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A Reusable, Light-Weight 
Finite-State Machine
David “Rez” Graham

12.1 Introduction

Finite-state machines are an architectural structure used to encapsulate the behavior of 
discrete states within a system and are commonly used in games for AI, animation, man-
aging game states, and a variety of other tasks (Fu 2004).

For example, consider a guard character that can walk to different waypoints. When he or 
she sees the player, he or she starts shooting. The guard can be in one of the two states: patrol 
or attack. It is easy to expand on this behavior by adding more states or tweaking existing ones.

State machines are great for composing behaviors because each state can be parameter-
ized and reused for multiple different characters. For example, you could have a state for 
attacking the player with each type of enemy determining the attack animations to run, 
how close they need to be, and so on. The biggest advantage of state machines is that they 
offer a lot of flexibility while still being extremely simple to implement and maintain. Due 
to this simplicity, this architecture is best suited for games with smaller AI needs.

Going back to the guard example, one common place for parameterization is the vision 
cone for the guard. How close does the player have to be before the guard sees him or her? 
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160 12. A Reusable, Light-Weight Finite-State Machine

You could have different kinds of guards with different capabilities. For instance, an elite 
guard may have a bigger vision cone than a regular guard.

One decision you need to make when building a state machine is how to organize 
the states and where to put the transition logic. This chapter will discuss how to use 
transition objects to create encapsulated, reusable objects for managing transitions. 
This allows designers to compose the overall behavior of an enemy by selecting the 
appropriate states, choosing transitions for those states, and setting the necessary 
parameters.

The biggest difference between a traditional state machine and the one presented in 
this chapter is that this state machine can monitor and change states as necessary. In a 
traditional state machine, state changes come externally.

The techniques in this chapter were used in the platformer game Drawn to Life: The Next 
Chapter for the Wii, developed by Planet Moon Studios, to handle all of the enemy AI.

12.2 Finite-State Machine Architecture

The driver of the state machine is the StateMachine class. This class is owned by 
the intelligent GameObject and manages the behaviors for that object. It owns a list 
of every possible state the object can be in as well as a pointer to the current state the 
object is in right now.

The state machine is updated periodically (either every frame or on a cadence that makes 
sense from a performance point of view) and has an interface for setting the state. The states 
owned by the state machine are handled with a State base class. There are virtual func-
tions for handling the entering and exiting of states, as well as a function to be called on 
periodic updates. All of the concrete states used by the system will inherit from this class 
and will override the appropriate methods.
The third major component of this architecture is the StateTransition class, which 
is also owned by the state machine. This class has a ToTransition() virtual function 
that returns a Boolean for whether or not the transition should occur. Much like states, 
every possible transition in the game is a subclass of StateTransition. Figure 12.1 
shows a diagram of this architecture.

The states owned by the state machine are handled with a State base class, shown in 
Listing 12.1.

State StateMachine StateTransition

+OnEnter ()
+OnExit ()
+OnUpdate (dt)

+Update (dt)
+SetState (newState)

+ToTransition () : bool

Figure 12.1

State machine architecture.
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16112.3 State Transitions

It is important to note that state instances live for the entire lifetime of the state machine, 
so it is important for OnEnter() or OnExit() to handle resetting the state.

12.3 State Transitions

The key to this architecture lies in the transition objects and the way that the state machine 
is updated. Every possible state inside the state machine is linked to a sorted list of transi-
tion/state pairs. Listing 12.2 shows a partial definition for the StateMachine class to 
illustrate this data structure.

The variable m_transitions holds the network of transitions for this state machine and 
defines how the game object will move from state to state. These are typically read from 
data and built at initialization time, which we will address later in this chapter.

Listing 12.1. Base class for a single state.

class State
{
 GameObject* m_pOwner;

public:
 State(GameObject* pOwner)
 : m_pOwner(pOwner)
 { }
 virtual ~State() { }
 virtual void OnEnter() { }
 virtual void OnExit() { }
 virtual void OnUpdate(float deltaTime) { }

protected:
 GameObject* GetOwner() const { return m_pOwner; }
};

Listing 12.2. StateMachine class.

class StateMachine
{
 typedef pair<Transition*, State*> TransitionStatePair;
 typedef vector<TransitionStatePair> Transitions;
 typedef map<State*, Transitions> TransitionMap;

 TransitionMap m_transitions;

 State* m_pCurrState;

public:
 void Update(float deltaTime);
};
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162 12. A Reusable, Light-Weight Finite-State Machine

During every update, the state machine checks to see if there are any transitions for this 
state. If there are, it walks through the list of those transitions and checks to see if it is time to 
move to another state. If it is, the transition occurs. Listing 12.3 shows the code for this update.

