
215

17
Fast Cars, Big City
The AI of Driver San Francisco

Chris Jenner and Sergio Ocio Barriales

17.1 Introduction

Driver San Francisco was an open-world driving game set in a fictionalized version of the 
city of San Francisco. The game’s version of the city was very large, and in some areas had 
very dense traffic.

The player was given different missions that involved navigating through traffic 
at high speeds interacting with other mission-critical NPC vehicles, which also had 
to move quickly through the traffic. NPC vehicles might be chasing another vehicle, 
evading a vehicle, racing around a set course or trying to get to a particular point in 
the city. Also, at any point, the player could switch vehicles and start controlling any 
other car in the city; when this happened, it was the job of the AI to take over con-
trol of the player’s vehicle, continue driving, and try to achieve the player’s mission 
objective.

An important part of the game design was to produce dramatic, cinematic car chase 
sequences. Due to this, the AI-controlled vehicles as well as the player vehicle were often 
the centers of attention, being closely watched by the game camera. To create the most 
impressive visuals, it was a requirement that the AI code could control a vehicle simulated 
by the same system that was used for the player vehicle. We were not allowed to cheat 
by giving the AI vehicles more power or tighter grip between the tires and the road. 

17.1 Introduction
17.2 Active Life AI
17.3 Road Network
17.4 Route Finding

17.5 Mid-Level Path Planning
17.6 Low-Level Path Optimizer
17.7 Conclusion
References

Copyright Material – Provided by Taylor & Francis 



216 17. Fast Cars, Big City

We also had to perform at a level that was similar to the best human players, so the cars 
had to be capable of coming close to the limits of friction when cornering, without push-
ing too far and skidding out of control.

The game was designed to run at 60 frames per second. This put a significant restriction 
on the amount of work we could do in any single frame. For this reason, the AI system was 
designed to be asynchronous and multithreaded. Individual tasks to update the state of a 
particular AI were designed to run independently and to update the state of the AI when 
the task was finished. Even if the task was finished after several frames, the AI would be 
able to continue intelligently while waiting for the result.

Planning a path for the AI vehicles in this environment posed several problems: 

 • The vehicles’ main interactions were with other vehicles, so the path planning had 
to deal with moving obstacles. This meant that we had to look ahead in time as 
well as space and plan to find gaps in traffic that would exist at the time we got to 
them.

 • Valid paths for vehicles must take into account parameters of the physical vehicle 
simulation, such as acceleration, turn rates, and tire grip if they are to be feasible 
for a vehicle to drive.

Classical path planning algorithms such as A* work well for static environments of limited 
dimension, but trying to search through a state space including time, velocity, and orien-
tation would be impractical.

In this chapter, we present the path planning solution Driver San Francisco used: a 
three-tier path optimization approach that provided locally optimal paths. The three 
stages of the process—route finding, mid-level path planning, and low-level path 
 optimization—will be detailed in the subsequent sections.

17.2 Active Life AI

Driver San Francisco had two distinct types of AI to control his or her vehicles: Civilian 
Traffic AI and Active Life AI. Civilian vehicles were part of a deterministic traffic sys-
tem that simply moved vehicles around a set of looping splines throughout the city. 
Each spline had been defined to ensure that it did not interact with any other spline. 
Each civilian vehicle would follow a point around the spline, knowing that there was 
no chance of colliding with other civilian vehicles. Nontraffic vehicles were controlled 
by the more complex Active Life AI system. These vehicles perform much more com-
plex actions than simply blending in with traffic, such as racing, chasing, or escaping 
from other vehicles. The Active Life AI system performed much more complex path 
generation.

Driver San Francisco’s most important gameplay mechanic, shift, allowed players to 
switch cars at any point. When the player activated shift, the vehicle the player left was 
taken over by an Active Life AI, which would start running the appropriate behavior to 
replace the player. For example, if the player shifted out of a cop car chasing a suspect, 
the AI would give a “chase target” behavior to the cop car, which would continue what 
the player was doing before the switch. If the player had been driving a civilian vehicle 

Copyright Material – Provided by Taylor & Francis 



21717.2 Active Life AI

with no particular objective, the AI would select the closest free slot on the traffic splines 
and try to rejoin traffic; as soon as this happened, the driver was downgraded to a regu-
lar civilian vehicle.

