
249

20
Optimization for Smooth Paths
Mark Langerak

20.1 Introduction

Path planning for games and robotics applications typically consists of finding the
straight-line shortest path through the environment connecting the start and goal
position. However, the straight-line shortest path usually contains abrupt, nonsmooth
changes in direction at path apex points, which lead to unnatural agent movement in the
path- following phase. Conversely, a smooth path that is free of such sharp kinks greatly
improves the realism of agent steering and animation, especially at the path start and goal
positions, where the path can be made to align with the agent facing direction.

Generating a smooth path through an environment can be challenging because there
are multiple competing constraints of total path length, path curvature, and static obstacle
avoidance that must all be satisfied simultaneously. This chapter describes an approach
that uses convex optimization to construct a smooth path that optimally balances all these
competing constraints. The resulting algorithm is efficient, surprisingly simple, free of
special cases, and easily parallelizable. In addition, the techniques used in this chapter
serve as an introduction to convex optimization, which has many uses in fields as diverse
as AI, computer vision, and image analysis. A source code implementation can be found
on the book’s website (http://www.gameaipro.com).

20.2 Overview

The corridor map method introduced by Geraerts and Overmars, 2007 is used to con-
struct an initial, nonoptimal path through the static obstacles in the environment. In the

20.1 Introduction
20.2 Overview
20.3 Path Smoothing Energy

Function

20.4 Optimization Algorithm
20.5 Conclusion
References

Copyright Material – Provided by Taylor & Francis

250 20. Optimization for Smooth Paths

corridor map method, free space is represented by a graph where the vertices have asso-
ciated disks. The centers of the disks coincide with the vertex 2D position, and the disk
radius is equal to the maximum clearance around that vertex. The disks at neighboring
graph vertices overlap, and the union of the disks then represents all of navigable space.
See the leftside of Figure 20.1 for an example environment with some static obstacles in
light gray and the corresponding corridor map graph.

The corridor map method might be a lesser known representation than the familiar
methods of a graph defined over a navigation mesh or over a grid. However, it has sev-
eral useful properties that make it an excellent choice for the path smoothing algorithm
described in this chapter. For one, its graph is compact and low density, so path-planning
queries are efficient. Moreover, the corridor map representation makes it straightforward
to constrain a path within the bounds of free space, which is crucial for the implementa-
tion of the path smoothing algorithm to ensure it does not result in a path that collides
with static obstacles.

The rightside of Figure 20.1 shows the result of an A* query on the corridor map graph,
which gives the minimal subgraph that connects the vertex whose center is nearest to the
start position to the vertex whose center is nearest to the goal. The arrows in the figure
denote the agent facing direction at the start position and the desired facing direction at
the goal position. The subgraph is prepended and appended with the start and goal posi-
tions to construct the initial path connecting the start and the goal. Note that this initial
path is highly nonoptimal for the purpose of agent path following since it has greatest
clearance from the static obstacles, which implies that its total length is much longer than
the shortest straight-line path.

Starting from this initial nonoptimal path state, the iterative algorithm described in
this chapter evolves the path over multiple steps by successively moving the waypoints
closer to an optimal configuration, that is, the path that satisfies all the competing con-
straints of smoothness, shortest total length, alignment with the start/goal direction and
collision-free agent movement. The result is shown in the left of Figure 20.2.

(a) (b)

Figure 20.1

The corridor map (a) and a path between two points in the corridor map (b).

Copyright Material – Provided by Taylor & Francis

25120.2 Overview

20.2.1 Definitions
In this section, we will define the mathematical notation used along with a few preliminary
definitions. Vectors and scalars are denoted by lowercase letters. Where necessary, vectors
use x y, superscripts to refer to the individual elements:

 a
a

a

x

y
=











The vector dot product is denoted by angle brackets:

 a b a b a bx x y y, = +

The definition for the length of a vector uses double vertical bars:

 v v v2= ,

(The number 2 subscript on the double bars makes it explicit that the vector length is the
L2 norm of a vector.)

