
301

25
Combat Outcome Prediction
for Real-Time Strategy Games
Marius Stanescu, Nicolas A. Barriga, and Michael Buro

25.1 Introduction

Smart decision-making at the tactical level is important for AI agents to perform well
in real-time strategy (RTS) games, in which winning battles is crucial. Although human
players can decide when and how to attack based on their experience, it is challenging for
AI agents to estimate combat outcomes accurately. Prediction by running simulations is a
popular method, but it uses significant computational resources and needs explicit oppo-
nent modeling in order to adjust to different opponents.

This chapter describes an outcome evaluation model based on Lanchester’s attrition
laws, which were introduced in Lanchester’s seminal book Aircraft in Warfare: The Dawn
of the Fourth Arm in 1916 (Lanchester 1916). The original model has several limitations
that we have addressed in order to extend it to RTS games (Stanescu et al. 2015). Our new
model takes into account that armies can be comprised of different unit types, and that
troops can enter battles with any fraction of their maximum health. The model parame-
ters can easily be estimated from past recorded battles using logistic regression. Predicting
combat outcomes with this method is accurate, and orders of magnitude are faster than
running combat simulations. Furthermore, the learning process does not require expert
knowledge about the game or extra coding effort in case of future unit changes (e.g., game
patches).

25.1 Introduction
25.2 The Engagement

Decision
25.3 Lanchester’s Attrition

Models

25.4 Lanchester Model
Parameters

25.5 Experiments
25.6 Conclusions
References

Copyright Material – Provided by Taylor & Francis

302 25. Combat Outcome Prediction for Real-Time Strategy Games

25.2 The Engagement Decision

Suppose you command 20 knights and 40 swordsmen and just scouted an enemy army of
60 bowmen and 40 spearmen. Is this a fight you can win, or should you avoid the battle
and request reinforcements? This is called the engagement decision (Wetzel 2008).

25.2.1 Scripted Behavior
Scripted behavior is a common choice for making such decisions, due to the ease of imple-
mentation and very fast execution. Scripts can be tailored to any game or situation. For
example, always attack is a common policy for RPG or FPS games—for example, guards
charging as soon as they spot the player. More complex strategy games require more com-
plicated scripts: attack closest, prioritize wounded, attack if enemy does not have cavalry,
attack if we have more troops than the enemy, or retreat otherwise. AI agents should be
able to deal with all possible scenarios encountered, some of which might not be foreseen
by the AI designer. Moreover, covering a very wide range of scenarios requires a signifi-
cant amount of development effort.

There is a distinction we need to make. Scripts are mostly used to make decisions,
while in this chapter we focus on estimating the outcome of a battle. In RTS games, this
prediction is arguably the most important factor for making decisions, and here we focus
on providing accurate information to the AI agent. We are not concerned with making
a decision based on this prediction. Is losing 80% of the initial army too costly a victory?
Should we retreat and potentially let the enemy capture our castle? We leave these deci-
sions to a higher level AI and focus on providing accurate and useful combat outcome
predictions. Examples about how these estimations can improve decision-making can be
found in Bakkes and Spronck (2008) and Barriga et al. (2017).

25.2.2 Simulations
One choice that bypasses the need for extensive game knowledge and coding effort is to
simulate the battle multiple times, without actually attacking in the game, and to record
the outcomes. If from 100 mock battles we win 73, we can estimate that the chance of win-
ning the engagement is close to 73%. For this method to work, we need the combat engine
to allow the AI system to simulate battles. Moreover, it can be difficult to emulate enemy
player behaviors, and simulating exhaustively all possibilities is often too costly.

Technically, simulations do not directly predict the winner but provide information
about potential states of the world after a set of actions. Performing a playout for a limited
number of simulation frames is faster, but because there will often not be a clear winner,
we need a way of evaluating our chances of winning the battle from the resulting game
state. Evaluation (or scoring) functions are commonly employed by look-ahead algo-
rithms, which forward the current state using different choices and then need to numeri-
cally compare the results. Even if we do not use a search algorithm, or partial simulations,
an evaluation function can be called on the current state and help us make a decision
based on the predicted combat outcome. However, accurately predicting the result of a
battle is often a difficult task.

The possibility of equal (or nearly equal armies) fighting with the winner seeing the
battle through with a surprisingly large remaining force is one of the interesting aspects

Copyright Material – Provided by Taylor & Francis

30325.3 Lanchester’s Attrition Models

of strategic, war simulation-based games. Let us consider two identical forces of 1000
men each; the Red force is divided into two units of 500 men, which serially engage the
single (1000 men) Blue force. Most linear scoring functions, or a casual gamer, would
identify this engagement as a slight win for the undivided Blue army, severely underesti-
mating the “concentration of power” axiom of war. A more experienced armchair general
would never make such a foolish attack, and according to the Quadratic Lanchester model
(introduced below), the Blue force completely destroys the Red army with only moderate
loss (i.e., 30%) to itself.