17.2.1 Vehicle Paths
As any car could transition from civilian to Active Life and vice-versa at any moment, 
it was important to keep an unified system to define what vehicles were trying to do, 
so each one owned a vehicle path. These paths represented the predicted movement of 
the vehicle for the next couple of seconds, and the AI system was constantly updat-
ing them—actually, path updating happened approximately every second. Paths were 
updated appending new segments at their end before they were completely used. So, 
from the vehicle’s perspective, the path was continuous. Updating paths this way 
allowed us to run costly calculations in parallel over multiple frames. Even the player’s 
vehicle had a path!

The way vehicle paths were generated depended on the system that was controlling 
them. For player vehicles, physics and dead reckoning generated this path; traffic splines 
generated paths for civilians. For Active Life AIs, we used different levels of detail, based 
on range to the AI. We had three levels of detail (LODs): 

 • AIs using the lowest level of detail generated their paths using only their route 
information. A route, as we will talk about later, is a list of roads that can take 
us from point A to B. These roads are defined as splines, and these splines are 
connected by junction pieces. Routes were basically very long splines. Low-LOD 
vehicle paths were a portion of the route’s spline with an offset to simulate that 
they were driving in a certain lane on the road.

 • The next level of detail used mid-level paths to generate vehicle paths. A mid-level 
path is a first approximation of a good path for a vehicle. It uses the route informa-
tion plus some extra details, such as lane information (we prefer maintaining our 
current lane if possible), some rough dynamic obstacle avoidance, and some speed 
limit data. Mid-level path generation is described in detail in a subsequent section.

 • Finally, the highest level of detail was used for vehicles around the player that were 
in camera and needed to be fully simulated and as polished as possible. They used 
the full three-tier path generation (route finding, mid-level path planning, and 
low-level path optimization).

The vehicle paths also supported another significant optimization in the game’s simula-
tion code. The large number of vehicles being simulated in the world at any one time 
would be very costly in terms of physics and vehicle handling. For this reason, there 
was a system of simulation level of detail acting at the same time as, but independently 
of the AI LOD. When vehicles were close to the player, they would be fully simulated 
by the physics and handling system, and they would follow their paths using the AI 
path-following system to calculate driving input into the handling system. When vehi-
cles were distant from the player, they could be removed from the physics engine and 
vehicle-handling code, and simply placed at the position defined by their path for that 
particular time.

Copyright Material – Provided by Taylor & Francis 



218 17. Fast Cars, Big City

17.2.2 Driver Personalities
In the game, AIs had different goals, but also different driving styles or personalities. AIs 
had a set of different traits that defined their characters. Some examples of these traits were: 

 • Likeliness to drive in the oncoming traffic.
 • Likeliness to drive on sidewalks.
 • Preferred driving speed.
 • How desirable highways, alleyways, or dirt roads were?
 • How strongly hitting other vehicles should be avoided?

Personality traits affected every stage of the path planning, as we will see in later sections.

17.3 Road Network

Our virtual San Francisco was, in the eyes of the AI, a network of interconnected roads. For 
each of these roads, the game exposed the following information, as shown in Figure 17.1: 

 • A spline that represents the road.
 • Each road had a start and an end extremity. For each extremity, we had:
 • A list of roads that were connected to the extremity.
 • Cross-section information: This defines the number of lanes at the extremity, as 

well as the width and the type of each of these lanes.

In the example, our road has two directions. We call the lanes that travel from the 
start to the end extremity as “with traffic” lanes, and the ones traveling in the opposite 
direction are called “oncoming.” The example road presents two “with traffic” and two 
“oncoming” lanes; it also has a sidewalk on the oncoming side (the left-most lane on the 
cross section) and a sidewalk on the right side of the road that disappears at the end of 
the spline.

Start

End
End

Start

Figure 17.1

An example road spline with its cross section information.

Copyright Material – Provided by Taylor & Francis 



21917.5 Mid-Level Path Planning

17.4 Route Finding

The path generation process for Active Life AIs started by selecting the roads that these 
vehicles would use to reach their destination. The goal was to generate a list of connected 
roads, a route, which allowed cars to drive to their destination. For this, we used the con-
nectivity information in the road network.