A vector space is a rather abstract mathematical construct. In the general sense, it con-
sists of a set, that is, some collection of elements, along with corresponding operators
acting on that set. For the path smoothing problem, we need two specific vector space
definitions, one for scalar quantities and one for 2D vector quantities. These vector spaces
are denoted by uppercase letters U and V , respectively:

 U

V

n

n

=
=




2

(a) (b)

Figure 20.2

A smooth (a) and a straight-line path (b).

Copyright Material – Provided by Taylor & Francis

252 20. Optimization for Smooth Paths

The vector spaces U and V are arrays of length n, with vector space U an array of real
(floating point) scalars, and V an array of 2D vectors. Individual elements of a vector space
are referenced by an index subscript:

 a V ai∈ :

In this particular example, a is an array of 2D vectors, and ai is the 2D vector at index
i in that array. Vector space operators like multiplication, addition, and so on, are defined
in the obvious way as the corresponding pair-wise operator over the individual elements.
The dot product of vector space V is defined as:

 a b V a b a b
V i

n

i i, : , ,∈ =∑ =1

That is, the vector space dot product is the sum of the pair-wise dot products of the 2D
vector elements. (The V subscript on the angle brackets distinguishes the vector space dot
product from the vector dot product.)

For vector space V , we will make use of the norms:

v V v v

v V v v

v V v

V i

n

i

V i

n

i

V i

∈ =

∈ = ()
∈ =

∑
∑

=

=

∞ =

:

:

:

,

,

,
max

1 1 2

2 1 2

2

1
nn

iv
2

(The V subscript is added to make the distinction between vector and vector space norms
clear.) Each of these three vector space norms are constructed similarly: they consist of an
inner L2 norm over the 2D vector elements, followed by an outer L1, L2, or L∞ norm over
the resulting scalars, respectively. In the case of the vector space L2 norm, the outer norm
is basically the usual definition of vector length, in this case a vector of length n. The vec-
tor space L1 and L∞ norms are generalizations of the familiar L2 norm. The vector space L1
norm is analogous to the Manhattan distance of a vector, and the L∞ norm is the so-called
max norm, which is simply the absolute max element.

An indicator function is a convenience function for testing set membership. It gives 0 if
the element is in the set, otherwise it gives ∞ if the element is not in the set:

I x x S

x SS () = ∈
∞ ∉{0

The differencing operators give the vector offset between adjacent elements in V :

v V v
v v h i n

i n

v V v

v h i

v

i

i i

i

i

i

∈ () =
−() <

=







∈ () =
=

+ +

−

:
/

:

/

δ

δ

1

0

1

−−() < <
− =









∈ () = − () + ()

−

−

+ −

v h i n

v h i n

v V v v v

i

i

s

1

1

1/

/

: δ δ δ

Copyright Material – Provided by Taylor & Francis

25320.3 Path Smoothing Energy Function

The forward differencing operator δ+ gives the offset from the 2D vector at index i to the
next vector at index i +1. The boundary condition at index i n= is needed because then
there is no “next” vector, and there the offset is set to 0. Similarly, the backward differenc-
ing operator δ− gives the offset from the vector at index i to the previous vector at index
i −1, with boundary conditions at i =1 and i n= to ensure that δ+ and δ− are adjoint. The
sum-differencing operator δs is the vector addition of the vector offsets δ+ and δ− . The
scalar h is a normalization constant to enforce scale invariance. It depends on the scale of
the 2D coordinate space used, and its value should be set to the average distance between
neighboring graph vertices.

20.3 Path Smoothing Energy Function

An optimization problem consists of two parts: an energy (aka cost) function and an opti-
mization algorithm for minimizing that energy function. In this section, we will define
the energy function; in the following sections, we will derive the optimization algorithm.

The path smoothing energy function gives a score to a particular configuration of the
path waypoints. This score is a positive number, where large values mean the path is “bad,”
and small values mean the path is “good.” The goal then is to find the path configuration
for which the energy function is minimal. The choice of energy function is crucial. Since
it effectively will be evaluated many times in the execution of the optimization algorithm,
it needs to be simple and fast, while still accurately assigning high energy to nonsmooth
paths and low energy to smooth paths.