Having no transitions for a state is perfectly valid. For instance, you might not want to 
allow an enemy to transition out of the death state, or you might have a state that you want 
to be permanent until some outside force causes the state to manually change via a call to 
StateMachine::SetState().

Using this technique, the states are completely decoupled from each other. Ideally, only the state 
machine cares about the states, and it never has to know which specific state a character is in.

The transition class itself is trivial and defined in Listing 12.4.

Listing 12.3. State machine update.

void StateMachine::Update(float deltaTime)
{
 // find the set of transitions for the current state
 auto it = m_transitions.find(m_pCurrState);
 if (it != m_transitions.end())
 {
 // loop through every transition for this state
 for (TransitionStatePair& transPair : it->second)
 {
 // check for transition
 if (transPair.first->ToTransition())
 {
 SetState(transPair.second);
 break;
 }
 }
 }

 // update the current state
 if (m_pCurrState)
 m_pCurrState->Update(deltaTime);
}

Listing 12.4. Transition class.

class Transition
{
    GameObject* m_pOwner;

public:
    Transition(GameObject* pOwner)
        :m_pOwner(pOwner)
    { }

    virtual bool ToTransition() const = 0;
};
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Each Transition holds a reference to the owning game object and declares a pure vir-
tual ToTransition() function, which is overridden in the subclass.

States will often need the ability to end naturally and transition into another state. 
A good example of this is a state that handles pathing to a location. It will naturally end 
once the game object reaches its destination and needs to move to another state.

One way of doing this is to define a transition that asks if the current state is finished. 
If it is, the transition occurs and moves to the new state. This keeps all the transition logic 
in the same place (the transition map) while still allowing natural transitions.

12.4 Hierarchies of State Machines and Metastates

One way to expand this state machine system is to add hierarchy to state machines 
through metastates. A metastate is a state that contains its own state machine, which 
has multiple internal states. The simplest way to manage this is by having a special 
MetaState subclass that internally has its own state machine. It would be tuned just like 
any other state machine and could reuse any existing states.

To illustrate this concept, let us go back to the guard example from the beginning of the 
chapter where we had a guard that could patrol and attack. Both of these are metastates. The 
patrol metastate has a transition that tests to see if the player is within the guard’s vision cone. 
The attack metastate has a transition that tests to see if the player is outside of a large radius, 
which is when we consider the guard to have lost the player. So far, there is nothing special or 
different. As far as the root system is concerned, there are two states with simple transitions.

Inside of the attack metastate, there are two states. The initial state is an alert state that 
plays an alert animation. It transitions to the shoot state after a few seconds as long as the 
player remains in the vision cone. The shoot state will transition back to alert if the player 
steps out of the vision cone.

The important thing to note is that every active state machine is getting its update, 
which means that any state can transition at any moment. If the attack state suddenly 
transitions to the patrol state, it will immediately end whatever state the attack metastate 
was in. This allows you to treat that entire branch as self-contained.

The addition of metastates adds more complexity but also allows considerably more flex-
ibility. You can create a metastate tree as deep as you wish. One interesting side effect with 
this kind of system is that it can make going from initial prototype to final implementation 
a little easier. For example, when implementing the above guard character, the attack and 
patrol states could start as regular states just to test the concepts and see how they feel in 
game. Once the character was locked in with animation and a full design, those states could 
be broken into metastates to manage the low-level nuts and bolts of the AI.

Although you do get a considerable amount of flexibility with a hierarchical approach, 
it is often not needed. For Drawn to Life, we did not find this complexity necessary at all.

12.5 Data-Driving the State Machine

One of the most important things to get right is how to drive this whole system from 
designer-authored data. Specific implementations are beyond the scope of this chapter 
and would not be useful since every project will have different needs. The original code 
on Drawn to Life used Lua tables for data. Similar solutions have been implemented in 
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Unity using C#, which used Unity’s inspector and C# reflection for the data. These state 
machines and transition maps have also been built using XML.

Regardless of which solution you choose, there are several considerations for how to 
organize this data. The most important is to allow your states and transitions to be param-
eterized from data. Ideally, you should only have a handful of generic states and transi-
tions, each of which can deliver different behaviors based on those parameters.