25.3 Lanchester’s Attrition Models

The original Lanchester equations represent simplified combat models: each side has iden-
tical soldiers and a fixed strength (i.e., there are no reinforcements), which governs the
proportion of enemy soldiers killed. Range, terrain, movement, and all other factors that
might influence the fight are either abstracted within the parameters or ignored entirely.
Fights continue until the complete destruction of one force, and as such the following
equations are only valid until one of the army sizes is reduced to 0. The general form of the
attrition differential equations is:

 dA

dt
A B

dB

dt
B An n= − = −− −β α2 2and (25.1)

where:
t denotes time
A B, are force strengths (number of units) of the two armies assumed to be functions

of time

By removing time as a variable, the pair of differential equations can be combined into
.α β() ()A A B Bn n n n− = −0 0

Parameters α and β are attrition rate coefficients representing how fast a soldier in one
army can kill a soldier in the other. The equation is easier to understand if one thinks of
β as the relative strength of soldiers in army B; it influences how fast army A is reduced.
The exponent n is called the attrition order and represents the advantage of a higher rate
of target acquisition. It applies to the size of the forces involved in combat but not to the
fighting effectiveness of the forces which is modeled by attrition coefficients α and β . The
higher the attrition order, the faster any advantage an army might have in combat effec-
tiveness is overcome by numeric superiority.

For example, choosing n =1 leads to)α β((A A B B− = −0 0), which is known as
Lanchester’s Linear Law. This equation models situations in which one soldier can only
fight a single soldier at a time. If one side has more soldiers, some of them will not
always be fighting as they wait for an opportunity to attack. In this setting, the casual-
ties suffered by both sides are proportional to the number of fighters and the attrition
rates. If α β= , then the above example of splitting a force into two and fighting the
enemy sequentially will have the same outcome as without splitting: a draw. This was
originally called Lanchester’s Law of Ancient Warfare, because it is a good model for

Copyright Material – Provided by Taylor & Francis

304 25. Combat Outcome Prediction for Real-Time Strategy Games

battles fought with melee weapons (such as spears or swords, which were the common
choices of Greek or Roman soldiers).

Choosing n = 2 results in the Square Law, which is also known as Lanchester’s Law of
Modern Warfare. It is intended to apply to ranged combat, as it quantifies the value of
the relative advantage of having a larger army. However, the Squared Law has nothing
to do with range—what is really important is the rate of acquiring new targets. Having
ranged weapons generally lets soldiers engage targets as fast as they can shoot, but with a
sword or a pike, one would have to first locate a target and then move to engage it. In our
experiments for RTS games that have a mix of melee and ranged units, we found attrition
order values somewhere in between working best. For our particular game—StarCraft
Broodwar—it was close to .1 56.

The state solution for the general law can be rewritten as α β α βA B A B kn n n n− = − =0 0 .
Constant k depends only on the initial army sizes A0 and B0. Hence, if k > 0 or equivalently
α βA Bn n

0 0> , then player A wins. If we denote the final army sizes with A Bf fand and assume
player B lost, then B f = 0 and α β αA B An n

f
n

0 0 0− = − , and we can predict the remaining vic-
torious army size Af . We just need to choose appropriate values α and β that reflect the
strength of the two armies, a task we will focus on in the next section.

25.4 Lanchester Model Parameters

In RTS games, it is often the case that both armies are composed of various units, with dif-
ferent capabilities. To model these heterogeneous army compositions, we need to replace
the army effectiveness with an average value

 α
α

avg = =∑ j

A

j

A
1 (25.2)

where:
α j is the effectiveness of a single unit
A is the total number of units

We can see that predicting battle outcomes will require strength estimates for each unit
involved. In the next subsections, we describe how these parameters can be either manu-
ally created or learned.

25.4.1 Choosing Strength Values
The quickest and easiest way of approximating strength is to pick a single attribute that
you feel is representative. For instance, we can pick αi i= level if we think that a level k
dragon is k times as strong as a level 1 footman. Or maybe a dragon is much stronger, and
if we choose αi

i= 5level instead, then it would be equivalent to 5k footmen.
More generally, we can combine any number of attributes. For example, the cost of

producing or training a unit is very likely to reflect unit strength. In addition, if we would
like to take into account that injured units are less effective, we could add the current and
maximum health points to our formula:

Copyright Material – Provided by Taylor & Francis

30525.4 Lanchester Model Parameters

 αi
i i

i
=

() ()
()

Cost HP

MaxHP
 (25.3)

This estimate may work well, but using more attributes such as attack or defense values,
damage, armor, or movement speed could improve prediction quality, still. We can create
a function that takes all these attributes as parameters and outputs a single value. However,
this requires a significant understanding of the game, and, moreover, it will take a designer
a fair amount of time to write down and tune such an equation.