As described in the introduction section, the fundamental goal of the path smoothing
problem is to find the optimal balance between path smoothness and total path length
under the constraint that the resulting path must be collision free. Intuitively, expressing
this goal as an energy function leads to a sum of three terms: a term that penalizes (i.e.,
assigns high energy) to waypoints where the path has sharp kinks, a term that penalizes
greater total path length, and a term that enforces the collision-free constraint. In addi-
tion, the energy function should include a scaling factor to enable a user-controlled trad-
eoff between overall path smoothness and total path length. The energy function for the
path smoothing problem is then as follows:

w U v V E v w v v I v

C v c V r U v

s

V V
C∈ ∈ () = ()() + () + ()

= ∈ ∈

+, :

, , :

, ,

1

2 2

2

2
δ δ

−−() ≤{ }∞
c r

V
/

,
1

 (20.1)

Here, v are the path waypoint positions, and w are per waypoint weights. Set C represents
the maximal clearance disk at each waypoint, where c are the disk centers, and r are the
radii. (Note that this path smoothing energy function is convex, so there are no local
minima that can trap the optimization in a nonoptimal state, and the algorithm is there-
fore guaranteed to converge on a globally minimal energy.)

The first term in the energy function gives a high score to nonsmooth paths by
penalizing waypoints where the path locally deviates from a straight line. See Figure 20.3
for a visual representation, where the offsets δs, δ+ , and δ− for waypoint 3 are drawn
with arrows. The dark arrow shows offset vector δs , and it can be seen from the left and

Copyright Material – Provided by Taylor & Francis

254 20. Optimization for Smooth Paths

the right Figure 20.3 that its length is relative to how much waypoint v3 deviates from
the straight line connecting v2 and v4. The offset vector δs length is squared to penal-
ize sharp kinks progressively more than shallow ones, which forces the optimization
algorithm to spread out sharp kinks over adjacent waypoints, leading to an overall
smoother path.

The second term in the energy function gives a higher score to greater total path length
by summing the lengths of the δ+ vectors. It effectively forces path waypoints to be closer
together, resulting in a path that has a shorter total length and which is thus more similar
to the straight-line shortest path connecting the start and goal.

Set C acts as a constraint on the optimization problem to ensure the path is collision
free. Due to the max norm in the definition, the indicator function IC gives infinity when
one or more waypoints are outside their corresponding maximal clearance disk, other-
wise it gives zero. A path that has waypoints that are outside their corresponding maximal
clearance disk will have infinite energy therefore, and thus can obviously never be the
minimal energy state path.

The required agent facing directions at the start and goal positions are handled by
extending the path at both ends with a dummy additional waypoint, which are shown by
the small circles in Figure 20.2. The position of the additional waypoints is determined
by subtracting or adding the facing direction vector to the start and goal positions. These
dummy additional waypoints as well as the path start and goal position are assigned a
zero radius clearance disk. This constrains the start/goal positions from shifting around
during optimization and similarly prevents the start/goal-facing direction from changing
during optimization.

The per waypoint weights w allow a user-controlled tradeoff between path
smoothness and overall path length, where lower weights favor short paths and
higher weights favor smooth paths. In the limit, when all the weights are set to zero,
the energy function only penalizes total path length, and then the path optimization
will result in the shortest straight-line path as shown in the right of Figure 20.2. In
practice, the weights near the start and goal are boosted to improve alignment of the
path with the required agent facing direction. This is done using a bathtub-shaped
power curve:

−δ+(v)3

−δ+(v)3

δ−(v)3

δ−(v)3

δs(v)3

δs(v)3

v1 v2

v3

v4
v5 v5v1 v2

v3 v4

Figure 20.3

A visual representation of the model.

