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Fabien Gravot, and Youichiro Miyake

16.1 Introduction

In the move toward more believable realism in games, animation and AI continue to play an 
important role. For FINAL FANTASY XV’s diverse world, one of the challenges was the large 
amount of different types of characters and monsters. The need for a well-informed steering 
solution and total freedom for each team to implement animation state graphs that suited their 
needs called for an unconventional solution to the problem of accurate steering and path fol-
lowing. Our solution treats the game as a black-box system, learning the character’s movement 
parameters to later build an independent motion model that informs steering. In the following 
sections, the steps taken to fulfill this aim are described, along with the unexpected side effects 
that came from simulating almost every character type in the FINAL FANTASY XV.

16.2 Getting Actors to Hit Their Marks

Games share one thing in common with theatre and cinema: actors must hit their marks. 
When the AI has no control over the actor’s root motion, this problem quickly devolves 
from interpolating along a curve into begging the animators to stop changing the stop 
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204 16. Predictive Animation Control Using Simulations and Fitted Models

animations and blends. This can affect various aspects of gameplay such as in-engine cut-
scenes as well as physical combat, where game actors will overstep their mark or worse, 
never reach it and the cut-scene will not progress.

Although this simple example is not the only challenge in steering actors, it is a good one 
to start with as it will highlight all the moving parts in the actor’s update as it approaches 
its mark. In a typical game engine (Gregory 2009), the update order is something like:

Begin frame ⇒ AI ⇒ Steering ⇒ Animation ⇒ Physics ⇒ End frame.
In each frame, we want to approach our goal and not fall off the mesh or bump into col-

lision unless absolutely necessary. In the first frame, AI will decide that it wants to go to a 
specific goal point p and does the necessary pathfinding and informs steering of the path. 
Steering will have some model of the actor’s motion capabilities, such as 

 • Min speed, v min

 • Max speed, v max

 • Acceleration, a

When steering starts to accelerate with its desired velocity vector along the path, ani-
mation will receive information about the desired velocity and will trigger an ani-
mation clip to play (using its internal representation of locomotion), and physics will 
ensure that the character does not pass through walls or the floor. In this setup, anima-
tion receives only two inputs from AI, the speed and the desired direction; it then out-
puts a transform to reflect the character motion. In some games, this might be the end 
of it; the transform is applied to the actor, and it reaches his or her target and everyone 
is happy. Now let us break down all the different ways this might break, and the actor 
will not reach his or her goal. 

 1. Animation is lying just a tiny bit to steering: In some cases, there could be a vari-
ant in one of the animation clips that might have a different acceleration or even 
exceed the min/max speeds.

 2. Other parts of the game interfere: For either a single character or a range of char-
acters, it may have been discovered that the animations needed some slight nudge 
here or there, and a brave programmer took it upon himself to add bespoke code 
that slightly modifies the movement.

 3. The environment is too restrictive: For very sharp turns, an actor running at the AI’s 
desired velocity will not necessarily know that it needs to slow down or else it will 
slam into a wall or fall off a ledge instead of smoothly following his or her path.

 4. The character’s playback rate and/or size are being dynamically modified in the 
runtime: It is clear that an actor that has been scaled up to double its size will have 
also doubled its speed, which if unchecked will wreak havoc when the actor tries 
to follow its path.

Each and every one of these problems can be addressed with a number of solutions, one 
being motion graphs (Ciupinski 2013). In the case of FINAL FANTASY XV, the solution 
was to assume that all the errors exist at all times and apply a form of machine learning 
to model the motion capabilities of actors, therefore solving all the problems with a single 
approach.
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16.3 Simulations to the Rescue

Our desire is to be able to construct an arbitrarily complex motion model that steering 
can use to accurately control actors at any given desired velocity or angle, moving an actor 
to the goal without ever accidentally leaving the navigation mesh. This means running 
simulations and, from the observed motion, building a set of parameters that approximate 
the actor’s motion accurately enough. As described in Section 16.2, our update loop was 
something as shown in Figure 16.1.

In an update loop that is only built for offline simulations, we no longer need any AI or 
steering, as we want to control the actor in a different way. Furthermore, we are no longer 
interested in using the output from the actor to inform our future velocity; we only mea-
sure it. The new loop can be seen in Figure 16.2.

