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Faster A* with Goal Bounding
Steve Rabin and Nathan R. Sturtevant

22.1 Introduction

Goal bounding is a pathfinding optimization technique that can speed up A* by roughly 
eight times on a grid (Rabin and Sturtevant 2016), however, it is applicable to any graph 
search space, including waypoint graphs or navmeshes (navigation meshes). Goal bound-
ing is not a search algorithm itself, but rather a method to prune the search space, thus 
radically reducing the number of nodes that need to be considered to find the goal. This is 
accomplished by preprocessing the search space offline and using the precomputed data 
to avoid exploring many nodes that do not lead to the goal.

This chapter will introduce the goal-bounding concept, walk through the runtime 
code, and then show the necessary preprocessing steps. We will then discuss experimental 
data that shows the effective speed-up to a standard A* implementation.

22.1.1 Goal-Bounding Constraints
Goal bounding has three constraints that limit whether it is appropriate to use in your game: 

 1. Map constraint: The map must be static and cannot change during gameplay. 
Nodes and edges cannot be added or deleted.
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276 22. Faster A* with Goal Bounding

 2. Memory constraint: For each node in the map, there is a requirement of four val-
ues per node edge in memory during runtime. Grid nodes have eight edges, and 
navmesh nodes have three edges. Typically, each value is 2 bytes.

 3. Precomputation constraint: The precomputation is O(n2) in the number of nodes. 
This is a costly computation and can take from 5 minutes to several hours per 
map. This is performed offline before the game ships.

The most important constraint is that your game maps must be static. That is to say that 
the nodes and edges in your search space must not change during gameplay, and the cost 
to go from one node to another must also not change. The reason is that connection data 
must be precomputed. Changing a single node, edge, or cost would invalidate all of the 
precomputed data. Because the precomputed data takes so long to create, it is not feasible 
to dynamically rerun the computation if the map changes.

The other primary constraint is that goal bounding requires extra memory at runtime 
for the precomputed data. For every node, there has to be four values per edge leading to 
another node. On a grid, each node has eight edges (or connections) to other nodes, so the 
necessary data for a grid search space are 32 values per node. On a navmesh, typically each 
poly node has three edges, so the necessary data for a navmesh search space are 12 values 
per poly node. Typically, these values will need to be 2 bytes each, but for smaller maps, 
1 byte each might suffice (e.g., a grid map with a height and width less than 256).

Lastly, a minor constraint is that each map must be precomputed offline, which takes 
time. The precomputation algorithm is O(n2) in the number of total nodes on the map. 
For example, a very large 1000 × 1000 grid map would have 1 million nodes, requiring 
1,000,0002 or 1 trillion operations during precomputation for that map. Depending on the 
map size, this can take between 5 minutes and several hours per map. It is computationally 
demanding enough that you could not precompute the data at runtime. However, there are 
optimizations to Dijkstra for uniform cost grids, such as Canonical Dijkstra that can make 
this computation much faster (Sturtevant and Rabin 2017).

Fortunately, there are many things that are not constraints for goal bounding. For 
example, the following aspects are very flexible: 

 1. Goal-bounding works on any graph search space, including grids, waypoint 
graphs, quadtrees, octrees, and navmeshes, as long as the points in these graphs 
are associated with coordinates in space.

 2. Goal bounding can be applied to any search algorithm (A*, Dijkstra, JPS+, 
etc.). Typically, A* is best for games, but goal bounding can work with Dijkstra 
and works extremely well with JPS+ (a variant of A* only for uniform cost 
grids).

 3. The map can have nonuniform costs between nodes, meaning the cost to go from 
one node to another node can vary as long as it does not change during the game. 
Some algorithms like JPS+ have restrictions such that they only work on uniform 
cost grids, where the cost between grid squares must be consistent.
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22.2 Concept

The name goal bounding comes from the core concept. For each edge adjacent to a node, 
we precompute a bounding box (4 values) that contains all goals that can be optimally 
reached by exploring this edge. At runtime, we only explore this node’s edge if the goal of 
the search lies in the bounding box. Reread those last two sentences again, because this is 
the entire runtime algorithm.