Depending on the goal or behavior of a vehicle, we used one of the following two meth-
ods to generate a route: 

 • A traditional A* search on the road network was used when we knew what our 
destination road was.

 • A dynamic, adaptive route generator was used by the AI when its objective was 
to get away from a pursuer. For more details on this system, readers can refer to 
Ocio (2012).

Due to the size of the map and the strict performance requirements the AI systems had to 
meet (Driver San Francisco runs at 60 FPS on Xbox 360, PS3 and PC), we split the map in 
three different areas, which are connected by bridges, and used a hierarchical A* solution. 
If two points, A and B, were in different areas, we would first find a path to the closest 
bridge that connected both areas, and then find a path from the bridge to position B on 
the second area.

The path planning system itself imposed extra requirements. For instance, we always 
needed to have “enough road length” ahead of our vehicle, so sometimes an artificial node 
was appended at the end of the route. This was very often the case when an AI was fol-
lowing another vehicle, and both cars were pretty close to each other. This extra road 
allowed vehicles to predict where they should be moving to next and helped them main-
tain their speed. This will be explained in the following sections. During a high-speed 
chase, approaching junctions required a constant reevaluation of the intentions of the 
vehicle being chased. The goal was to predict which way the chased car was trying to go. 
We achieved this by making use of our simplified physics model that provided us with a 
good estimation of what a car was capable of doing based on its current state and capabili-
ties. Figure 17.2 depicts the problem.

Route finding was also affected by the personality of the driver. The cost of exploring 
nodes varied based on the specific traits of the AI, and this could produce very different 
results. For example, civilian-like drivers could follow longer but safer routes to try and 
avoid a dirt road, whereas a racer would not care. Finally, AIs would, in some situations, 
try to avoid specific roads. For instance, a getaway driver would try to not use roads 
with cops.

17.5 Mid-Level Path Planning

Driver San Francisco’s path planning solution did not look for optimal paths, as a more 
traditional A*-based approach would normally do. Instead, we were trying to gener-
ate locally optimal paths by optimizing some promising coarser options that we called 
 mid-level paths. Mid-level path planning was the second stage of our three-tier process 
that happened after a route had been calculated.

Copyright Material – Provided by Taylor & Francis 



220 17. Fast Cars, Big City

The route was defined in terms of the splines describing the center lines of the roads we 
wanted to follow, but it contained no information about which road lane we should drive 
down. The mid-level path allowed us to specify where on the road the vehicle should drive. 
The mid-level path was generated by searching for a path between a set of possible path 
nodes spread out in a grid over the road in front of the vehicle. The search space began at 
the current position of the vehicle and extended forward down the road far enough that 
the path would be valid for several seconds. The search space would typically be about 100 m 
in length. We placed sets of nodes at regular intervals over this part of the spline. With 
regard to width, one node was placed in each traffic lane. We show an example search 
space in Figure 17.3.

Option 1?

Option 3?

Option 2?

Figure 17.2

When chasing another vehicle, our AIs needed to decide which road the chased car was 
going to take at every intersection.

Figure 17.3

Node sets placed every few meters along the roads in the route constitute our search space 
for the midlevel path planning.

Copyright Material – Provided by Taylor & Francis 



22117.5 Mid-Level Path Planning

Once the search space was defined, we generated all the possible paths from the vehicle 
to each node on the last set, scoring them, and then selecting the five best options, which 
became the seeds for the optimizer. Evaluating a path meant giving each node used a 
numeric value; the final cost would be the sum of all the individual values. The game used 
costs for paths, which meant the higher the number, the less ideal the path was. The crite-
ria used to generate these costs were: 

 • Nodes near dynamic obstacles (i.e., other vehicles) were given some penalty; if the 
obstacle was static (e.g., a building), the node could not be used.

 • We always preferred driving in a straight line, so part of the score came from the 
angle difference between the vehicle’s facing vector and the path segment.

 • Depending on the driver AI’s personality, some nodes could be more favorable. 
For example, a car trying to obey traffic rules will receive big penalties from driv-
ing on sidewalks or in the oncoming lane, whereas a reckless driver would not 
differentiate between lane types.

