
275

22
Faster A* with Goal Bounding
Steve Rabin and Nathan R. Sturtevant

22.1 Introduction

Goal bounding is a pathfinding optimization technique that can speed up A* by roughly
eight times on a grid (Rabin and Sturtevant 2016), however, it is applicable to any graph
search space, including waypoint graphs or navmeshes (navigation meshes). Goal bound-
ing is not a search algorithm itself, but rather a method to prune the search space, thus
radically reducing the number of nodes that need to be considered to find the goal. This is
accomplished by preprocessing the search space offline and using the precomputed data
to avoid exploring many nodes that do not lead to the goal.

This chapter will introduce the goal-bounding concept, walk through the runtime
code, and then show the necessary preprocessing steps. We will then discuss experimental
data that shows the effective speed-up to a standard A* implementation.

22.1.1 Goal-Bounding Constraints
Goal bounding has three constraints that limit whether it is appropriate to use in your game:

 1. Map constraint: The map must be static and cannot change during gameplay.
Nodes and edges cannot be added or deleted.

22.1 Introduction
22.2 Concept
22.3 Runtime
22.4 Precomputation
22.5 Empirical Results

22.6 Similarities to Previous
Algorithms

22.7 Conclusion
References

Copyright Material – Provided by Taylor & Francis

276 22. Faster A* with Goal Bounding

 2. Memory constraint: For each node in the map, there is a requirement of four val-
ues per node edge in memory during runtime. Grid nodes have eight edges, and
navmesh nodes have three edges. Typically, each value is 2 bytes.

 3. Precomputation constraint: The precomputation is O(n2) in the number of nodes.
This is a costly computation and can take from 5 minutes to several hours per
map. This is performed offline before the game ships.

The most important constraint is that your game maps must be static. That is to say that
the nodes and edges in your search space must not change during gameplay, and the cost
to go from one node to another must also not change. The reason is that connection data
must be precomputed. Changing a single node, edge, or cost would invalidate all of the
precomputed data. Because the precomputed data takes so long to create, it is not feasible
to dynamically rerun the computation if the map changes.

The other primary constraint is that goal bounding requires extra memory at runtime
for the precomputed data. For every node, there has to be four values per edge leading to
another node. On a grid, each node has eight edges (or connections) to other nodes, so the
necessary data for a grid search space are 32 values per node. On a navmesh, typically each
poly node has three edges, so the necessary data for a navmesh search space are 12 values
per poly node. Typically, these values will need to be 2 bytes each, but for smaller maps,
1 byte each might suffice (e.g., a grid map with a height and width less than 256).

Lastly, a minor constraint is that each map must be precomputed offline, which takes
time. The precomputation algorithm is O(n2) in the number of total nodes on the map.
For example, a very large 1000 × 1000 grid map would have 1 million nodes, requiring
1,000,0002 or 1 trillion operations during precomputation for that map. Depending on the
map size, this can take between 5 minutes and several hours per map. It is computationally
demanding enough that you could not precompute the data at runtime. However, there are
optimizations to Dijkstra for uniform cost grids, such as Canonical Dijkstra that can make
this computation much faster (Sturtevant and Rabin 2017).

Fortunately, there are many things that are not constraints for goal bounding. For
example, the following aspects are very flexible:

 1. Goal-bounding works on any graph search space, including grids, waypoint
graphs, quadtrees, octrees, and navmeshes, as long as the points in these graphs
are associated with coordinates in space.

 2. Goal bounding can be applied to any search algorithm (A*, Dijkstra, JPS+,
etc.). Typically, A* is best for games, but goal bounding can work with Dijkstra
and works extremely well with JPS+ (a variant of A* only for uniform cost
grids).

 3. The map can have nonuniform costs between nodes, meaning the cost to go from
one node to another node can vary as long as it does not change during the game.
Some algorithms like JPS+ have restrictions such that they only work on uniform
cost grids, where the cost between grid squares must be consistent.

