
203

16
Predictive Animation Control Using
Simulations and Fitted Models
Ingimar Hólm Guðmundsson, Hendrik Skubch,
Fabien Gravot, and Youichiro Miyake

16.1 Introduction

In the move toward more believable realism in games, animation and AI continue to play an
important role. For FINAL FANTASY XV’s diverse world, one of the challenges was the large
amount of different types of characters and monsters. The need for a well-informed steering
solution and total freedom for each team to implement animation state graphs that suited their
needs called for an unconventional solution to the problem of accurate steering and path fol-
lowing. Our solution treats the game as a black-box system, learning the character’s movement
parameters to later build an independent motion model that informs steering. In the following
sections, the steps taken to fulfill this aim are described, along with the unexpected side effects
that came from simulating almost every character type in the FINAL FANTASY XV.

16.2 Getting Actors to Hit Their Marks

Games share one thing in common with theatre and cinema: actors must hit their marks.
When the AI has no control over the actor’s root motion, this problem quickly devolves
from interpolating along a curve into begging the animators to stop changing the stop

16.1 Introduction
16.2 Getting Actors to Hit Their

Marks
16.3 Simulations to the Rescue
16.4 Building an Accurate

Movement Model

16.5 Runtime
16.6 Pipeline
16.7 Scaling Up
16.8 Benefits
16.9 Conclusion
References

Copyright Material – Provided by Taylor & Francis

204 16. Predictive Animation Control Using Simulations and Fitted Models

animations and blends. This can affect various aspects of gameplay such as in-engine cut-
scenes as well as physical combat, where game actors will overstep their mark or worse,
never reach it and the cut-scene will not progress.

Although this simple example is not the only challenge in steering actors, it is a good one
to start with as it will highlight all the moving parts in the actor’s update as it approaches
its mark. In a typical game engine (Gregory 2009), the update order is something like:

Begin frame ⇒ AI ⇒ Steering ⇒ Animation ⇒ Physics ⇒ End frame.
In each frame, we want to approach our goal and not fall off the mesh or bump into col-

lision unless absolutely necessary. In the first frame, AI will decide that it wants to go to a
specific goal point p and does the necessary pathfinding and informs steering of the path.
Steering will have some model of the actor’s motion capabilities, such as

 • Min speed, v min

 • Max speed, v max

 • Acceleration, a

When steering starts to accelerate with its desired velocity vector along the path, ani-
mation will receive information about the desired velocity and will trigger an ani-
mation clip to play (using its internal representation of locomotion), and physics will
ensure that the character does not pass through walls or the floor. In this setup, anima-
tion receives only two inputs from AI, the speed and the desired direction; it then out-
puts a transform to reflect the character motion. In some games, this might be the end
of it; the transform is applied to the actor, and it reaches his or her target and everyone
is happy. Now let us break down all the different ways this might break, and the actor
will not reach his or her goal.

 1. Animation is lying just a tiny bit to steering: In some cases, there could be a vari-
ant in one of the animation clips that might have a different acceleration or even
exceed the min/max speeds.

 2. Other parts of the game interfere: For either a single character or a range of char-
acters, it may have been discovered that the animations needed some slight nudge
here or there, and a brave programmer took it upon himself to add bespoke code
that slightly modifies the movement.

 3. The environment is too restrictive: For very sharp turns, an actor running at the AI’s
desired velocity will not necessarily know that it needs to slow down or else it will
slam into a wall or fall off a ledge instead of smoothly following his or her path.

 4. The character’s playback rate and/or size are being dynamically modified in the
runtime: It is clear that an actor that has been scaled up to double its size will have
also doubled its speed, which if unchecked will wreak havoc when the actor tries
to follow its path.

Each and every one of these problems can be addressed with a number of solutions, one
being motion graphs (Ciupinski 2013). In the case of FINAL FANTASY XV, the solution
was to assume that all the errors exist at all times and apply a form of machine learning
to model the motion capabilities of actors, therefore solving all the problems with a single
approach.