For example, consider the AI of a shopkeeper who needs to tend their shop. He or she 
might wipe down the counter, sweep the floor, tend to shelf of goods, or wait patiently at 
the shop counter. These all may seem different, but they really are not. At their core, each 
one paths to a specific target and runs an animation. That is it.

You could take this even further and have this generic state send an optional event to 
the target. This would allow you to reuse the same state for things like opening windows, 
restocking inventory, or even striking someone by sending a damage event. This same 
state could optionally change the internal state of the NPC, so our shopkeeper could eat 
when hungry. While eating, their hunger needs are fulfilled.

This is the power of data-driving this system. Designers will come up with dozens (or 
hundreds) of more cases for the simple state described above. Listing 12.5 shows an exam-
ple of a data-driven RunAnimationState.

12.6 Performance and Memory Improvements

The performance and memory footprint of this system can definitely be improved, and in 
this section, we will discuss a few of these improvements.

The simplest performance improvement is to time-slice the state machine update by 
limiting how often the state machine is updated, and how many game objects can update 
in a single frame. This can be done with an update list where every state machine is put 

Listing 12.5. Generic state for running an animation.

class RunAnimationState : public State
{
    AnimationId m_animToRun;

public:
    RunAnimationState(GameObject* pOwner)
        :State(pOwner)
    { }

    // Function to load the state definition from XML, JSON,
    // or some other data system. This will fill all the
    // internal data members for this state.
    virtual bool LoadStateDef(StateDef* pStateDef)override;

    virtual void OnEnter() override
    {
        GetOwner()->RunAnimation(m_animToRun);
    }
};
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into a list, and the game only allows a certain amount of time to be dedicated to the AI 
updates. As long as the transition map stays static during a frame, there is no reason you 
could not time-slice in the middle of an update either.

Another performance improvement would be to remove state updates entirely and 
make the whole thing event driven. This is a bit trickier to implement, but it is worth 
it if the performance of this system is a huge concern. In this version, states have no 
OnUpdate() function, only an OnEnter() and OnExit(). OnEnter() will spin up a 
task if necessary and will wait for a notification of completion. For example, say you have 
a GoToObject state. The OnEnter() function would tell the pathing system to find a 
path and then do nothing until the path was complete.

This system works well if many of your states do not require an update, or you can 
easily fit it within an existing system. At the very least, it can help eliminate a few virtual 
function calls.

On the memory side of things, one big issue is that the state machine class proposed 
above can be very wasteful if it exists on multiple game objects. For example, say you have 
a dozen orc enemies, and they all have the same behavior. All twelve of those orcs would 
be duplicating a lot of data.

One solution here is to split StateMachine into two different classes, one for han-
dling the static data that never change at run-time and the other to handle the volatile data 
that does. The class with the volatile data is given a reference to the static data class. This 
would not even require a change to the interface. This is effectively the Flyweight design 
pattern (Freeman-Hargis 2006).

The specific choices of what data to pull out of the run-time class will depend on your 
game. For example, on Drawn to Life the transition maps never changed during run-time, 
so pulling those into a data class would be perfectly fine.

Along these same lines, you could pull out all of the run-time data from each state 
instance and store it in a state blackboard. States would be parameterized through this 
blackboard, allowing you to have only a single instance for each state in your system. 
Transitions could work the same way; all run-time data would exist on a blackboard for 
that character so only one instance would be required per class.

12.7 Conclusion

This chapter has only touched on the surface of this kind of architecture. It is very simple 
and light-weight, yet flexible enough to allow a considerable amount of power and control. 
This architecture can be applied directly to your AI needs, but there are a few takeaways 
that can apply to any architecture.

The power of the transition objects to decouple the states from one another comes from 
a common programming design pattern called the strategy pattern (Gamma et al. 1997). 
The basic idea is to wrap up an algorithm into a self-contained class so that several such 
algorithms can be composed at run-time to change behavior. It is very good for data-driven 
systems since these objects can be instantiated with a factory and composed into a data 
structure (the transition map in our case) to determine the final behavior. You can even 
change these at run-time, significantly altering behavior by swapping a few objects.

This system can also be used in conjunction with other systems. For example, you might 
have a UtilityTransition class that scores its target state to see if it is something the 
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character wants to do. You could have a decision tree as your transition logic, using states 
only to manage their actions.

Either way, hopefully you see the power and flexibility of this kind of architecture.
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