Rather than using a formula based on attack, health, and so on, it is easier to pick some
artificial values: for instance, the dragon may be worth 100 points and a footman may worth
just one point. We have complete control over the relative combat values, and we can easily
express if we feel that a knight is five times stronger than a footman. The disadvantage is that
we might guess wrong, and thus we still have to playtest and tune these values. Moreover,
with any change in the game, we need to manually revise all the values.

25.4.2 Learning Strength Values
So far, we have discussed choosing unit strength values for our combat predictor via
two methods. First, we could produce and use a simple formula based on one or more
relevant attributes such as unit level, cost, health, and so on. Second, we could directly
pick a value for each unit type based mainly on our intuition and understanding of
the game. Both methods rely heavily on the designer’s experience and on extensive
playtesting for tuning. To reduce this effort, we can try to automatically learn these
values by analyzing human game replays or, alternatively, letting a few AI systems play
against each other.

Although playtesting might ensure that AI agents play well versus the game design-
ers, it does not guarantee that the agents will also play well against other unpredictable
players. However, we can adapt the AI to any specific player by learning a unique set of
unit strength values taking into account only games played by this player. For example,
the game client can generate a new set of AI parameters before every new game, based on
a number of recent battles. Automatically learning the strength values will require less
designer effort and provide better experiences for the players.

The learning process can potentially be complex, depending on the machine learning
tools to be used. However even a simple approach, such as logistic regression, can work
very well, and it has the advantage of being easy to implement. We will outline the basic
steps for this process here.

First, we need a dataset consisting of as many battles as possible. Some learning tech-
niques can provide good results after as few as 10 battles (Stanescu et al. 2013), but for
logistic regression, we recommend using at least a few hundred. If a player has only fought
a few battles, we can augment his dataset with a random set of battles from other players.
These will be slowly replaced by “real” data as our player fights more battles. This way the
parameter estimates will be more stable, and the more the player plays, the better we can
estimate the outcome of his or her battles.

An example dataset is shown in Table 25.1. Each row corresponds to one battle, and we
will now describe what each column represents. If we are playing a game with only two

Copyright Material – Provided by Taylor & Francis

306 25. Combat Outcome Prediction for Real-Time Strategy Games

types of soldiers, armed with spears or bows, we need to learn two parameters for each
player: w spear and wbow . To maintain sensitivity to unit injuries, we use α j w j= spearHP() or
α j w j= bowHP(), depending on unit type. The total value of army A can then be expressed as:

L A A A A w j

A w

n n

j

A

j
n

j

A

j

n
s

() HP()avg

spear

= = =

=

−

=

−

=

−

∑ ∑α α

(

1

1

1

1

1 HP ++)w bbowHP

(25.4)

HPs is the sum of the health points of all of player A’s spearmen. After learning all w param-
eters, the combat outcome can be estimated by subtracting () ()L A L B− . For simplicity, in
Table 25.1, we assume each soldier’s health is a number between 0 and 1.

25.4.3 Learning with Logistic Regression
As a brief reminder, logistic regression uses a linear combination of variables. The result
is squashed through the logistic function F, restricting the output to (,)0 1 , which can be
interpreted as the probability of the first player winning.

 y a a X a X F y
e y

= + + + () =
+ −0 1 1 2 2

1

1
 (25.5)

For example, if y = 0 , then F = 0 5. which is a draw. If y > 0, then the first player has the
advantage. For ease of implementation, we can process the previous table in such a way
that each column is associated with one parameter to learn, and the last column contains
the battle outcomes (Table 25.2). Let us assume that both players are equally adept at con-
trolling spearmen, but bowmen require more skill to use efficiently and their strength
value could differ when controlled by the two players:

y L A L B

w A B w A wn
sA

n
sB A

n
bA

= () − ()

= −() + () −− − −
spear bow boHP HP HP1 1 1

ww HPB
n

bBB −()1

(25.6)

This table can be easily used to fit a logistic regression model in your coding language of
choice. For instance, using Python’s pandas library, this can be done in as few as five lines
of code.

Table 25.1 Example Dataset Needed for Learning Strength Values

Battle HPs for A HPb for A A HPs for B HPb for B B Winner

1 3.80 0.95 5 4.20 0.00 6 A
2 10.00 1.00 11 7.00 3.00 10 B
… … … … … … … …

Copyright Material – Provided by Taylor & Francis

30725.6 Conclusions

25.5 Experiments

We have used the proposed Lanchester model but with a slightly more complex learning
algorithm in UAlbertaBot, a StarCraft open-source bot for which detailed documenta-
tion is available online (UAlbertaBot 2016). The bot runs combat simulations to decide
if it should attack the opponent with the currently available units if a win is predicted
or retreat otherwise. We replaced the simulation call in this decision procedure with a
Lanchester model-based prediction.

