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From Behavior to Animation
A Reactive AI Architecture for Networked 
First-Person Shooter Games

Sumeet Jakatdar

10.1 Introduction

First-person shooters (FPS) are a very specific and popular genre of video games. Many 
of the general AI principles and techniques are applicable for FPS AI, but they need to be 
modified to cater to the needs of fast-paced action. The challenge lies in selecting, modify-
ing, and combining algorithms together efficiently, so that AIs can react quickly to player 
actions. For an AAA FPS game with strict deadlines, the AI system needs to be ready early 
in the development cycle, allowing content creators to start using it. The system also needs 
to be simple to use, data driven, and flexible enough to be able to support creating a variety 
of AI archetypes. The system also needs to support networked gameplay without needing 
any extra effort from design and animation teams.

This chapter will provide a high-level and simple overview of an AI system that could 
be used for a networked FPS game. We will look into modifications to well-known AI 
algorithms such as behavior trees (BTs) and animation state machines (ASMs), which 
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128 10. From Behavior to Animation

were made to suit specific needs of the game. We will discuss ways to keep the BT sim-
ple but still reactive to high-priority events by introducing a concept called interrupts. 
Furthermore, we will touch upon animation layers that are designed to handle aiming 
and shooting animations independent of the BT. Here, we will discuss modifications to 
traditional ASMs to help network animations, allowing cooperative or competitive game-
play across the internet.

We will also look into a Blackboard system to solve behavior and animation selection 
problems. Here we will introduce techniques that will help keep the Blackboard attributes 
up-to-date by using a function-based approach.

Whenever applicable, we will provide pseudocode and real examples to better explain 
the concepts presented. Many of you probably know these techniques individually. 
Hopefully, by reading this chapter, you will get an idea of how they can work together for 
networked FPS games.

10.2 Client-Server Engine and AI System

We will assume that our game engine is built using a client-server paradigm, where the 
server is authoritative in nature. This means that server dictates the position, orientation, 
and gameplay logic for all game entities.

From time to time, the client receives a network snapshot from the server for all of the 
entities. While processing this snapshot, each entity’s position and orientation will be cor-
rected to match the server. The frequency of these snapshots depend upon the network 
bandwidth and CPU performance requirements of the game. Between network snapshots, 
the client interpolates entities for smoother 60 fps gameplay. It is important to keep the 
size of the network snapshots (measured in bits) small to support hundreds of entities and 
to avoid packet fragmentation. The upper limit for network snapshots is usually referred 
to as the maximum transmission unit (MTU), and the recommended size is approximately 
1200–1500  bytes for Ethernet connections. To be able to achieve the smallest possible 
MTU, we will look for opportunities to infer logic on the client side by sending across 
minimalistic information about entities.

The AI system is just one part of this engine. In addition, the server is responsible for 
handling many other systems, such as controller logic, player animation, physics, naviga-
tion, and scripting. Similarly, the client is responsible for handling effects, sounds, and 
most importantly rendering.

Figure 10.1 shows a high-level overview of the system and important AI modules in 
the engine. The BTs are responsible for choosing behavior using the knowledge stored in 
the Blackboard (a shared space for communication). The ASM is responsible for selecting 
animations and managing the animation pose of the AI. The client-side ASM has the same 
responsibilities as the server, but the implementation is slightly different from the server, 
as it does not make any decisions but merely follows the server. We will explore the details 
of the ASM further in this chapter.

At first, we will concentrate on the AI system on the server side. After we are done with 
the server, we will move on to the client side. We will finish by looking at the networking 
layer between the server and client AI systems. The pseudocode provided in this chapter 
will look very similar to C, but it should be fairly easy to translate these concepts in an 
object-oriented coding environment.
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12910.4 The Blackboard

10.3 The AI Agent

Before moving on to create various AI modules, we will define the AIAgent structure 
that lies at the core of our AI system, as shown in Listing 10.1. All three of our AI modules 
will be contained within this structure. Both server and client will have their own repre-
sentation of the AIAgent.

10.4 The Blackboard

The Blackboard holds key information about the AI agent, which can be manipulated 
and queried by other AI modules for choosing behaviors, animations, and so on. In some 
cases, the Blackboard is also used as a communication layer between modules.

Our implementation of the Blackboard will support three different types of variables; 
strings, floats, and integers. We will call them value-based variables. We will also support 
a special variable, referred in this chapter as function-based.