Copyright Material – Provided by Taylor & Francis

25520.4 Optimization Algorithm

w

w w w
i

n
i

n

w w w
i

n

i

m s m

m e m

=

+ −() − −()
−

+








 ≤ ≤

+ −() −()
−

−

2 2

3
1 2

2

2 2

3

4

11
2

1

0

4








 < ≤ −















n
i n

otherwise

The scalars ws and we are the values of the weight for the start and goal position waypoints,
respectively. The end position weights taper off with a power curve to weight wm at the
middle of the path. Index i =1 and i n= are the dummy waypoints for the agent facing
direction, and there the weights are zero. Figure 20.4 shows a plot for an example weight
curve with w ws e= =10, wm = 2, and n = 20.

20.4 Optimization Algorithm

Minimizing the energy function (Equation 20.1) is a challenging optimization problem
due to the discontinuous derivative of the vector space norms and the hard constraints
imposed by the maximal clearance disks. In this context, the path smoothing problem
is similar to optimization problems found in many computer vision applications, which
likewise consist of discontinuous derivatives and have hard constraints. Recent advances
in the field have resulted in simple and efficient algorithms that can effectively tackle
such optimization tasks; in particular, the Chambolle–Pock preconditioned primal-dual
algorithm described in Chambolle and Pock 2011, and Pock and Chambolle 2011 has
proven very effective in computer vision applications due to its simple formulation and
fast convergence. Furthermore, it generalizes and extends several prior known optimiza-
tion algorithms such as preconditioned ADMM and Douglas–Rachford splitting, leading
to a very general and flexible algorithm.

The algorithm requires that the optimization problem has a specific form, given by:

 min
v V

pE v F K v G v
∈

() = ⋅()+ (){ } (20.2)

0
0

2

4

6

8

10

5 10 15 20

Figure 20.4

A waypoint weight curve.

Copyright Material – Provided by Taylor & Francis

256 20. Optimization for Smooth Paths

That is, it minimizes some variable v for some energy function Ep , which itself consists of
a sum of two (convex) functions F and G . The parameter to function F is the product of a
matrix K and variable v . The purpose of matrix K is to encode all the operations on v that
depend on adjacent elements. This results in a F and G function that are simple, which is
necessary to make the implementation of the algorithm feasible. In addition, matrix K is
used to compute a bound on the step sizes, which ensures the algorithm is stable.

The optimization problem defined by Equation 20.2 is rather abstract and com-
pletely generic. To make the algorithm concrete, the path smoothing energy function
(Equation 20.1) is adapted to the form of Equation 20.2 in multiple steps. First, we define the
functions F1, F2, and G to represent the three terms in the path smoothing energy function:

 F v v F v v G v I v
V V C1 2

2

2 2

1

2
() = () () = () = ()

, ,
, ,

In the path smoothing energy function (Equation 20.1), the operators w sδ and δ+ act on
adjacent elements in v , so these are the operators that must be encoded as matrix K . As an
intermediate step, we first define the two submatrices K w s

1 = δ and K 2 = +δ . We can then
state the equivalence:

 K v w v K v vs
1 2⋅ = () ⋅ = ()+,δ δ

Substituting these as the parameters to functions F1 and F2 results in:

F K v w v F K v vs

V V
1 1

2

2

2 2
2

1

2
⋅() = ()() ⋅() = ()+,

, ,
δ δ

which leads to the minimization problem:

min

v V
pE v F K v F K v G v

∈
() = ⋅()+ ⋅()+ (){ }1 1 2 2

This is already largely similar to the form of Equation 20.2, but instead of one matrix
K and one function F , we have two matrices K1 and K 2, and two functions F1 and F2.
By “stacking” these matrices and functions, we can combine them into a single definition
to make the path smoothing problem compatible with Equation 20.2:

K

K

K
F K v

F K v

F K v
=









 ⋅() =

⋅()
⋅()











1

2

1 1

2 2

,

Next, matrix K is defined to complete the derivation of the path smoothing problem.
For the matrix-vector product K v⋅ , it is necessary to first “flatten” v into a column vec-
tor v v v v v vx y x y

n
x

n
y T

1 1 2 2, , , , , ,() . Then K is a 4 2n n× -dimensional matrix where rows 1 to 2n
encode the w sδ operator, and rows 2 1n + to 4n encode δ+ . See Figure 20.5 for an example
with n = 4. From Figure 20.5, it is easy to see that applying K v⋅ is the same operation as
w vsδ () and δ+ ()v .