Copyright Material – Provided by Taylor & Francis

27722.2 Concept

22.2 Concept

The name goal bounding comes from the core concept. For each edge adjacent to a node,
we precompute a bounding box (4 values) that contains all goals that can be optimally
reached by exploring this edge. At runtime, we only explore this node’s edge if the goal of
the search lies in the bounding box. Reread those last two sentences again, because this is
the entire runtime algorithm.

In Figure 22.1, consider the node marked with a circle. The gray nodes in the left map
can all be reached optimally by exploring the left edge of the circle node (we will discuss
later how this is computed). The gray bounding box in the right map contains all of the gray
nodes from the left map and represents what needs to be precomputed (4 values that define
a bounding box: left, right, top, and bottom). This precomputed bounding box is stored
in the left edge of the circle node. At runtime, if we are at the circle node and considering
exploring the left edge, we would check to see if the goal lies in the bounding box. If it
does, we explore this edge as is normally done in the A* algorithm. If the goal does not lie
in the bounding box, we skip this edge (the edge is pruned from the search).

Goal bounding can be similarly applied to navmeshes. Consider the black node in the
navmesh in Figure 22.2. The dark gray nodes can be reached optimally through the bot-
tom right edge of the black node. Figure 22.3 shows a bounding box around these nodes.
This is the identical concept as shown on the grid in Figure 22.1.

(a) (b)

Figure 22.1

The map in (a) shows all of the nodes (in gray) that can be reached optimally by exploring
the left edge of the circle node. The map in (b) shows a bounding box of the nodes in the
left image. This bounding box is stored in the left edge of the circle node.

Copyright Material – Provided by Taylor & Francis

278 22. Faster A* with Goal Bounding

22.3 Runtime

For A* with goal bounding to work, it is assumed that every node edge has a precom-
puted bounding box containing all nodes that can be reached optimally through that
edge. With this data, the only addition to the runtime is a simple check, as shown in
bold in Listing 22.1.

The goal-bounding check in Listing 22.1 tests whether we really want to explore a neigh-
boring node, through the parent node’s edge. If the check succeeds (the goal of the search
is within the bounding box), then the search algorithm proceeds as normal through this
edge. If the check fails, the edge is pruned by simply skipping it. This has the dramatic
effect of not exploring that edge and all of the subsequent edges, thus pruning huge swaths
of the search space. This accounts for goal bounding’s dramatic speed improvement

Figure 22.3

The bounding box containing all nodes that can be reached optimally from the bottom
right edge of the black node. In goal bounding, this bounding box is stored in the bottom
right edge of the black node.

Figure 22.2

Nodes marked in dark gray can be reached optimally from exploring the bottom right edge
of the black node. All other nodes in the map can only be reached optimally by exploring
either the top edge or the left edge of the black node.

Copyright Material – Provided by Taylor & Francis

27922.4 Precomputation

(Rabin and Sturtevant 2016). Note that this goal-bounding check can be inserted into any
search algorithm at the point the algorithm is considering a neighboring node.

22.4 Precomputation

Precomputation consists of computing a bounding box for every edge of every node. If
we can design an algorithm that computes this information for a single node, then it is
just a matter of iterating that algorithm over every node in the map. In fact, the problem
is embarrassingly parallel in which we can kick off one thread per node in the map, since
each node’s bounding boxes are independent of all other node’s bounding boxes. With
enough cores running the threads, the precomputation time can be greatly minimized.

To compute the bounding boxes for all edges of a single node, we need to use a slightly
enhanced Dijkstra search algorithm. Recall that Dijkstra is the same as A*, but the heuris-
tic cost is zero. This causes the search to spread out evenly, in cost, away from the starting
point. For our purposes, we will start the Dijkstra search at our single node and give it no
destination, causing it to search all nodes in the map, as if it was performing a floodfill.