Figure 17.4 shows a couple of example mid-level paths and their costs.
In the example, the cost calculation has been simplified for this chapter, but the essence 

of the process remains. Moving in a straight line costs 1 unit and switching lanes costs 
2 units. Driving close to another car costs an additional point, so does driving in the 
oncoming lane. With these rules, we calculated a cost of 5 for the first path and 11 for the 
second one.

Although in Figure 17.4, we treated other vehicles as static when we calculated the cost 
of driving next to an obstacle, in the real game, these calculations were made taking into 
account current vehicle speeds and predicting the positions of the obstacles (by accessing 
their vehicle paths). So path 2 could potentially have been scored even higher in a couple of 
locations. For example, the first node, which got a cost of 4, could have produced a bigger 
cost if the car driving in the opposite direction was moving. Path 1 could have even just 
been a completely straight line, if the vehicles we are trying to avoid in the example were 
moving fast enough, so they were not real obstacles for our AI!

Actual path

Control path

Previous iteration path

Figure 17.4

Two possible midlevel paths found for the given search space; path 1 has a lower cost, so it 
would be the preferred option.

Copyright Material – Provided by Taylor & Francis 



222 17. Fast Cars, Big City

Another piece of information we could get out of mid-level was speed information 
and, particularly, speed limitations, or how fast a corner can be taken without over-
shooting. Starting from the last node set backward, we calculated the maximum speed 
at certain nodes based on the angle that the path turned through at that node. This 
speed was then propagated backward down the path based on the maximum acceleration/ 
deceleration, so the path contained some information the vehicle could use to start 
slowing down before taking a corner. Figure 17.5 shows an example mid-level path with 
speed limits.

In the example, calculations would start at node set 4. The maximum speed at that node 
is the maximum desired speed for our vehicle (let us use 70 mph for this). Traveling from 
node 3 to node 4 is almost a straight line, so the vehicle can travel at maximum speed. 
However, moving from node 2 will require a sharp turn. Let us say that, by using the 
actual capabilities of our car, we determined the maximum speed at that point should be 
30 mph. Now, we need to propagate this backward, so node 1 knows the maximum speed 
at the next node set is 30. Based on how fast our vehicle can decelerate, the new speed at 
node 1 is 50 mph. We do the same thing for the very first node, and we have our speeds 
calculated. Path speeds also took part in the path cost calculation; we tried to favor those 
paths that took us to the last set of nodes faster than others.

17.6 Low-Level Path Optimizer

Mid-level paths represented a reasonable approximation of a path that could be driven by a 
vehicle, but this was not good enough for our needs. Although the velocity of the path has 
been calculated with an idea of the capabilities of the vehicle, the turns have no representa-
tion of the momentum of the vehicle or the limits of friction at the wheels. These problems 
are resolved by the low-level path optimizer.

3050
70 70

70
[4]

[3]

[2][1][0]

Figure 17.5

Midlevel paths contained information about the maximum speed the vehicle could travel 
at each of their nodes.

Copyright Material – Provided by Taylor & Francis 



22317.6 Low-Level Path Optimizer

The low-level optimizer uses a simplified model of the physics of the vehicle, controlled 
by an AI path-following module, to refine the path provided by the mid-level into a form 
that a vehicle could actually drive. When the constraints on the motion of the vehicle are 
applied to the mid-level path, it is likely to reduce the quality of the path—perhaps the 
vehicle will hit other cars or skid out of control on a tight corner. These problems are fixed 
by an iterative path optimization process.

To choose a good path, it was necessary to have a method of identifying the quality of 
a particular path. This was done by creating a scoring system for paths that could take a 
trajectory through the world and assign it a single score representing the desirability of the 
path. Good paths should move through the world making forward progress toward our 
goal as close as possible to a desired speed while avoiding collisions with other objects. The 
aim of the optimization process is to find a path with the best possible score.