In this simulation loop, we replace the AI with a simulation controller that drives the 
movement space exploration. This is perfectly reasonable, as we are not interested in path-
finding or avoidance, only the velocity we feed to the animation and the effect it has on 
the actor.

16.3.1 Simulation Controller
The simulation controller is the piece of the update that manages the exploration of the 
motion range. As each game has a different way to initialize its actors, the only aim for the 
simulation controller is to interfere as little as possible with the normal way of spawning, 
initializing, and updating an actor.

There are a couple of requirements though 

 • We must ensure that the actor is of unit-scale size and playback rate.
 • We must spawn the actor close to the origin and move it back when it strays too 

far, as floating point precision issues may affect the measurements.
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Figure 16.1

A typical game loop.
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We expect the game to provide rough estimates of each actor’s motion capabilities, such 
as its approximate minimum and maximum speed. This range will form the basis of the 
motion range to explore.

Once the actor has been initialized, a series of movement commands are issued to the 
actor. It is recommended that the actor be given a deterministic set of movement com-
mands and that each command perform some sampling, so some measure of variance can 
be calculated, as well as noise can be filtered out in the analysis stages. Having a determin-
istic set of movement commands helps greatly in catching rare bugs, for example, a float 
overflow in the animation system.

Each simulation command Cs is a point on an interpolation over a range, such as 
v

n n
, , ,θ θ( ) → ( )0  signifying the exploration of the motion from speed v  to stopping, over 

n intervals between v  and 0 with a constant facing θ. The set of simulation commands 
might differ slightly depending on the animation capabilities of the game, but generally, 
quantities such as speed, turn motion, and so on should be explored.

A command Cs  is considered finished once the measurement has reached a stable out-
put. For example, starting at speed v  and wanting to reach speed v g , the command is 
considered complete once the measured output vs  is stable.

16.3.2 Measurement Output
At the end of every command, the observed motion parameters are logged. Below the 
quantities measured are described with an attached notation set in Table 16.1.

We declare the rotational speed to be ∂ ∂ =θ θ/ t  for time t . The raw measurements are 
therefore a set of trajectories where each data point Ti on the trajectory is defined as the tuple: 

 Ti = θ θt vs s s, , , ,
� �p( ) 
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Figure 16.2

The simulation loop.
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with 


p as the position on the trajectory. From the trajectories Ti, other quantities can then 
be derived, such as variance of speed and rotation, distance travelled, and so on.

16.4 Building an Accurate Movement Model

Once the measurement phase is complete, the construction of the movement model that 
accurately describes the actor begins. The following sections will address different parts of 
an actor’s motion and will give a rough overview of how the model parameters are formed.

16.4.1 Speed
The first constraint to determine is the speed range of an actor, as it will go on to inform 
the rest of the model construction. Our goal is to find the largest speed range in which the 
error between the goal speed vg  and the stable simulated speed vs  will not exceed a given 
minimum error. We determine the valid speed range using only data points where the 
actor is moving straight forward, that is, with θ = 0 and at a stable speed v⋅ = 0 . Figure 16.3 
depicts the stable speeds obtained from fixed input speeds in these data (for a dog char-
acter). The error in this graph is the deviation between the resulting speed and the goal 

Table 16.1 Measurement Variables and Notation

Name Notation Description

Goal speed vg The speed at which the actor should travel
Simulated speed vs The speed that the actor actually traveled at
Desired angle θg The direction to which the actor should travel
Simulated angle θs The direction in which the actor traveled
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Figure 16.3

Speed measurements.
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speed ε = − / .v v vg s s  We look for the largest interval of speeds in which ε does not exceed 
a fixed bound. Minimum and maximum speed then simply equate to the bounds of this 
interval.

If no speed range can be determined in this way, or if the speed range is significantly 
smaller than expected, the simulation is marked as a failure and no model is extracted, 
such as in Figure 16.3 where a drop in vg  occurs at around 4 m/s.

16.4.2 Stopping
Given the real speed range of the actor, the next part of the motion model can be con-
structed. As was mentioned in the introduction, stopping on the mark can be a difficult 
problem both in the real world as in the virtual one. We analyze trajectories where the 
actor moves at a stable speed in a straight line and stops due to receiving a goal speed 
of zero.