In Figure 22.1, consider the node marked with a circle. The gray nodes in the left map 
can all be reached optimally by exploring the left edge of the circle node (we will discuss 
later how this is computed). The gray bounding box in the right map contains all of the gray 
nodes from the left map and represents what needs to be precomputed (4 values that define 
a bounding box: left, right, top, and bottom). This precomputed bounding box is stored 
in the left edge of the circle node. At runtime, if we are at the circle node and considering 
exploring the left edge, we would check to see if the goal lies in the bounding box. If it 
does, we explore this edge as is normally done in the A* algorithm. If the goal does not lie 
in the bounding box, we skip this edge (the edge is pruned from the search).

Goal bounding can be similarly applied to navmeshes. Consider the black node in the 
navmesh in Figure 22.2. The dark gray nodes can be reached optimally through the bot-
tom right edge of the black node. Figure 22.3 shows a bounding box around these nodes. 
This is the identical concept as shown on the grid in Figure 22.1.

(a) (b)

Figure 22.1

The map in (a) shows all of the nodes (in gray) that can be reached optimally by exploring 
the left edge of the circle node. The map in (b) shows a bounding box of the nodes in the 
left image. This bounding box is stored in the left edge of the circle node.
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22.3 Runtime

For A* with goal bounding to work, it is assumed that every node edge has a precom-
puted bounding box containing all nodes that can be reached optimally through that 
edge. With this data, the only addition to the runtime is a simple check, as shown in 
bold in Listing 22.1.

The goal-bounding check in Listing 22.1 tests whether we really want to explore a neigh-
boring node, through the parent node’s edge. If the check succeeds (the goal of the search 
is within the bounding box), then the search algorithm proceeds as normal through this 
edge. If the check fails, the edge is pruned by simply skipping it. This has the dramatic 
effect of not exploring that edge and all of the subsequent edges, thus pruning huge swaths 
of the search space. This accounts for goal bounding’s dramatic speed improvement 

Figure 22.3

The bounding box containing all nodes that can be reached optimally from the bottom 
right edge of the black node. In goal bounding, this bounding box is stored in the bottom 
right edge of the black node.

Figure 22.2

Nodes marked in dark gray can be reached optimally from exploring the bottom right edge 
of the black node. All other nodes in the map can only be reached optimally by exploring 
either the top edge or the left edge of the black node.
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(Rabin and Sturtevant 2016). Note that this goal-bounding check can be inserted into any 
search algorithm at the point the algorithm is considering a neighboring node.

22.4 Precomputation

Precomputation consists of computing a bounding box for every edge of every node. If 
we can design an algorithm that computes this information for a single node, then it is 
just a matter of iterating that algorithm over every node in the map. In fact, the problem 
is embarrassingly parallel in which we can kick off one thread per node in the map, since 
each node’s bounding boxes are independent of all other node’s bounding boxes. With 
enough cores running the threads, the precomputation time can be greatly minimized.

To compute the bounding boxes for all edges of a single node, we need to use a slightly 
enhanced Dijkstra search algorithm. Recall that Dijkstra is the same as A*, but the heuris-
tic cost is zero. This causes the search to spread out evenly, in cost, away from the starting 
point. For our purposes, we will start the Dijkstra search at our single node and give it no 
destination, causing it to search all nodes in the map, as if it was performing a floodfill.

Using Dijkstra to floodfill, the map has the effect of marking every node with the opti-
mal “next step” to optimally get back to the start node. This next step is simply the parent 
pointer that is recorded during the search. However, the crucial piece of information that 
we really want to know for a given node is not the next step to take, but which starting 
node edge was required to eventually get to that node. Think of every node in the map as 
being marked with the starting node’s edge that is on the optimal path back to the starting 
node, as shown in Figure 22.4.

Listing 22.1. A* algorithm with the goal bounding check added (in bold).

procedure AStarSearch(start, goal)
{
    Push (start, openlist)
    while (openlist is not empty)
    {
        n = PopLowestCost(openlist)

        if (n is goal)
            return success

        foreach (neighbor d in n)
        {
            if (WithinBoundingBox(n, d, goal))
            {
                // Process d in the standard A* manner
            }
        }

        Push (n, closedlist)
    }
    return failure
}
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In a Dijkstra search, this starting node edge is normally not recorded, but now we need 
to store this information. Every node’s data structure needs to contain a new value repre-
senting this starting node edge. During the Dijkstra search, when the neighbors of a node 
are explored, the starting node edge is passed down to the neighboring nodes as they are 
placed on the open list. This transfers the starting node edge information from node to 
node during the search.