The environment through which the vehicles were moving is complex, with both static 
and dynamic obstacles to avoid, and a range of different target locations that could be con-
sidered to be making progress toward a final goal. To simplify the work of the optimizer, 
the environment is initially processed into a single data structure representing where 
we want the vehicle to move. This structure is a potential field, in which every location in 
the area around the vehicle is assigned a “potential” value. Low-potential areas are where 
we want the vehicle to be, and high-potential areas are where we want the vehicle to move 
from. Good paths can then be found by following the gradient of the potential field down-
ward toward our goal.

The various different systems that came together to form the low-level path optimizer 
are described in the following sections.

17.6.1 Search Area
Before the optimizer could start generating paths, it needed to prepare data to use during 
its calculations. The first piece of data we prepared was a small chunk of the world where 
the path planning process would take place, the search area.

A rectangle was used to delimit the search area. This rectangle was wide enough to 
encompass the widest road in the network, and it was long enough to allow the vehicle to 
travel at full speed for a couple of seconds (remember mid-level paths were generated for 
this length). The area was almost centered on the AI vehicle, but not quite; while the car 
was indeed centered horizontally, it was placed about ¼ along the rectangle’s length. Also, 
the area was not axis aligned. Instead, we would use the vehicle’s route to select a posi-
tion in the future and align the rectangle toward this point. Figure 17.6 shows an example 
rectangle.

After the rectangle was positioned, we detected the edges of the roads and used them 
to calculate inaccessible areas. Vehicles in Driver San Francisco were only able to drive on 
roads and some special open areas, designer-placed zones attached to a road spline that 
we wanted to consider as a drivable area. Likewise, we had closed areas or zones that we 
wanted to block, such as a static obstacle. Figure 17.7 shows the previous search zone, now 
annotated with some example areas.

In this example, the lower left building was cut by an open area, and a road separator 
(closed area) was added to the first road in the route.

The search area was used to define the limits within which we calculated a potential field, 
where the potential of a particular area represents the desirability of that location for our AI. 

Copyright Material – Provided by Taylor & Francis 



224 17. Fast Cars, Big City

Figure 17.6

The search area is a rectangular zone that encompasses the surroundings of the AI vehicle.

Regular drivable area

Road generated obstacle

Closed area

Open area

Figure 17.7

The search area’s static obstacles were calculated from the road information and from 
some special areas placed by designers on the map to open or close certain zones.

Copyright Material – Provided by Taylor & Francis 



22517.6 Low-Level Path Optimizer

Movements through the potential field toward our target should always result in a lowering 
of the potential value. Areas that were inaccessible because of static or dynamic obstacles 
needed to have high potential values. As the path planning algorithm was trying to find 
a path that was valid for several seconds into the future, and other vehicles could move a 
significant distance during the time that the path was valid, it was important that we could 
represent the movement of obstacles within the potential field. For this reason, we calculated 
both a static potential field and a dynamic potential field. By querying the static potential 
field for a particular location, querying the dynamic potential field at the same location for a 
particular time, and then summing the results, we could find the potential for a location at 
a particular time. Similarly, we could find the potential gradient at a location at a particular 
time by summing the potential gradient value from both fields.

17.6.2 Static Potential Field
With the search area defined, the next data calculated were a static potential field. This 
was used to help us define how movement should flow—in what direction while avoiding 
obstacles. It worked almost as water flowing down a river. This potential field was created 
using the fast marching method (Sethian 1996). The search area triangle was split into a 
grid, so we could do discrete calculations. We set a row of goal positions at the end part of 
the search area rectangle and calculated the values for each cell in the grid.

For the algorithm, we needed to define the propagation speed at each cell, and this 
came mainly from the type of lane below the cell’s center position and the personality 
of the AI driver. For a civilian driver, for example, a cell on the oncoming late should 
be costlier to use, which means the gradient of the field on those cells will be point-
ing away from them. Figure 17.8 shows what the field’s gradient would look like in our 
example.

In this example, we set two goal cells for the potential field. With a civilian personality, 
oncoming lanes should normally be avoided, and sidewalks should be avoided at all costs. 
This produced a nice gradient that helps navigate toward the goals. If we dropped a ball on 
any cell and move it following the arrows, we will end up at the objective cell.

Sidewalk

Oncoming

Oncoming

With traffic

With traffic

Sidewalk

Figure 17.8

The search area was split into cells, and a potential field was generated to show how move-
ment should flow to avoid static obstacles.