Copyright Material – Provided by Taylor & Francis

20516.3 Simulations to the Rescue

16.3 Simulations to the Rescue

Our desire is to be able to construct an arbitrarily complex motion model that steering
can use to accurately control actors at any given desired velocity or angle, moving an actor
to the goal without ever accidentally leaving the navigation mesh. This means running
simulations and, from the observed motion, building a set of parameters that approximate
the actor’s motion accurately enough. As described in Section 16.2, our update loop was
something as shown in Figure 16.1.

In an update loop that is only built for offline simulations, we no longer need any AI or
steering, as we want to control the actor in a different way. Furthermore, we are no longer
interested in using the output from the actor to inform our future velocity; we only mea-
sure it. The new loop can be seen in Figure 16.2.

In this simulation loop, we replace the AI with a simulation controller that drives the
movement space exploration. This is perfectly reasonable, as we are not interested in path-
finding or avoidance, only the velocity we feed to the animation and the effect it has on
the actor.

16.3.1 Simulation Controller
The simulation controller is the piece of the update that manages the exploration of the
motion range. As each game has a different way to initialize its actors, the only aim for the
simulation controller is to interfere as little as possible with the normal way of spawning,
initializing, and updating an actor.

There are a couple of requirements though

 • We must ensure that the actor is of unit-scale size and playback rate.
 • We must spawn the actor close to the origin and move it back when it strays too

far, as floating point precision issues may affect the measurements.

Gameplay
specific transforms:
actual velocity

Play animation,
forward kinematics:
transform to be applied

Pathfollowing,
avoidance:
desired velocity

Target
selection, pathfinding:
previous velocity.

Actor

vI

T (x0)

vI

v0

AI

Animation

Steering

Figure 16.1

A typical game loop.

Copyright Material – Provided by Taylor & Francis

206 16. Predictive Animation Control Using Simulations and Fitted Models

We expect the game to provide rough estimates of each actor’s motion capabilities, such
as its approximate minimum and maximum speed. This range will form the basis of the
motion range to explore.

Once the actor has been initialized, a series of movement commands are issued to the
actor. It is recommended that the actor be given a deterministic set of movement com-
mands and that each command perform some sampling, so some measure of variance can
be calculated, as well as noise can be filtered out in the analysis stages. Having a determin-
istic set of movement commands helps greatly in catching rare bugs, for example, a float
overflow in the animation system.

Each simulation command Cs is a point on an interpolation over a range, such as
v

n n
, , ,θ θ() → ()0 signifying the exploration of the motion from speed v to stopping, over

n intervals between v and 0 with a constant facing θ. The set of simulation commands
might differ slightly depending on the animation capabilities of the game, but generally,
quantities such as speed, turn motion, and so on should be explored.

A command Cs is considered finished once the measurement has reached a stable out-
put. For example, starting at speed v and wanting to reach speed v g , the command is
considered complete once the measured output vs is stable.

16.3.2 Measurement Output
At the end of every command, the observed motion parameters are logged. Below the
quantities measured are described with an attached notation set in Table 16.1.

We declare the rotational speed to be ∂ ∂ =θ θ/ t for time t . The raw measurements are
therefore a set of trajectories where each data point Ti on the trajectory is defined as the tuple:

 Ti = θ θt vs s s, , , ,
� �p()

Gameplay
specific transforms:
actual velocity

Play animation,
forward kinematics:
transform to be applied

Passes input
straight
through to
animation

Iterates over motion
commands that span
possible motion space

Actor

vs

T (x)

Simulation

Animation

Steering

vg

Figure 16.2

The simulation loop.

Copyright Material – Provided by Taylor & Francis

20716.4 Building an Accurate Movement Model

with

p as the position on the trajectory. From the trajectories Ti, other quantities can then
be derived, such as variance of speed and rotation, distance travelled, and so on.

16.4 Building an Accurate Movement Model

Once the measurement phase is complete, the construction of the movement model that
accurately describes the actor begins. The following sections will address different parts of
an actor’s motion and will give a rough overview of how the model parameters are formed.