Using Dijkstra to floodfill, the map has the effect of marking every node with the opti-
mal “next step” to optimally get back to the start node. This next step is simply the parent
pointer that is recorded during the search. However, the crucial piece of information that
we really want to know for a given node is not the next step to take, but which starting
node edge was required to eventually get to that node. Think of every node in the map as
being marked with the starting node’s edge that is on the optimal path back to the starting
node, as shown in Figure 22.4.

Listing 22.1. A* algorithm with the goal bounding check added (in bold).

procedure AStarSearch(start, goal)
{
 Push (start, openlist)
 while (openlist is not empty)
 {
 n = PopLowestCost(openlist)

 if (n is goal)
 return success

 foreach (neighbor d in n)
 {
 if (WithinBoundingBox(n, d, goal))
 {
 // Process d in the standard A* manner
 }
 }

 Push (n, closedlist)
 }
 return failure
}

Copyright Material – Provided by Taylor & Francis

280 22. Faster A* with Goal Bounding

In a Dijkstra search, this starting node edge is normally not recorded, but now we need
to store this information. Every node’s data structure needs to contain a new value repre-
senting this starting node edge. During the Dijkstra search, when the neighbors of a node
are explored, the starting node edge is passed down to the neighboring nodes as they are
placed on the open list. This transfers the starting node edge information from node to
node during the search.

Once the Dijkstra floodfill has completed, every node is marked with a starting node
edge. In the case of Figure 22.4, each node is marked with either an A, B, or C. The final
task is to iterate through all nodes in the map and build up the bounding boxes that con-
tain each starting node edge, as shown in Figure 22.5. Once complete, each bounding box
(4 values representing left, right, top, and bottom) is stored on the appropriate starting
node’s edge. This is the data that are used during runtime to prune the search during the
goal-bounding check.

A

A
A A

A A
A

A
A

A A A
A A

A A

A

A A A
A

A
A A A

A
A

A
A

A
A

A
A

BBB
BB

B

B

B

BB
BB

B

C
C

C
C

C
C C

C
C C

C C
C

C
C

C
C

A
B C

[a] Bounding box

[c] Bounding box

[b] Bounding box

Figure 22.5

All nodes are iterated through to determine each bounding box for each starting edge.

A

A
A A

A A
A

A
A

A A A
A A

A A

A

A A A
A

A
A A A

A
A

A
A

A
A

A
A

BBB
BB

B

B

B

BB
BB

B

C
C

C
C

C
C C

C
C C

C C
C

C
C

C
C

A
B C

Figure 22.4

The result of a Dijkstra floodfill starting from the black node. Each node during the Dijkstra
search is marked with the starting edge on the optimal path back to the starting node.

Copyright Material – Provided by Taylor & Francis

28122.6 Similarities to Previous Algorithms

22.5 Empirical Results

In order to evaluate the effectiveness of goal bounding, we applied the algorithm to a
similar setup as the Grid-Based Path Planning Competition (Sturtevant 2014), a com-
petition that has run since 2012 for the purpose of comparing different approaches to
grid-based path planning. All experiments were performed on maps from the GPPC
competition and the Moving AI map repository (Sturtevant 2012). This includes maps
from StarCraft, Warcraft III, and Dragon Age. We ran our code on a 2.4 GHz Intel Xeon
E5620 with 12 GB of RAM.

Table 22.1 shows the comparison between a highly optimized A* solution, the same A*
solution with goal bounding, JPS+, and JPS+ with goal bounding. The A* solution with
goal bounding was 8.2 times faster than A* by itself. The JPS+ solution with goal bound-
ing was 7.2 times faster than JPS+.

22.5.1 Applying Goal Bounding to JPS+
As shown in Table 22.1, JPS+ is an algorithm that can dramatically speed up pathfinding
compared with A*, however it only works on uniform cost grids (where the cost between
nodes must be consistent). JPS+ is a variant of A* that achieves its speed from pruning
nodes from the search space, similar to goal bounding. However, JPS+ and goal bounding
work in complementary ways so that combined effect is to speed up pathfinding by ~1500
times over A*. Although it is outside the scope of this chapter to explain JPS+ with goal
bounding, there are two good resources if you wish to implement it (Rabin 2015, Rabin
and Sturtevant 2016).