Note that in practice, the definition of matrix K is only needed to analyze the optimi-
zation algorithm mathematically; it is not used in the final implementation. The matrix

Copyright Material – Provided by Taylor & Francis

25720.4 Optimization Algorithm

is very large and sparse, so it is obviously much more efficient to simply use the operators
w sδ and δ+ in the implementation instead of the actual matrix-vector product K v⋅ .

Instead of solving the minimization problem (Equation 20.2) directly, the Chambolle–
Pock algorithm solves the related min–max problem:

min max

v V p V
pd V

E v K v p G v F p
∈ ∈

() = ⋅ + ()− (){ }, *

(20.3)

The optimization problems Equations 20.2 and 20.3 are equivalent: minimizing
Equation 20.2 or solving the min–max problem (Equation 20.3) will result in the
same v . The original optimization problem (Equation 20.2) is called the “primal,” and
Equation 20.3 is called the “primal-dual” problem. Similarly, v is referred to as the primal
variable, and the additional variable p is called the dual variable.

The concept of duality and the meaning of the star superscript on F * are explained fur-
ther in the next section, but at first glance it may seem that Equation 20.3 is a more compli-
cated problem to solve than Equation 20.2, as there is an additional variable p , and we are
now dealing with a coupled min–max problem instead of a pure minimization. However,
the additional variable enables the algorithm, on each iteration, to handle p separately
while holding v constant and to handle v separately while holding p constant. This results
in two smaller subproblems, so the system as a whole is simpler.

ω1δs(υ)x
1

ω2δs(υ)x
2

ω3δs(υ)x
3

ω4δs(υ)x
4

δ+(υ)x
1

δ+(υ)x
2

δ+(υ)x
3

δ+(υ)x
4

ω1δs(υ)y
1

ω2δs(υ)y
2

ω3δs(υ)y
3

ω4δs(υ)y
4

δ+(υ)y
1

δ+(υ)y
2

δ+(υ)y
3

δ+(υ)y
4

υx
1

υx
2

υx
3

υx
4

υy
1

υy
2

υy
3

υy
4

000000 ω1
h−2ω1

h
000000 ω1

h−2ω1
h

00000 2ω2
h

ω2
h− ω2

h−

0000001
h− 1

h

0000 2ω3
h

ω3
h−ω3

h−0

1
h− 1

h 000000

000ω2
h− ω2

h−2ω2
h0 0

000 2ω3
h

ω3
h−ω3

h−0 0

00000 ω4
h−0 0

00000 ω4
h−0 0

1
h− 1

h 00000 0

1
h− 1

h 00000 0
1
h− 1

h 00000 0
1
h− 1

h00000 0

0000000 0

0000000 0

=

Figure 20.5

Matrix K for n = 4.

Copyright Material – Provided by Taylor & Francis

258 20. Optimization for Smooth Paths

In the case of the path smoothing problem, we have two functions F1 and F2, so we need
one more dual variable q, resulting in the min–max problem:

min max

v V p q V
pd

V

E v K v
p

q
G v F p F q

∈ ∈

∗ ∗() = ⋅








 + ()− ()− ()






,

,
1 2









Note that, similar to what was done to combine matrices K1 and K 2, the variables p and q
are stacked to combine them into a single definition p q

T
,() .

20.4.1 Legendre–Fenchel Transform
The Legendre–Fenchel (LF) transform takes a function f and puts in a different form. The
transformed function is denoted with a star superscript, f ∗, and is referred to as the dual
of the original function f . Using the dual of a function can make certain kinds of analysis
or operations much more efficient. For example, the well-known Fourier transform takes
a time domain signal and transforms (dualizes) it into a frequency domain signal, where
convolution and frequency analysis are much more efficient. In the case of the LF trans-
form, the dualization takes the form of a maximization:

 f k k x f x
x n

∗

∈
() = − (){ }max



, (20.4)

The LF transform has an interesting geometric interpretation, which is unfortunately out
of scope for this chapter. For more information, see Touchette 2005, which gives an excel-
lent explanation of the LF transform. Here we will restrict ourselves to simply deriving the
LF transform for the functions F1 and F2 by means of the definition given by Equation 20.4.