16.4.1 Speed
The first constraint to determine is the speed range of an actor, as it will go on to inform
the rest of the model construction. Our goal is to find the largest speed range in which the
error between the goal speed vg and the stable simulated speed vs will not exceed a given
minimum error. We determine the valid speed range using only data points where the
actor is moving straight forward, that is, with θ = 0 and at a stable speed v⋅ = 0 . Figure 16.3
depicts the stable speeds obtained from fixed input speeds in these data (for a dog char-
acter). The error in this graph is the deviation between the resulting speed and the goal

Table 16.1 Measurement Variables and Notation

Name Notation Description

Goal speed vg The speed at which the actor should travel
Simulated speed vs The speed that the actor actually traveled at
Desired angle θg The direction to which the actor should travel
Simulated angle θs The direction in which the actor traveled

0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 1 1.5 2 2.5
Goal speed (m/s)

Ac
tu

al
 sp

ee
d

(m
/s

)

3 3.5 4 4.5 5

Simulated
Ideal

Figure 16.3

Speed measurements.

Copyright Material – Provided by Taylor & Francis

208 16. Predictive Animation Control Using Simulations and Fitted Models

speed ε = − / .v v vg s s We look for the largest interval of speeds in which ε does not exceed
a fixed bound. Minimum and maximum speed then simply equate to the bounds of this
interval.

If no speed range can be determined in this way, or if the speed range is significantly
smaller than expected, the simulation is marked as a failure and no model is extracted,
such as in Figure 16.3 where a drop in vg occurs at around 4 m/s.

16.4.2 Stopping
Given the real speed range of the actor, the next part of the motion model can be con-
structed. As was mentioned in the introduction, stopping on the mark can be a difficult
problem both in the real world as in the virtual one. We analyze trajectories where the
actor moves at a stable speed in a straight line and stops due to receiving a goal speed
of zero.

Since at runtime, we need to answer questions such as when to issue a stopping signal
such that an actor will come to a halt at a predetermined goal position; we cast these
data as a function of distance mapping onto velocity. In other words, given an avail-
able distance d , the function maps to the velocity at which the actor would take exactly
a distance of d in order to come to a complete halt. Figure 16.4 shows an example of
this curve. It clearly shows data points generated from different stopping animations,
that is, stop-from-walking and stop-from-running. After manually analyzing a varied
set of characters, we concluded that most data behaved in a piece-wise linear fashion,
as shown in Figure 16.4.

16.4.3 Deceleration
Generalizing from stopping, we arrive at deceleration. Having accurate information about
how long it takes to decelerate a given amount of speed allows the actors to fluidly deceler-
ate before taking a turn and to confidently accelerate again afterward.

0
0

2

4

6

8

10

12

14

16

18

0.5 1 1.5 2 2.5
Distance (m)

In
iti

al
 sp

ee
d

(m
/s

)

3

Samples
Model

Figure 16.4

Stopping measurements.

Copyright Material – Provided by Taylor & Francis

20916.4 Building an Accurate Movement Model

Figure 16.5 shows a typical result when recording the distance necessary to decelerate
by a certain delta speed. Note the large spread for medium delta speeds. This is because the
actual relationship depends on the absolute speed, not just the relative speed. The faster an
actor travels, the larger a distance is necessary to decelerate by 1 m/s.

Instead of representing the full 3D relationship, we opted to project the data into 2D
and use a worst-case estimate:

 ∆v d ad bd c d() = + +2 (16.1)

With only three parameters, this is a very compact representation that is easily regressed
by using sequential least squares programming. The increase in fidelity when using a
3D representation was deemed too small to warrant the additional memory investment
necessary.

16.4.4 Overshoot
Overshoot is a measurement for how much space a character requires to turn. More spe-
cifically, it is the distance between the trajectory that a character would follow if it would
follow the control input perfectly and the actual trajectory measured after a change in
direction has been completed. Figure 16.6 shows the measured distance between ideal and
performed trajectory.

This overshoot distance can be represented as a function of velocity and angle.
Figure 16.7 shows the overshoot of a monster in FINAL FANTASY XV. We represent

these data as a velocity function over distance and turn angle. The approximation is
done as a set of piece-wise linear functions, uniformly distributed over angles between
0° and 180° .

0
0

2

4

6

8

10

12

14

16

18

20

2 4 6
Distance (m)

D
el

ta
 sp

ee
d

(m
/s

)

8 10 12

Samples
Worst-case model

Figure 16.5

Deceleration measurements.