Once the Dijkstra floodfill has completed, every node is marked with a starting node 
edge. In the case of Figure 22.4, each node is marked with either an A, B, or C. The final 
task is to iterate through all nodes in the map and build up the bounding boxes that con-
tain each starting node edge, as shown in Figure 22.5. Once complete, each bounding box 
(4 values representing left, right, top, and bottom) is stored on the appropriate starting 
node’s edge. This is the data that are used during runtime to prune the search during the 
goal-bounding check.
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Figure 22.5

All nodes are iterated through to determine each bounding box for each starting edge.
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Figure 22.4

The result of a Dijkstra floodfill starting from the black node. Each node during the Dijkstra 
search is marked with the starting edge on the optimal path back to the starting node.
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22.5 Empirical Results

In order to evaluate the effectiveness of goal bounding, we applied the algorithm to a 
similar setup as the Grid-Based Path Planning Competition (Sturtevant 2014), a com-
petition that has run since 2012 for the purpose of comparing different approaches to 
grid-based path planning. All experiments were performed on maps from the GPPC 
competition and the Moving AI map repository (Sturtevant 2012). This includes maps 
from StarCraft, Warcraft III, and Dragon Age. We ran our code on a 2.4 GHz Intel Xeon 
E5620 with 12 GB of RAM.

Table 22.1 shows the comparison between a highly optimized A* solution, the same A* 
solution with goal bounding, JPS+, and JPS+ with goal bounding. The A* solution with 
goal bounding was 8.2 times faster than A* by itself. The JPS+ solution with goal bound-
ing was 7.2 times faster than JPS+.

22.5.1 Applying Goal Bounding to JPS+
As shown in Table 22.1, JPS+ is an algorithm that can dramatically speed up pathfinding 
compared with A*, however it only works on uniform cost grids (where the cost between 
nodes must be consistent). JPS+ is a variant of A* that achieves its speed from pruning 
nodes from the search space, similar to goal bounding. However, JPS+ and goal bounding 
work in complementary ways so that combined effect is to speed up pathfinding by ~1500 
times over A*. Although it is outside the scope of this chapter to explain JPS+ with goal 
bounding, there are two good resources if you wish to implement it (Rabin 2015, Rabin 
and Sturtevant 2016).

22.6 Similarities to Previous Algorithms

At its core, goal bounding is an approximation of the Floyd–Warshall all-pairs shortest 
paths algorithm. In Floyd–Warshall, the path between every single pair of nodes is pre-
computed and stored in a look-up table. Using Floyd–Warshall at runtime, no search algo-
rithm is run, because the optimal path is simply looked up. This requires an enormous 
amount of data, which is O(n2) in the number of nodes. This amount of data is impractical 
for most games. For example, a StarCraft map of roughly 1000 × 1000 nodes would require 
about four terabytes.

As goal bounding is an approximation of Floyd–Warshall, it does not require nearly 
as much data. However, as mentioned previously in Section 22.1.1, it does require 32 
values per node on a grid search space and 12 values per node on a navmesh search 
space (assuming triangular nodes). A StarCraft map of roughly 1000 × 1000 nodes would 

Table 22.1 Comparison of Search Algorithm Speeds

Algorithm Time (ms) A* Factor

A* 15.492 1.0
A* with goal bounding 1.888 8.2
JPS+ 0.072 215.2
JPS+ with goal bounding 0.010 1549.2
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282 22. Faster A* with Goal Bounding

require about 60 MB of goal bounding data. Luckily, modern games using a navmesh 
might only have about 4000 total nodes for a level, which would require less than 100 KB 
of goal-bounding data.

The goal-bounding algorithm was first introduced as an optimization to Dijkstra on 
road networks in 2005 and at the time was called geometric containers (Wagner et al. 
2005). In 2014, Rabin independently reinvented geometric containers for use with A* 
and JPS+, introducing it as goal bounding to a GDC audience (Rabin 2015). Due to this 
history, it would be appropriate to refer to the algorithm as either geometric containers 
(Wagner et al. 2005), goal bounding (Rabin 2015), or simply as bounding boxes (Rabin 
and Sturtevant 2016).

22.7 Conclusion

For games that meet the constraints, goal bounding can speed up pathfinding 
 dramatically—by nearly an order of magnitude. Not only can goal bounding be applied 
to any search algorithm on any type of search space, it can also be applied with other 
optimizations, such as hierarchical pathfinding, overestimating the heuristic, or open list 
optimizations (Rabin and Sturtevant 2013).
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