10.4.1 Value-Based Variables (Strings, Integers, and Floats)
Table 10.1 creates four Blackboard variables for the human soldier archetype. From the 
first three Blackboard variables, we can infer that the human soldier is currently standing. 

Listing 10.1. Defining AIAgent.

struct AIAgent
{
    // Blackboard
    // Behavior Tree
    // Animation State Machine
    // ...
};

Behavior tree

Animation state machine Animation state machine

Blackboard

Server AI system

Network

Client AI system

Figure 10.1

Client-server engine and AI system.
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130 10. From Behavior to Animation

He or she is holding a weapon, a long range rifle with 50 bullets in its magazine. There is 
no specific range, or possible set of values associated with these variables. So, for example, 
the number of bullets can be negative, which might be illogical. In such cases, it is the 
responsibility of other AI logic to handle that situation gracefully. However, adding sup-
port for ranges or enums should be fairly straightforward and is recommended in a final 
implementation.

10.4.2 Function-Based Variables
The first three Blackboard variables in Table 10.1 will be modified by external systems. For 
these variables, the Blackboard can be considered as some form of storage. But sometimes, 
we need the Blackboard to execute logic to calculate the latest value of a given variable. 
This is the purpose of the update _ function.

When a human soldier needs to turn and face the player, it will query the Blackboard to 
get the latest value of the angle_to_player. In this case, the Blackboard will execute 
the getangletoplayer function and return the latest yaw value. We call these types of 
variables function-based, as a function is executed when they are requested.

10.4.3 Implementation of the Blackboard
Let us look at some implementation details for our Blackboard. Listing 10.2 shows the 
implementation for BlackboardValue, which will essentially hold only one of the three 
types of values: a string, float, or integer. We have also created an enum to indicate the type 
of Blackboard variable and use it in the BlackboardVariable structure. Remember, 
the update_function is only defined and used for function-based Blackboard variables.

Listing 10.2. Definition of BlackboardVariable and BlackboardValue.

struct BlackboardValue
{
    union
    {
        const char* stringValue;
        int intValue;
        float floatValue;
    };
};

(Continued)

Table 10.1 Sample Blackboard for the Human Soldier Archetype

Variable Type Current_value Update_function

Weapon string rifle_longrange null
Number_of_bullets int 50 null
Stance string stand null
Angle_to_player float getangletoplayer
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13110.4 The Blackboard

The Blackboard, in Listing 10.3, is essentially a collection of many Blackboard 
Variable structures stored as a fixed-size array. We also add numVariables to easily 
keep track of the actual number of variables in use. Finally, a Blackboard is added to the 
AIAgent definition. When an AI agent spawns, a script is responsible for populating and 
assigning default values to the AI agent’s blackboard.

Listing 10.4 shows an example of creating one of the Blackboard variables for a human 
soldier.

enum BlackboardVariableType
{
    BLACKBOARD_INT,
    BLACKBOARD_FLOAT,
    BLACKBOARD_STRING,
};
typedef BlackboardValue
    (*BlackboardUpdateFunction)(AIAgent *agent);

struct BlackboardVariable
{
    const char* name;
    BlackboardValue value;
    BlackboardVariableType type;
    BlackboardUpdateFunction updateFunction;
};

Listing 10.4. BlackboardVariable example for human soldier.

BlackboardValue value;
Value.name = "weapon";
value.stringValue = "rifle_longrange";
value.type = BLACKBOARD_STRING;
value.updateFunction = null;

Listing 10.3. Setting up the Blackboard for the AIAgent.

struct Blackboard
{
    BlackboardVariable variables[MAX_BLACKBOARD_VARIABLES];
    int numVariables;
};

struct AIAgent
{
    // AI agent’s blackboard
    Blackboard blackboard; }
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132 10. From Behavior to Animation

10.5 The Behavior Tree

At the core of an AI agent’s behaviors is a way to select various actions. A BT consists 
of many of these actions arranged in a tree format and inherently provides priority in its 
hierarchy. Every action will have prerequisite conditions, which are needed to be satisfied 
for that action to be chosen. If you need to get familiar with the basics of BTs, please refer 
to chapters in earlier AI Game Pro and AI Game Programming Wisdom books (Isla 2005, 
Champandard 2008, Champandard and Dunstan 2013). You can also refer to the many 
online articles available at AiGameDev.com (AiGameDev 2015) and Gamasutra.com. Here, 
we will focus on some specific modifications to known BT paradigms.