Copyright Material – Provided by Taylor & Francis

210 16. Predictive Animation Control Using Simulations and Fitted Models

16.4.5 Rotation Radius
We record the rotation radius of a character as a function of speed by letting the character
run in a circle at a constant linear speed, as shown in Figure 16.8. Thus, we measure the
character’s rotational speed. We represent the rotation radius as a piece-wise linear func-
tion of speed. Thereby, we assume a constant maximum rotation speed for large propor-
tions of the speed range. At runtime, this information is used to interrupt a movement
command early and avoid characters getting stuck on a circular path around their goal
position.

0
0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6
Actor speed (m/s)

O
ve

rs
ho

ot
 d

ist
an

ce
 (m

)

7 8 9 10 11

10.0
26.0
42.0
58.0
74.0
90.0

110.0
130.0
150.0
170.0

Figure 16.7

Actor speed versus overshoot distance.

Start of
simulation command

Desired angle
reached

Agent’s
trajectory

Overshoot
θs

θg = θs

θg

Figure 16.6

Overshoot definition.

Copyright Material – Provided by Taylor & Francis

21116.5 Runtime

16.5 Runtime

The extracted motion model is made available to inform steering decisions at runtime.
First and foremost, minimal and maximal speeds are used to limit the range of select-

able speeds. The remainder of the data is used to improve control precision. Steering con-
trol and animation form a loop in which steering commands are sent to animation, which
changes the physical state of the agent, which in turn is observed by steering.

The deceleration function informs the runtime of how much space is needed to
achieve a certain negative ∆v . Consequently, it is used to calculate the current control
speed given a future goal speed. For example, if an agent is supposed to move at 2 m/s
at a distance of 3 m, its current speed is capped by the deceleration function to 4 m/s for
example. This is used in all cases where a future goal speed is anticipated, such as when
charging for an attack and thus arriving with a certain speed at a target or following a
path with a tight turn.

Collision avoidance, however, asserts the necessity to stop within a certain distance.
The special case of stopping is handled by a stopping function. Deceleration is typically
achieved by a combination of a blend and changes to the playback speed. In contrast, stop-
ping typically is achieved by a separate animation altogether. Playing this animation does
not fit the simple deceleration model we introduced in Section 16.4.3.

Whenever an agent is required to stop within a certain distance, be it in order to hit its
mark, or avoid a collision, an upper limit for the control velocity is looked up in the stop-
ping function. In addition, whenever the current physical velocity of the agent exceeds
this limit, the control velocity is immediately pulled down to zero, thereby triggering a
transition to a stopping animation. In order to avoid accidentally triggering this stopping
maneuver due to noisy velocity measurements, the maximum control velocity is actually
capped at 95% of this limit.

0
0

1

2

3

4

5

6

7

8

9

1 2 3
Speed (m/s)

Ro
ta

tio
n

ra
di

us
 (m

)

4 5 6

Model

Figure 16.8

Rotation radius measurements.

Copyright Material – Provided by Taylor & Francis

212 16. Predictive Animation Control Using Simulations and Fitted Models

The overshoot function is used to calculate the maximum speed while taking a turn
and when anticipating a future turn in a path currently followed. In addition, for char-
acters without a turn-in-place animation, such as some larger monsters, it is also used to
judge whether to turn left or right when aligning with a path. In case of an anticipated
turn, an upper bound of future speed is simply a look up using the sine of the anticipated
turn angle; the resulting velocity then serves as an input for the deceleration function to
obtain an upper bound for the control speed as described above. In FINAL FANTASY XV,
path information is imperfect, meaning that a path may only be part of the surrounding
free space. Moreover, the path does not take moving obstacles into account. Thus, for
immediate turns, both due to path following and due to collision avoidance, the available
distance as given by collision avoidance sampling is used to look up a limit to the control
speed in the overshoot function.

Finally, the rotation function is used to avoid circling around a target indefinitely by
increasing the arrival radius, given an actor’s current physical velocity and angle to its
target.

16.6 Pipeline

All of this work can be wrapped up in a nice little continuous integration loop, as can be
seen in Figure 16.9, containing the following steps:

 1. Create a valid movement model for steering.
 2. Provide the developers a view for an actor’s movement model for the whole period

of development.
 3. Alert the developer when there is a problematic movement model that needs

addressing.