Three tournaments were run. First, our bot ran one simulation with each side using an
attack closest policy. Second, it used the Lanchester model described here with static strength
values for each unit based on its damage per frame and current health: αi i i= () ()DMG HP . For
the last tournament, a set of strength values was learned for each of 6 match-ups from the
first 500 battles of the second tournament. In each tournament, 200 matches were played
against 6 top bots from the 2014 AIIDE StarCraft AI tournament. The results—winning
percentages for different versions of our bot—are shown in Table 25.3. On average, the
learned parameters perform better than both static values and simulations, but be warned
that learning without any additional hand checks might lead to unexpected behavior such
as the match against Bot2 where the win rate actually drops by 3%.

Our bot’s strategy is very simple: it only trains basic melee units and tries to rush the
opponent and keep the pressure up. This is why we did not expect very large improvements
from using Lanchester models, as the only decision they affect is whether to attack or to
retreat. More often than not this translates into waiting for an extra unit, attacking with
one unit less, and better retreat triggers. Although this makes all the difference in some
games, using this accurate prediction model to choose the army composition, for example,
could lead to much bigger improvements.

25.6 Conclusions

In this chapter, we have described an approach to automatically generate an effective com-
bat outcome predictor that can be used in war simulation strategy games. Its parameters
can be static, fixed by the designer, or learned from past battles. The choice of training data
provided to the algorithm ensures adaptability to specific opponents or maps. For example,

Table 25.2 Processed Dataset (All But Last Column Correspond
to Parameters to be Learned)

A Bn

sA

n

sB

− −
−

1 1HP HP An

bA

−1HP − −(HP)1Bn
bB Winner

… … … …

Table 25.3 Our Bot’s Winning % Using Different Methods for
Combat Outcome Prediction

Bot1 Bot2 Bot3 Bot4 Bot5 Bot6 Average

Simulations 60.0 79.0 84.0 65.5 19.5 57.0 60.8
Static 64.5 81.0 80.5 69.0 22.0 66.5 63.9
Learned 69.5 78.0 86.0 93.0 23.5 68.0 69.7

Copyright Material – Provided by Taylor & Francis

308 25. Combat Outcome Prediction for Real-Time Strategy Games

learning only from siege battles will provide a good estimator for attacking or defending
castles, but it will be less precise for fighting in large unobstructed areas where cavalry
might prove more useful than, say, artillery. Using a portfolio of estimators is an option
worth considering.

Adaptive game AI can use our model to evaluate newly generated behaviors or to rank
high-level game plans according to their chances of military success. As the model param-
eters can be learned from past scenarios, the evaluation will be more objective and stable
to unforeseen circumstances when compared to functions created manually by a game
designer. Moreover, learning can be controlled through the selection of training data, and
it is very easy to generate map- or player-dependent parameters. For example, one set of
parameters can be used for all naval battles, and another set can be used for siege battles
against the elves. However for good results, we advise acquiring as many battles as pos-
sible, preferably tens or hundreds.

Other use cases for accurate combat prediction models worth considering include
game balancing and testing. For example, if a certain unit type is scarcely being used,
it can help us decide if we should boost one of its attributes or reduce its cost as an extra
incentive for players to use it.

References

Bakkes, S. and Spronck, P., 2008. Automatically generating score functions for strategy
games. In Game AI Programming Wisdom 4, ed. S. Rabin. Hingham, MA: Charles
River Media, pp. 647–658.

Barriga, N., Stanescu, M., and Buro, M., 2017. Combining scripted behavior with game
tree search for stronger, more robust game AI. In Game AI Pro 3: Collected Wisdom
of Game AI Professionals, ed. S. Rabin. Boca Raton, FL: CRC Press.

Lanchester, F.W., 1916. Aircraft in Warfare: The Dawn of the Fourth Arm. London:
Constable limited.

Stanescu, M., Hernandez, S.P., Erickson, G., Greiner, R., and Buro, M., 2013. October.
Predicting army combat outcomes in StarCraft. In Ninth Annual AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), October
14–18, 2013. Boston, MA.

Stanescu, M., Barriga, N., and Buro, M., 2015, September. Using Lanchester attrition laws
for combat prediction in StarCraft. In Eleventh AIIDE Conference, November 14–18,
2015. Santa Cruz, CA.

UAlbertaBot github repository, maintained by David Churchill., 2016. https://github.com/
davechurchill/ualbertabot.

Wetzel, B., 2008. The engagement decision. In Game AI Programming Wisdom 4, ed.
S. Rabin. Boston, MA: Charles River Media, pp. 443–454.

Copyright Material – Provided by Taylor & Francis