Our AI agent is going to have many behaviors. Every behavior will consist of one or 
more actions. However, it is important to understand that only one action will be active at 
a given time. For example, the human soldier behavior for suppressing the enemy can be 
composed of two actions; first the throwing grenade action and then the charging toward 
the player action. We will design the BTs with this consideration in mind.

10.5.1 Creating a Behavior Tree for the AI Agent
We will start by defining a BehaviorTree, and then look at the BehaviorTreeNode 
definition.

As seen in Listing 10.5, the BehaviorTree itself is just a fixed-size array of 
BehaviorTreeNode nodes. This size depends upon the complexity of various AI 
agent’s behaviors, but generally it is a good idea to keep the size under 1000 nodes. If the 
tree gets bigger than this, then it might be worth looking at the granularity of condition 
nodes and finding opportunities to consolidate them.

We add one more variable, numNodes, to easily keep track of number of nodes used in 
a BehaviorTree. Another important assumption made here is that the “root node” will 
always appear first, at the 0th index of the nodes array. Each BT also has a unique name, 
which is used only for debugging purposes.

You would have noticed that there is only one definition for nodes, BehaviorTreeNode. 
In the next section, we will explore how it is used for supporting different types of nodes.

Listing 10.5. Setting up BehaviorTree for AIAgent.

struct BehaviorTree
{
    const char* name;
    BehaviorTreeNode nodes[MAX_BT_NODES];
    int numNodes;
};

struct AIAgent
{
    // AI agent’s own blackboard
    Blackboard blackboard; 
    // pointer to behavior tree definition
    const BehaviorTree *behaviorTree; 
    //... 
}
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13310.5 The Behavior Tree

We saw earlier that, every AI agent stores its own copy of the Blackboard, but this is not 
the case with a BT. At runtime, only one, nonmodifiable copy will reside in memory for a 
given BT definition. Every AI agent who uses this BT will store a pointer to this definition 
and refer to it time and again to choose an action.

10.5.2 Behavior Tree Nodes
Now that we have represented the BT in the BehaviorTree structure, let us move on to 
representing actual BT nodes, as shown in Listing 10.6.

We start by specifying the types of BT nodes we want to support using the BTNodeType 
enum. Typically, a BT supports conditions, actions, parallels, selectors, and sequences. You can 
add support for additional nodes, but the core idea of the implementation remains the same. 

Listing 10.6. Implementing Behavior Tree nodes.

enum BTNodeType
{
    BT_NODE_ACTION,  // action
    BT_NODE_CONDITION,  // condition
    BT_NODE_PARALLEL,  // parallel
    BT_NODE_SEQUENCE,  // sequence
    BT_NODE_SELECTOR,  // selector
    //...
};

enum BTNodeResult
{
    BT_SUCCESS,
    BT_FAILURE,
    BT_RUNNNING,
    //...
};

typedef BTNodeResult(*BTFunction)
    (AIAgent *agent, int nodeIndex);

struct BehaviorTreeNode
{
    const char* name; 
    // type of the node
    BTNodeType type; 
    // parent node index
    int parentNodeIndex;
    // children nodes 
    int childrenNodeIndices[MAX_BT_CHILDREN_NODES]; 
    int numChildrenNodes; 

    // condition node attributes
    BTFunction condition;
    // action node attributes
    BTFunction onActionStart;
    BTFunction onActionUpdate;
    BTFunction onActionTerminate; 
};
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134 10. From Behavior to Animation

As we have only one definition for all of the nodes, the type will be used to figure out how the 
node is processed during the BT evaluation.

The child and parent relationship of a BehaviorTreeNode is defined by storing 
parentNodeIndex and an array of childrenNodeIndices. This setup is going to 
make it easy to traverse up and down the tree. It is possible that certain types of nodes are not 
allowed to have any children at all. In our implementation, the leaf nodes, action, and condi-
tions are not allowed to have children. If we need to have a condition to be successful before 
executing further, then we can just use the sequence node with that condition as its first child. 
Similarly, two actions can be put together under one sequence if one action needs to follow 
another action, only if the first one was successful. This approach helps keep the tree simple 
and readable, and we always know to reevaluate the tree from the root if an action fails.

Actions and conditions can only be part of a composite node in our BT, which guarantees 
that there will not be any logical issues with our tree. Allowing conditions to have children 
adds ambiguity about the nature of that node. Unless we add more attributes to the condi-
tion, it will be difficult to decide if the condition node needs to be treated as a sequence or a 
parallel. We rather choose to do it in more elegant way by using the composite nodes.