Copyright Material – Provided by Taylor & Francis 



226 17. Fast Cars, Big City

17.6.3 Dynamic Potential Field
AIs in Driver San Francisco had to deal with static obstacles but mostly with dynamic, 
moving ones. Although the static potential field was necessary to avoid walls, we needed 
a way to produce some extra forces to avoid surrounding vehicles. The approach taken in 
Driver San Francisco was to apply these forces as an extra layer on top of the static field.

The dynamic potential field could be queried at any point for any particular time. If 
we visualized it overtime, we were able to see forces produced around vehicles, pushing 
things out of the obstacle. Clusters of vehicles could produce gaps between them or forces 
to go around the whole cluster, depending on how far apart the different vehicles were. 
Figure 17.9 shows an example.

17.6.4 Simple Physics Model
The vehicle motion in the game was modeled using a complex physics engine with 3D 
motion, and collisions between dynamics and with the world. Vehicle dynamics were cal-
culated using a wheel collision system and modeling of the suspension extension, which 
gave information about tire contacts with the world feeding into a model of tire friction. 
The wheels were powered by a model of a vehicle drive train applying a torque to the 
wheels.

This model was computationally expensive, but we needed to get some information 
about what constraints this model applied to the motion of the vehicle into our path plan-
ning algorithm, in order to create paths that the vehicle was capable of driving.

The fundamental aspects of vehicle behavior come from the torque applied by the 
engine and the tire forces on road, and this part of the vehicle simulation can be calculated 
relatively quickly. We implemented a simple 2D physics simulation for a single vehicle, 
driven by the same inputs as the game vehicle. This simulation shared the engine and 
drive-train model and the tire friction calculations from our main game vehicle-handling 
code but made simplifying assumptions about how the orientation of the vehicle changed 
as it was driving. Parameters of the handling model were used to ensure the simulation of 
vehicle was as close to the full game simulation as possible. The results of collisions were 
not modeled accurately; this was not a significant problem as the aim of the optimization 
process was to avoid collisions, so any paths that lead to collisions were likely to be rejected 
by the optimization process.

Figure 17.9

The dynamic potential field dealt with moving obstacles, generating forces around them so 
they could be avoided.

Copyright Material – Provided by Taylor & Francis 



22717.6 Low-Level Path Optimizer

17.6.5 AI Path Following
To control the vehicle in the simple physics simulation, a simple AI path-following module 
was used. This module was exactly the same as the AI that was used to follow paths in the 
real game. The AI was fed with information about the current dynamic state of the vehicle 
and details of the path it was expected to follow. The module calculated controller input 
based on these data that were sent to the vehicle simulation. The action of the AI in any 
frame is based on the desired position and orientation of the vehicle, as defined in the path 
it is following, at a time in the future.

Internally, the AI used a simple finite-state machine to define the type of maneuver 
that was being attempted. Each state had some heuristics that allowed the control values 
to be calculated based on the differences between the current heading and velocity and the 
target position and orientation of the vehicle.

17.6.6 Simulating and Scoring a Path
The physics simulation and AI code could be used together to simulate the progress of 
a vehicle following a path. The physics simulation could be initialized with the current 
dynamic state of the vehicle, and then it could be stepped forward in time using the AI 
module to generate control inputs designed to follow a particular control path.

The output of this simulation was the position and orientation of the vehicle at each step 
of the simulation. We will refer to this series of position/orientation pairs as an actual path 
for a vehicle. This path generated for a particular control path is the trajectory we would 
expect the vehicle to follow if the control path was used to control the full game simulation 
representation of the vehicle. It is worth noting that we expect the actual path to deviate 
from the control path to some extent, but that the deviation should be small if the control 
path represents a reasonable path for the vehicle to take, given its handling capabilities.

