, allowing other 
agents to register and get their turn as the weapon becomes available.

Copyright Material – Provided by Taylor & Francis 



360 29. Petri Nets and AI Arbitration

29.4 Conclusion

Petri nets are powerful tools that offer a simple way to describe processes where actions 
need to be synchronized or depend on one another. They have been applied to a broad set 
of problems, from manufacturing to chemistry and beyond.

In this chapter, we have presented the basics of what the Petri net model offers and how 
to apply them to model resource arbitration for multiagent scenarios. By using a Petri net, 
we can separate group coordination to use shared resources from individual behaviors, 
leaving the high-level decision-making and agent synchronization in the hands of the net. 
This greatly simplifies the complexity of our single agent behaviors.

References

Murata, T. 1989. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 
77(4), 541.

Peterson, J. L. 1977. Petri nets. ACM Computing Surveys (CSUR), 9(3), 223–252.
Petri, C. A. 1962. Kommunikation mit Automaten. Bonn, Germany: Institut für Instrumentelle 

Mathematik, Schriften des IIM Nr. 2, 1962, Second Edition, New York: Griffiss Air Force 
Base, Technical Report RADC-TR-65-377, Vol. 1, 1966, Suppl. 1, English translation.

Copyright Material – Provided by Taylor & Francis 