Only the composite node types such as selectors, parallels, and sequences are allowed 
to have children. So, if we need to create a behavior consisting of one condition and one 
action, then it would be represented using a sequence or a parallel node. Listing 10.7 shows 
an example of a sequence node for a human soldier.

It is worth mentioning that there is only one parent for a node in our implementation. 
We will validate all these requirements while populating BTs at runtime.

Just knowing the relationship between BT nodes is not enough. We need to be able to 
associate some logic to nodes, so that we can execute that logic and find out the result. 
This is where BTFunction comes in handy. To start with, we only need functions for 
two types of nodes: conditions and actions. For action nodes in particular, we need three 
functions: onActionStart, OnActionUpdate, and onActionTerminate. 

Listing 10.7. Turn behavior for a human soldier.

{
    "name": "turnBehavior",
    "type": "sequence",
    "children":
    [
        {
            "type": "condition",
            "name": "turnCondition",
            "condition": "isPlayerBehind"
        },
        {
            "type": "action",
            "name": "turnAction",
            "onActionStart": "sayDialogue"
        }
    ]
}
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13510.5 The Behavior Tree

These functions can be used to execute additional gameplay logic when an action is 
active. If any one of these functions returns BT _ FAILURE, then we will have to 
reevaluate the tree.

To explain this a little better, we go back to the human soldier example again. Let us 
say that one of the behaviors for our human is a Turn Behavior. If the player is behind, our 
agent will turn to face the player and say a line of dialogue while turning. For this behav-
ior, we will need three nodes in our BT. Listing 10.7 shows a raw behavior tree asset that 
we will use to populate the human soldier’s BT at runtime. Many of you might recognize 
the JSON format. If you plan to write your own tools to create and edit BT, then a format 
like JSON is worth considering as there are many available parsers and editors available 
which might save you time.

The isPlayerBehind condition will make use of the Blackboard variable angle _
to _ player to decide if the player is behind. If the condition is successful, then the 
sequence will continue and select turnAction and call the sayDialogue function 
once, as the action starts.

10.5.3 Handling Parallel Conditions
The only node in our BT that will last for a longer period of time is the action node. In our 
case, an action will continue while the corresponding animation state is active. We will 
look into animation states a little later in this chapter.

For some actions, it is important that all of the prerequisite conditions remain valid for 
the duration of the action and not just at the start. We will achieve this by using parallel 
nodes. Let us say our human soldier has another behavior called Relaxed Behavior. He or 
she continues to remain relaxed until he or she sees a threat and then switches to another 
behavior. So, when he or she is relaxing, we need a way to continue to make sure that there 
is no threat.

In Listing 10.8, notice that the relaxedBehavior node is a parallel node. This node 
will act exactly the same as a sequence node while evaluating the tree to find an action. 

Listing 10.8. Relaxed behavior for a human soldier using parallel nodes.

{
    "name": "relaxedBehavior",
    "type": "parallel",
    "children":
    [
        {
            "type": "condition",
            "name": "checkThreat",
            "condition": "noThreatInSight"
        },
        {
            "type": "action",
            "name": "relaxedAction"
        }
    ]
}
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136 10. From Behavior to Animation

Although, once the relaxedAction is chosen and started, the parallel node will be used 
to populate all of the conditions that are needed to remain valid throughout this behavior.

In a full-blown BT, there will be many parallel nodes active for a given action. We will 
need a way to store all active parallel nodes for every AI agent independently, so we can 
execute them every frame and make sure that they are valid to continue executing the 
current action.

Listing 10.9 extends the AIAgent definition to support active parallel nodes. Once the 
action is chosen by the BT, then the PopulateActiveParallelNodes function will 
be called to generate the list of all parallel nodes that were executed on the way to the cur-
rent action nodes. This is achieved by traversing back up the tree, all the way to the root 
node. We make use of parentNodeIndex to quickly traverse back up the tree. While 
updating the action, the BT logic will go through all the active parallel nodes and process 
their children condition nodes. If any of those conditions are invalid, then the action is 

Listing 10.9. Extending AIAgent to support parallel conditions.

struct AIAgent
{
    // AI agent’s own blackboard
    Blackboard blackboard; 
    // pointer to behavior tree definition
    const BehaviorTree *behaviorTree; 
    // active parallel conditions 
    int  activeNodes[MAX_ACTIVE_PARALLELS];
    int  numActiveNodes; 