22.6 Similarities to Previous Algorithms

At its core, goal bounding is an approximation of the Floyd–Warshall all-pairs shortest
paths algorithm. In Floyd–Warshall, the path between every single pair of nodes is pre-
computed and stored in a look-up table. Using Floyd–Warshall at runtime, no search algo-
rithm is run, because the optimal path is simply looked up. This requires an enormous
amount of data, which is O(n2) in the number of nodes. This amount of data is impractical
for most games. For example, a StarCraft map of roughly 1000 × 1000 nodes would require
about four terabytes.

As goal bounding is an approximation of Floyd–Warshall, it does not require nearly
as much data. However, as mentioned previously in Section 22.1.1, it does require 32
values per node on a grid search space and 12 values per node on a navmesh search
space (assuming triangular nodes). A StarCraft map of roughly 1000 × 1000 nodes would

Table 22.1 Comparison of Search Algorithm Speeds

Algorithm Time (ms) A* Factor

A* 15.492 1.0
A* with goal bounding 1.888 8.2
JPS+ 0.072 215.2
JPS+ with goal bounding 0.010 1549.2

Copyright Material – Provided by Taylor & Francis

282 22. Faster A* with Goal Bounding

require about 60 MB of goal bounding data. Luckily, modern games using a navmesh
might only have about 4000 total nodes for a level, which would require less than 100 KB
of goal-bounding data.

The goal-bounding algorithm was first introduced as an optimization to Dijkstra on
road networks in 2005 and at the time was called geometric containers (Wagner et al.
2005). In 2014, Rabin independently reinvented geometric containers for use with A*
and JPS+, introducing it as goal bounding to a GDC audience (Rabin 2015). Due to this
history, it would be appropriate to refer to the algorithm as either geometric containers
(Wagner et al. 2005), goal bounding (Rabin 2015), or simply as bounding boxes (Rabin
and Sturtevant 2016).

22.7 Conclusion

For games that meet the constraints, goal bounding can speed up pathfinding
 dramatically—by nearly an order of magnitude. Not only can goal bounding be applied
to any search algorithm on any type of search space, it can also be applied with other
optimizations, such as hierarchical pathfinding, overestimating the heuristic, or open list
optimizations (Rabin and Sturtevant 2013).

References

Rabin, S. 2015. JPS+ now with Goal Bounding: Over 1000 × Faster than A*, GDC 2015.
http://www.gameaipro.com/Rabin_AISummitGDC2015_JPSPlusGoalBounding.zip
(accessed February 12, 2017).

Rabin, S., and Sturtevant, N. R. 2013. Pathfinding optimizations. In Game AI Pro, ed.
S. Rabin. Boca Raton, FL: CRC Press.

Rabin, S., and Sturtevant, N. R. 2016. Combining Bounding Boxes and JPS to Prune Grid
Pathfinding, AAAI'16 Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. Phoenix, AZ: AAAI.

Sturtevant, N. R. 2012. Benchmarks for grid-based pathfinding. Transactions on
Computational Intelligence and AI in Games, 4(2), 144–148.

Sturtevant, N. R. 2014. The grid-based path-planning competition. AI Magazine, 35(3),
66–68.

Sturtevant, N. R., and Rabin, S. 2017. Faster Dijkstra search on uniform cost grids. In
Game AI Pro 3, ed. S. Rabin. Boca Raton, FL: CRC Press.

Wagner, D., Willhalm, T., and Zaroliagis, C. D. 2005. Geometric containers for efficient
shortest-path computation. ACM Journal of Experimental Algorithmics, 10.

Copyright Material – Provided by Taylor & Francis