Due to the fact that the simulation of an actor takes more time than to build the ani-
mation data per actor, the pipeline structure tries to reduce the lag as much as possible
by running constantly. The choice of the next actor to simulate is made by a simple

Version
control Simulate

Submit simulation model constraint data

Analyze Database

VisualizeWWW

Figure 16.9

Continuous simulation pipeline.

Copyright Material – Provided by Taylor & Francis

21316.8 Benefits

heuristic of the time since last simulation and whether the actor has been just added
to the repository. Failures are logged to a database, and stakeholders are automatically
notified.

16.7 Scaling Up

There are two scale issues to take into account when building the simulation pipeline.

16.7.1 Size and Playback
A game might want to scale the size of actors and expect the motion constraint model to
still apply. Similarly, the animation playback rate might vary on a frame-to-frame basis.
Both factors must be applied to the motion model and, depending on the different parts in
the model, both size and/or time scales must be applied. As an example, the deceleration
function (Equation 16.1 in Section 16.4.3) with respect to size scaling u and playback rate
scale p becomes:

∆v d u p p

ad

u
bd c ud, ,() = + +

2

The rest of the overall model is either multiplied by u, p, or both.

16.7.2 Content
When the need arises to scale up the number of entities via the use of prefabs, the simu-
lation pipeline does not suffer as much from the time delay between authoring data and
exporting constraints. However, there is still a possibility that the prefabs have an element
in either some part of their unique-data setup or in code that will differentiate their
motion, and there is no easy way to test this without simulating all users of the prefab and
doing a similarity test between the results.

16.8 Benefits

The biggest benefit of this methodology is how well it scales to differences in characters and
changes to the data and code throughout the development cycle. Precision is also increased
with this methodology. As an example, the stopping distance is normally the distance of some
“to-stop” animation plus whatever may be done to the animation in the runtime. This overall
distance can be hard to parameterize at the authoring time, but the simulation can easily
extract the worst case from the observed movement.

Issues, such as a nonmonotonic speed function, can be easily identified from a graph,
instead of through loading the game. This is seen in an example of a FINAL FANTASY XV
cat speed graph found in Figure 16.10.

When comparing the speed graphs of cats (Figure 16.10) and dogs (Figure 16.3), it
is clear from the simulated data that cats are indeed more independent than dogs with
respect to speed, at least in FINAL FANTASY XV.

Copyright Material – Provided by Taylor & Francis

214 16. Predictive Animation Control Using Simulations and Fitted Models

16.9 Conclusion

We have presented a way of significantly decoupling dependencies between AI and anima-
tion. This approach treats animation as the dominant party in this relationship of motion
and shows a way of gaining benefit from such an approach.

Although significant work was invested in setting up and maintaining the pipeline, the
work needed to identify and fix issues has dramatically decreased. Typically, it amounts to
analyzing graphs on a web server and determining from there what the fault is. Common
bugs include the gait being exported from the raw animation, so the actor does not have
a fixed acceleration or a genuine code bug that has been introduced, which can be found
by looking at the graphs by date and revision to determine what revision introduced the
code bug.

Overall, the usage of simulations to improve steering control of an animation-driven
agent has proved to be a success. It is not particularly expensive at runtime, as the models
are mostly sets of piece wise linear functions and one nonlinear function. Furthermore,
scaling of size, playback rate, or both are easily supported.

References

Ciupinski, J. 2013. Animation-driven locomotion with locomotion planning. In Game AI
Pro: Collected Wisdom of Game AI Professionals, ed. S. Rabin. Natick, MA: A. K.
Peters, Ltd, pp. 325–334.

Gregory, J. 2009. Game Engine Architecture. Wellesley, MA: A. K. Peters, Ltd.

0
0

1

2

3

4

5

6

0.5 1 1.5 2 2.5
Goal speed (m/s)

Ac
tu

al
 sp

ee
d

(m
/s

)

3 3.5 4 4.5

Simulated
Ideal

Figure 16.10

Speed measurements of a cat.

Copyright Material – Provided by Taylor & Francis