    //... 
}

void PopulateActiveParallelNodes
    (AIAgent *agent, int actionNodeIndex)
{

    const BehaviorTreeNode* btNode
          = &agent->behaviorTree->nodes[actionNodeIndex];
    agent->numActiveNodes = 0;

    while(btNode->index != 0)
    {
        int parentNodeIndex = btNode->parentNodeIndex; 
        btNode
            = &agent->behaviorTree->nodes[parentNodeIndex];

        if(btNode->type == BT_NODE_PARALLEL)
        { 
          agent->activeNodes[agent->numActiveNodes]
                                    = btNode->index;
          agent->numActiveNodes++;
        }
    }
}
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considered to be invalid. At this time, the BT will be reevaluated from root node to find a 
new, more suitable action.

This approach helps to create an extremely efficient BT, as we do not evaluate the com-
plete tree every frame. It also keeps the reactiveness of the tree intact. However, extra care 
has to be taken while designing the tree, so that all the possible conditions are accounted 
for. This is a tradeoff that we could live with, as efficiency is very important.

Sequence nodes can be handled in very similar fashion with a small implementation 
difference. There is no need to store any active sequences, as we are only interested in 
advancing the immediate parent sequence when an action is complete.

10.5.4 Handling Interruption Events in the Behavior Tree
After implementing the behavior tree architecture, we still have one more problem to deal 
with. We need a way to forcefully reevaluate the tree for certain key events, which can hap-
pen any time. In the case of a human soldier, damage is a high-priority event. Most of the 
time, we want humans to immediately react to damage.

To ensure that the AI will always react to damage, we found ourselves duplicating the 
same parallel condition for most of our actions. This approach works, but it is not ideal as 
it makes the tree unnecessarily complex. To handle this problem, we will introduce a new 
concept called interrupts.

Interrupts are basically events that will force the behavior tree logic to immediately 
invalidate the current action and initiate a full reevaluation of the tree. Interrupts them-
selves know nothing about AI behaviors in the tree at all. They usually last only until the 
next update of the BT.

When an interrupt occurs, the full reevaluation update should lead us to an action that 
was meant to be chosen when this interrupt is present and other conditions are met. 
Hence, some condition nodes need to have additional parameters so that they will only be 
valid during an interrupt. To achieve this, we need to add another attribute to the condi-
tion nodes, as shown in Listing 10.10.

The interrupt attribute is optional and only used by condition nodes. However, if it 
is specified for a condition node, then that node will only be evaluated when the specified 
interrupt event is being processed.

This simple modification helps reduce the complexity of the tree greatly. This approach 
works well when there are only handful of interrupt events associated with the behavior 
tree. It is possible that interrupt events are not mutually exclusive and may occur on the 
same frame. This problem can be solved by having a predefined priority list of interrupt 
events and only processing the highest interrupt event on that list.

Listing 10.10. Adding support for interrupts to BehaviorTreeNode.

struct BehaviorTreeNode
{
    //...
    // only used by condition nodes
    const char* interrupt;
};
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A good optimization is to ignore an interrupt if none of the nodes in a BT refer to it. 
For this to work, you can populate a separate list of referenced interrupts while creating 
the tree at runtime.

10.6 Animation State Machine

Now that we have a system to choose an action, it is time to figure out how our AI agent 
will be animated. Let us look at two basic types of animations we need to support for our 
AI agents in our ASM.

A full-body animation forms the base pose of the AI. In most cases, an AI agent needs to 
only play one full-body animation. This is not a limitation of the animation system but rather 
a choice we made to keep things simple. Then comes the additive animation type, which 
modifies the base pose. Contrary to the full-body animation, an AI agent can play multiple 
additive animations at a time. In fact, we will make use of additive animations to allow our 
agents to aim and shoot at the player. Let us start with the problem of selecting animations.

10.6.1 Animation Tables
The most important job of the ASM is to select animations, and it does so by using 
Animation Tables (ATs).

ATs can be thought of as a simple database of all possible animations, given a set of pre-
defined conditions. These conditions are nothing but Blackboard values we defined earlier in 
our system. In our ASM, every animation state will have one or more ATs associated with it.

Table 10.2 shows one of the ATs for our human soldier. We will use this table to find 
one full-body animation when the human soldier is in an idle animation state. There are 
two types of columns for ATs. One is an input column, and another is output column. Input 
columns are helpful to form a query of Blackboard variable values. This query is then used 
to find a first fitting row by matching the value of each variable against that row. Once a 
row is found, the AT will return the corresponding entry in its animation column.