Since at runtime, we need to answer questions such as when to issue a stopping signal 
such that an actor will come to a halt at a predetermined goal position; we cast these 
data as a function of distance mapping onto velocity. In other words, given an avail-
able distance d , the function maps to the velocity at which the actor would take exactly 
a distance of d in order to come to a complete halt. Figure 16.4 shows an example of 
this curve. It clearly shows data points generated from different stopping animations, 
that is, stop-from-walking and stop-from-running. After manually analyzing a varied 
set of characters, we concluded that most data behaved in a piece-wise linear fashion, 
as shown in Figure 16.4.

16.4.3 Deceleration
Generalizing from stopping, we arrive at deceleration. Having accurate information about 
how long it takes to decelerate a given amount of speed allows the actors to fluidly deceler-
ate before taking a turn and to confidently accelerate again afterward.
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Stopping measurements.
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Figure 16.5 shows a typical result when recording the distance necessary to decelerate 
by a certain delta speed. Note the large spread for medium delta speeds. This is because the 
actual relationship depends on the absolute speed, not just the relative speed. The faster an 
actor travels, the larger a distance is necessary to decelerate by 1 m/s.

Instead of representing the full 3D relationship, we opted to project the data into 2D 
and use a worst-case estimate:

 ∆v d ad bd c d( ) = + +2  (16.1)

With only three parameters, this is a very compact representation that is easily regressed 
by using sequential least squares programming. The increase in fidelity when using a 
3D representation was deemed too small to warrant the additional memory investment 
necessary.

16.4.4 Overshoot
Overshoot is a measurement for how much space a character requires to turn. More spe-
cifically, it is the distance between the trajectory that a character would follow if it would 
follow the control input perfectly and the actual trajectory measured after a change in 
direction has been completed. Figure 16.6 shows the measured distance between ideal and 
performed trajectory.

This overshoot distance can be represented as a function of velocity and angle.
Figure 16.7 shows the overshoot of a monster in FINAL FANTASY XV. We represent 

these data as a velocity function over distance and turn angle. The approximation is 
done as a set of piece-wise linear functions, uniformly distributed over angles between 
0°  and 180° .
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Deceleration measurements.
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16.4.5 Rotation Radius
We record the rotation radius of a character as a function of speed by letting the character 
run in a circle at a constant linear speed, as shown in Figure 16.8. Thus, we measure the 
character’s rotational speed. We represent the rotation radius as a piece-wise linear func-
tion of speed. Thereby, we assume a constant maximum rotation speed for large propor-
tions of the speed range. At runtime, this information is used to interrupt a movement 
command early and avoid characters getting stuck on a circular path around their goal 
position.
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Actor speed versus overshoot distance.
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Overshoot definition.
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16.5 Runtime

The extracted motion model is made available to inform steering decisions at runtime.
First and foremost, minimal and maximal speeds are used to limit the range of select-

able speeds. The remainder of the data is used to improve control precision. Steering con-
trol and animation form a loop in which steering commands are sent to animation, which 
changes the physical state of the agent, which in turn is observed by steering.

The deceleration function informs the runtime of how much space is needed to 
achieve a certain negative ∆v . Consequently, it is used to calculate the current control 
speed given a future goal speed. For example, if an agent is supposed to move at 2 m/s 
at a distance of 3 m, its current speed is capped by the deceleration function to 4 m/s for 
example. This is used in all cases where a future goal speed is anticipated, such as when 
charging for an attack and thus arriving with a certain speed at a target or following a 
path with a tight turn.

Collision avoidance, however, asserts the necessity to stop within a certain distance. 
The special case of stopping is handled by a stopping function. Deceleration is typically 
achieved by a combination of a blend and changes to the playback speed. In contrast, stop-
ping typically is achieved by a separate animation altogether. Playing this animation does 
not fit the simple deceleration model we introduced in Section 16.4.3.

Whenever an agent is required to stop within a certain distance, be it in order to hit its 
mark, or avoid a collision, an upper limit for the control velocity is looked up in the stop-
ping function. In addition, whenever the current physical velocity of the agent exceeds 
this limit, the control velocity is immediately pulled down to zero, thereby triggering a 
transition to a stopping animation. In order to avoid accidentally triggering this stopping 
maneuver due to noisy velocity measurements, the maximum control velocity is actually 
capped at 95% of this limit.
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Rotation radius measurements.
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The overshoot function is used to calculate the maximum speed while taking a turn 
and when anticipating a future turn in a path currently followed. In addition, for char-
acters without a turn-in-place animation, such as some larger monsters, it is also used to 
judge whether to turn left or right when aligning with a path. In case of an anticipated 
turn, an upper bound of future speed is simply a look up using the sine of the anticipated 
turn angle; the resulting velocity then serves as an input for the deceleration function to 
obtain an upper bound for the control speed as described above. In FINAL FANTASY XV, 
path information is imperfect, meaning that a path may only be part of the surrounding 
free space. Moreover, the path does not take moving obstacles into account. Thus, for 
immediate turns, both due to path following and due to collision avoidance, the available 
distance as given by collision avoidance sampling is used to look up a limit to the control 
speed in the overshoot function.