The score for a particular control path is calculated by considering the actual path that 
the vehicle follows when given that control path. The total score is calculated by summing 
a score for the movement of the vehicle at each step of the physics simulation. In our case, 
we chose to assign low scores for desirable motion and high scores for undesirable motion, 
which leads to us trying to select the path that has the lowest total score. The main aim of the 
scoring system was to promote paths that moved toward our goal positions, avoided colli-
sions, and kept the speed of the vehicle close to a desired speed. To promote these aims, the 
score for a particular frame of movement was calculated by summing three different terms: 

 • Term 1 was calculated from the direction of the movement vector of the vehicle 
over that frame, compared with the gradient of the potential field at the vehicle’s 
location and the time of the frame. The value of the dot product between the two 
vectors was scaled and offset to add a penalty to movements that went toward 
higher potential.

 • Term 2 was calculated by considering the current speed of the vehicle and the 
desired speed. The absolute value of any difference between the two was added to 
the score.

 • Term 3 was calculated based on collisions. If the physics engine had found any 
collisions for the vehicle on that frame, a large penalty was added to the score.

The three terms were scaled by factors we arrived at empirically to give the best results.

Copyright Material – Provided by Taylor & Francis 



228 17. Fast Cars, Big City

17.6.7 Optimizing a Path
A single mid-level path can be converted to a path that is suitable for the capabilities of 
the vehicle that has to drive it. Initially, the mid-level path is converted into control path 
by sampling points from it at regular time intervals, corresponding to the frame times 
for the simplified vehicle simulation. This control path is then scored by passing it through 
the simplified simulation system as described in Section 17.6.6, which generates an actual 
path for the vehicle. This is shown in Figure 17.10.

This actual path can then be compared with the potential field and used to generate an 
optimized control path that we expect to have a lower score. First, the actual path is con-
verted to a control path by using the positions of the vehicle at each frame to represent the 
positions in the control path. These positions are then adjusted based on the gradient of 
the potential field at those points. This process will push the path away from areas of high 
potential—that is, obstacles and parts of the world where we would prefer the vehicle not 
to drive. Figure 17.11 shows the results of this first iteration of the optimization process.

Control path

Actual path

Potential collision

Figure 17.10

The first control path is created from the midlevel path we used as a seed and can still pres-
ent problems, such as potential collisions.

Control path

Actual path

Previous iteration path

Figure 17.11

Vehicle positions along the first actual path are modified by the potential field; we use this 
as our second control path, which generates an optimized version of the original actual 
path.

Copyright Material – Provided by Taylor & Francis 



229References

This optimized control path is then ready for evaluation by the scoring algorithm and 
can be optimized again in an iterative process while the score continues to decline. The 
paths that we are dealing with only last for a few seconds, and over that time, the motion 
of the vehicle is initially dominated by its momentum. The control input can only have a 
limited effect on the trajectory of the vehicle through the world. Due to this, we found that 
three or four iterations of the optimization loop were enough to approach a local mini-
mum in scoring for a particular mid-level path starting point.

17.6.8 Selecting the Best Path
The optimization process begins with a set of five potential paths from the mid-level plan-
ner and ends up with a single best path that is well suited to the capabilities of the vehicle 
that is expected to follow the path. Each mid-level path was optimized in turn, iterating 
until it reached a local minimum of score. The path that leads to the lowest score overall is 
selected as the final path and returned to the vehicle to be used for the next few seconds.

17.7 Conclusion

Driver San Francisco’s AI used state-of-the-art driving AI techniques that allowed the 
game to run a simulation with thousands of vehicles that could navigate the game’s ver-
sion of the city with a very high level of quality, as our path generation and following used 
the same physics model as any player-driven vehicle. The system was composed of mul-
tiple levels of detail, each of which updated vehicle paths only when required to do so. This 
allowed the updates to be spread asynchronously across many threads and many frames, 
meaning the game could run smoothly at 60 FPS. Path optimization allowed the system to 
deal efficiently with a world composed of highly dynamic obstacles, a world which would 
have been too costly to analyse using more traditional A*-based searching.

References

Ocio, S. 2012. Adapting AI behaviors to players in driver San Francisco: Hinted-execution 
behavior trees. In Proceedings of the Eighth AAAI Conference on Artificial Intelligence 
and Interactive Digital Entertainment (AIIDE 12), October 10–12, 2012, Stanford, CA.

Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. 
Proceedings of the National Academy of Sciences 93(4), 1591–1595.

Copyright Material – Provided by Taylor & Francis 