20.4.1.1 Legendre–Fenchel Transform of F1

Substituting the definition of F1 for f in Equation 20.4 results in:

 p V F p p x x x
x V V V

∈ () = −







∗

∈
: max , ,1

1

2
 (20.5)

The maximum occurs where the derivative w.r.t. x is 0:

∂
∂

−





 = ⇒ − =

x
p x x x p x

V V
, ,

1

2
0 0

So the maximum of F1 is found where x p= . Substituting this back into Equation 20.5 gives:

F p p p

V1
1

2
∗ () = ,

20.4.1.2 Legendre–Fenchel Transform of F2

Substituting the definition of F2 for f in Equation 20.4 gives:

 q V F q q x x
x V V V

∈ () = −{ }∗

∈
: max ,

,2 2 (20.6)

Copyright Material – Provided by Taylor & Francis

25920.4 Optimization Algorithm

The q x
V

, term can be (loosely) seen as the geometric dot product of q and x. This is
maximized when q and x are “geometrically coincident,” that is, they are a scalar multiple
of each other. When q and x are coincident, then by the definition of the dot product
q x q x

V V V
,

, ,
=

2 2
 holds. Substituting this back into Equation 20.6 gives:

 F q q x x
x V V V V2 2 2 2

∗

∈
() = −{ }max

, , ,

This makes it obvious that when q V ,2 1≤ , the maximum that can be attained for
Equation 20.6 is 0; otherwise when q V ,2 1> , the maximum goes to ∞ . This is conveniently
expressed as the indicator function of an additional set Q:

 F q I q Q q V qQ V2 2
1∗ () = () = ∈ ≤{ }, :

,

20.4.2 Proximity Operator
In the previous section, we derived the dual functions F1

∗ and F2
∗. Before we can define

the path smoothing algorithm, we also need to derive the so-called proximity operator
for functions F1

∗, F2
∗, and G. The proximity operator bounds a function from below with a

quadratic in order to smooth out discontinuities in the derivative. This ensures the opti-
mization converges on the minimum without getting trapped in an oscillation around the
minimum. See Figure 20.6 for a simple example where the solid line is the original func-
tion with a discontinuous derivative, and the dotted lines are quadratic relaxations of that
function. The general definition of the proximity operator is given by the minimization:

 prox x f y y xf
y n

,τ
τ

() = ()+ −()





∈

argmin


1

2 2

2
 (20.7)

where the parameter τ controls the amount of relaxation due to the quadratic.

20.4.2.1 Proximity Operator of F1
∗

Substituting F1
∗ into Equation 20.7 gives:

p V prox p

y y
y p

F i
y

i∈ () = + −()







∗

∈

:
,

,
argmin

1 2 2

1

2 2

2

σ σ


τ = 0.075

τ = 0.15

Figure 20.6

Quadratic relaxation.

Copyright Material – Provided by Taylor & Francis

260 20. Optimization for Smooth Paths

Note that the proximity operator F1
∗ is point-wise separable, meaning that it can be defined

in terms of the individual elements pi . The point-wise separation is possible due to the fact
that the operations that depend on adjacent elements of v are encoded in matrix K, and
as a consequence, there similarly is no mutual dependence between adjacent elements of
p here. This simplifies the derivation of the proximity operator greatly. (In fact, without
point-wise separation, the derivation of the proximity operator would not be feasible.) The
minimum occurs where the derivative w.r.t. y is 0:

∂
∂

− − −








 = ⇒ + − =

y

y y
y p y p y

y p
i i

i,
,

2

1

2
0 0

σ σ

Solving this equation for y results in:

p V prox p

p
F i

i∈ () =
+

∗:
,1 1σ σ

20.4.2.2 Proximity Operator of F2
∗

Substituting F2
∗ into Equation 20.7 gives:

q V prox q I y y q

F
y V

Q V
∈ () = () + −()








∗

∈
:

, ,
argmin

2

1

2 2

2

µ µ

The indicator function IQ completely dominates the minimization—it is 0 when y Q∈ , oth-
erwise it is ∞ in which case the minimum does not exist. So to attain a minimum, y must be
member of Q. Hence, the solution to the proximity operator for F2

∗ consists of finding the near-
est y to q that is also a member of Q (in convex optimization terms, this is called “projecting”
y onto Q.) If y is in Q, this is simply y itself; otherwise y is divided by its L2 norm, so it satisfies
q

V ,2
1≤ . Thus:

q V prox q

q

q
F

V

∈ () = ()∗:
,

,

,
max2 1

2

µ

20.4.2.3 Proximity Operator of G

Substituting G into Equation 20.7 gives:

v V prox v I y y vG

y V
C V

∈ () = ()+ −()





∈

: arg min, ,τ
τ

1

2 2

2

Similar to the proximity operator of F2
∗ above, here the indicator function IC dominates

the minimization, and so the solution consists of finding the nearest y that is in C . The
problem is point-wise separable, and the solution is given as the point inside the maximal
clearance disk with center ci and radius ri that is nearest to vi:

v V prox v c v c

r

r v c
G i i i i

i

i i i

∈ () = + −()
−():

max ,
,τ

2

Copyright Material – Provided by Taylor & Francis

26120.4 Optimization Algorithm

20.4.3 The Chambolle–Pock Primal-Dual Algorithm for Path Smoothing
The general preconditioned Chambolle–Pock algorithm consists of the following steps:

p prox p K v

v prox v K p

v

k
F

k k

k
G

k T k

k

+

+ +

+

= + ⋅ ⋅()
= − ⋅ ⋅()

=

∗
1

1 1

1 2

,

,

Σ

Τ

Σ

Τ



 vv vk k+ −1

 (20.8)

These are the calculations for a single iteration of the algorithm, where the superscripts k
and k +1 refer to the value of the corresponding variable at the current iteration k and the
next iteration k +1. The implementation of the algorithm repeats the steps (Equation 20.8)
multiple times, with successive iterations bringing the values of the variables closer to the
optimal solution. In practice, the algorithm runs for some predetermined, fixed number
of iterations that brings the state of variable v sufficiently close to the optimal value. Prior
to the first iteration k = 0, the variables are initialized as p q0 0 0= = and v v c0 0= = . The
diagonal matrices Σ and Τ are the step sizes for the algorithm, which are defined below.

The general algorithm (Equation 20.8) is adapted to the path smoothing problem by
substituting the definitions given in the previous sections: the differencing operators w sδ
and δ+ are substituted for K , p is substituted with the stacked variable p q

T
,() , and prox

F∗,Σ
is substituted with prox

F1
∗ ,σ and prox

F2
∗,µ . Then the final remaining use of matrix K is

eliminated by expanding the product:

K

p

q
w p qT

k

s k k⋅








 ⇒ ()− ()

+
+ − +

1

1 1δ δ

This results in the path smoothing algorithm:

p prox p w

q prox q

v

v

k
F

k s

k
F

k

k

k

+

+ +

= + ()







= +

∗

∗

1

1

1

2

,

,

σ

µ

σ δ

µδ



(()







= − ()− ()()()
=

+ + − +

+

v prox v w p q

vv

k
G

k s k k

kk

1 1 1

1 2

,τ τ δ δ



++ −1 v k

By substituting K and K T with their corresponding differencing operators, the step size
matrices Σ and Τ are no longer applicable. Instead, the step sizes are now represented by
the vectors σ µ τ, , ∈U , which are the diagonal elements of matrices Σ and Τ. As proven in
Pock and Chambolle 2011, deriving the step-size parameters σ µ τ, , as sums of the rows
and columns of matrix K leads to a convergent algorithm:

σ
β

µ
β

τ β
α α α

i

j

n i

j

n i

j

n

j iK K Ki j i j

= = =

∑ ∑ ∑= = =

−

1 1

1

2

1
1

2

2
1

4
2

, ,

, , ,

Copyright Material – Provided by Taylor & Francis

262 20. Optimization for Smooth Paths

Expanding the summation gives:

 σ
β

µ
β

τ
βα

α α

α α

α αi

i

i i

i i

h

w

h h

w w
=

+() = =
+ +() +

−

−
− −

2 2 2 2 2

2

1
2 2, ,

wwi+
−

1
2 α

 (20.9)

(Note that µi is a constant for all i .) The scalar constants 0 2< <α and β > 0 balance the
step sizes to either larger values for σ µ, or larger values for τ. This causes the algorithm
to make correspondingly larger steps in either variable p q, or variable v on each itera-
tion, which affects the overall rate of convergence of the algorithm. Well-chosen values for
α β, are critical to ensure an optimal rate of convergence. Unfortunately, optimal values for
these constants depend on the particular waypoint weights used and the average waypoint
separation distance h, so no general best value can be given, and they need to be found by
experimentation. Note that the Equations 20.9 are valid only for 2 1< < −i n , that is, they
omit the special cases for the step size at i =1 and i n= . They are omitted because in practice,
the algorithm only needs to calculate elements 2 1< < −i n for p , q, v and v on each itera-
tion. This is a consequence of extending the path at either end with two dummy additional
waypoints for the agent facing direction. Since these additional waypoints are assigned a
zero radius clearance disk, their position remains fixed on each iteration. Their contribu-
tion to the path energy is therefore constant and does not need to be calculated. Restricting
the algorithm implementation to elements 2 1< < −i n eliminates all special cases for the
boundary conditions of operator δs , δ+ , δ−, and the step sizes.

The leftside of Figure 20.7 shows the state of the path as it evolves over 100 iterations
of the algorithm. Empirically, the state rapidly converges to a smooth path after only a
few initial iterations. Subsequent iterations then pull the waypoints closer together and
impose a uniform distribution of waypoints over the length of the path. The rightside of
Figure 20.7 is a plot of the value of the energy function (Equation 20.1) at each iteration,
which shows that the energy decreases (however not necessarily monotonically) on suc-
cessive iterations.

0.01

(b)(a)

0.05
0.10

0.50
1

5

1 5 5010

Normalized primal energy

100

Figure 20.7

(a) Path evolution and (b) energy plot.

Copyright Material – Provided by Taylor & Francis

263References

20.5 Conclusion

In this chapter, we have given a detailed description of an algorithm for path smoothing
using iterative minimization. As can be seen from the source code provided with this
chapter on the book’s website (http://www.gameaipro.com), the implementation only
requires a few lines of C++ code. The computation at each iteration consists of simple
linear operations, making the method very efficient overall. Moreover, since information
exchange for neighboring waypoints only occurs after each iteration, the algorithm inner
loops that update the primal and dual variables are essentially entirely data parallel, which
makes the algorithm ideally suited to a GPGPU implementation.

Finally, note that this chapter describes just one particular application of the
Chambolle–Pock algorithm. However, the algorithm itself is very general and can be
adapted to solve a wide variety of optimization problems. The main hurdle in adapting
it to new applications is deriving a suitable model, along with its associated Legendre–
Fenchel transform(s) and proximity operators. Depending on the problem, this may be
more or less challenging. However, once a suitable model is found, the resulting code is
invariably simple and efficient.

References

Chambolle, A. and T. Pock. 2011. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1),
120–145.

Geraerts, R. and M. Overmars. 2007. The corridor map method: A general framework for
real-time high-quality path planning. Computer Animation and Virtual Worlds, 18,
107–119.

Pock, T. and A. Chambolle. 2011. Diagonal preconditioning for first order primal-dual
algorithms in convex optimization. IEEE International Conference on Computer
Vision (ICCV), Washington, DC, pp. 1762–1769.

Touchette, H. 2005. Legendre-Fenchel transforms in a nutshell. School of Mathematical
Sciences, Queen Mary, University of London. http://www.physics.sun.ac.za/~htouchette/
archive/notes/lfth2.pdf (accessed May 26, 2016).

Copyright Material – Provided by Taylor & Francis