Finally, the rotation function is used to avoid circling around a target indefinitely by 
increasing the arrival radius, given an actor’s current physical velocity and angle to its 
target.

16.6 Pipeline

All of this work can be wrapped up in a nice little continuous integration loop, as can be 
seen in Figure 16.9, containing the following steps: 

 1. Create a valid movement model for steering.
 2. Provide the developers a view for an actor’s movement model for the whole period 

of development.
 3. Alert the developer when there is a problematic movement model that needs 

addressing.

Due to the fact that the simulation of an actor takes more time than to build the ani-
mation data per actor, the pipeline structure tries to reduce the lag as much as possible 
by running constantly. The choice of the next actor to simulate is made by a simple 

Version
control Simulate

Submit simulation model constraint data

Analyze Database

VisualizeWWW

Figure 16.9

Continuous simulation pipeline.
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heuristic of the time since last simulation and whether the actor has been just added 
to the repository. Failures are logged to a database, and stakeholders are automatically 
notified.

16.7 Scaling Up

There are two scale issues to take into account when building the simulation pipeline.

16.7.1 Size and Playback
A game might want to scale the size of actors and expect the motion constraint model to 
still apply. Similarly, the animation playback rate might vary on a frame-to-frame basis. 
Both factors must be applied to the motion model and, depending on the different parts in 
the model, both size and/or time scales must be applied. As an example, the deceleration 
function (Equation 16.1 in Section 16.4.3) with respect to size scaling u and playback rate 
scale p becomes: 

 
∆v d u p p

ad

u
bd c ud, ,( ) = + +











2

 

The rest of the overall model is either multiplied by u, p, or both.

16.7.2 Content
When the need arises to scale up the number of entities via the use of prefabs, the simu-
lation pipeline does not suffer as much from the time delay between authoring data and 
exporting constraints. However, there is still a possibility that the prefabs have an element 
in either some part of their unique-data setup or in code that will differentiate their 
motion, and there is no easy way to test this without simulating all users of the prefab and 
doing a similarity test between the results.

16.8 Benefits

The biggest benefit of this methodology is how well it scales to differences in characters and 
changes to the data and code throughout the development cycle. Precision is also increased 
with this methodology. As an example, the stopping distance is normally the distance of some 
“to-stop” animation plus whatever may be done to the animation in the runtime. This overall 
distance can be hard to parameterize at the authoring time, but the simulation can easily 
extract the worst case from the observed movement.

Issues, such as a nonmonotonic speed function, can be easily identified from a graph, 
instead of through loading the game. This is seen in an example of a FINAL FANTASY XV 
cat speed graph found in Figure 16.10.

When comparing the speed graphs of cats (Figure 16.10) and dogs (Figure 16.3), it 
is clear from the simulated data that cats are indeed more independent than dogs with 
respect to speed, at least in FINAL FANTASY XV.
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16.9 Conclusion

We have presented a way of significantly decoupling dependencies between AI and anima-
tion. This approach treats animation as the dominant party in this relationship of motion 
and shows a way of gaining benefit from such an approach.

Although significant work was invested in setting up and maintaining the pipeline, the 
work needed to identify and fix issues has dramatically decreased. Typically, it amounts to 
analyzing graphs on a web server and determining from there what the fault is. Common 
bugs include the gait being exported from the raw animation, so the actor does not have 
a fixed acceleration or a genuine code bug that has been introduced, which can be found 
by looking at the graphs by date and revision to determine what revision introduced the 
code bug.

Overall, the usage of simulations to improve steering control of an animation-driven 
agent has proved to be a success. It is not particularly expensive at runtime, as the models 
are mostly sets of piece wise linear functions and one nonlinear function. Furthermore, 
scaling of size, playback rate, or both are easily supported.
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Figure 16.10

Speed measurements of a cat.
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