For example, if a human soldier is crouching and holding a shotgun in his hands, 
then the AT will end up choosing the shotgun _ crouch _ idle animation by select-
ing row number 1. It is that simple!

You might have noticed the “–” symbol in Table 10.2. This dash signifies that the value 
of that Blackboard variable can be ignored while evaluating that row. This is very useful, as 
we can always have a fallback row, which will make sure that we always find an animation 
to play. In this example, the fifth row is a fallback row. We also have an explicit column for 
row numbers. This column is actually not stored as part of the ATs, but it is there to explain 
another concept later in this chapter (so for now, let us ignore it).

Table 10.2 Sample “Idle” Animation Table for Human Soldier

Row Stance Weapon Animation

0 stand shotgun shotgun_stand_idle
1 crouch shotgun shotgun_crouch_idle
2 – shotgun shotgun_prone_idle
3 prone – prone_idle
4 crouch – crouch_idle
5 – – stand_idle
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As shown in Table 10.3, ATs can have multiple input and output columns. In fact, we use 
this to return more than one animation for the aiming and shooting of additive anima-
tions. In the case of the Aim Table, the AT will return left, right, up, and down animations. 
It will be the responsibility of ASM to figure out the blend weights for these animations to 
achieve the desired aiming pose.

Let us look at how we can implement ATs in our AI system, as shown in Listing 10.11.

Essentially, AnimationTableColumn stores a Blackboard variable name that it 
refers to and an expectedValue of that variable to compare against. We can easily look 
up the type of Blackboard variable in the blackboard array in our AIAgent defini-
tion. In the final implementation however, it is ideal to use hashes to avoid string com-
parisons. The structure AnimationTableRow is a collection of columns, and finally 
AnimationTable is a collection of rows.

Depending on the number of AI agents alive, the amount of queries can be a perfor-
mance concern. To help improve performance, we can also implement a caching mecha-
nism for the results.

Listing 10.11. Animation Table column and row definitions.

enum AnimationTableColumType
{
    AT_COLUMN_INPUT,
    AT_COLUMN_OUTPUT
};

struct AnimationTableColumn
{
    const char* blackboardVariableName;
    BlackboardValue expectedValue;
    AnimationTableColumType type;
};

struct AnimationTableRow
{
    AnimationTableColumn columns[MAX_COLUMNS_PER_ROW]; 
    int numColumnsInUse;
};

struct AnimationTable
{
    const char* name;
    AnimationTableRow rows[MAX_ROWS_PER_TABLE];
    int numRowsInUse;
};

Table 10.3 Aim Table for the Human Soldier

Row Weapon anim_aim_left anim_aim_right anim_aim_up anim_aim_down

0 shotgun shotgun_aim_left shotgun_aim_right shotgun_aim_up shotgun_aim_down
1 – rifle_aim_left rifle_aim_right rifle_aim_up rifle_aim_down
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10.6.2 Animation States
As mentioned earlier, every animation state is responsible for finding and applying one 
full-body animation. If it cannot find one, then there is a bug that needs to be fixed.

Depending on the state, we also need additive animations to modify the base pose. 
Additive animations are optional and may not be used by every animation state. In this 
chapter, we will assume that there are only two possible additive animations per anima-
tion state. One for aiming and another for the shooting animation.

To achieve this, we will need to refer to three different ATs in our animation state, as 
shown in Listing 10.12.

10.6.3 Choosing the Animation State for an AI Agent
For a given action, we need to choose an animation state. We could infer the animation state 
by using the Blackboard variables alone, but this approach is complex and potentially unre-
liable. However, this approach is successfully used in many other games, and it does work 
very well. Keeping up with the theme of simplicity, we opt for another, rather easy solution. 
In our system, the BT action is responsible for choosing the corresponding animation state.

As shown in Listing 10.13, we added an animation state index to the BehaviorTreeNode 
definition. When an action is selected by the BT, a corresponding animation state will be 
requested by the BT and then immediately processed by the ASM.

10.6.4 Managing Animations with the ASM
Given an animation state, we are now equipped to find animations. Although, once they are 
found, we will need to apply those animations to our agent. In the case of aiming with the 
given aim animations, we would need to calculate blend weights based on the direction to 
the player. In the case of shooting, we would need a way to select one of the animations based 
on the weapon agent is holding. We will achieve this by adding three functions to our ASM 

Listing 10.12. Animation State definition.

struct AnimationState
{
    const char* name;
    const AnimationTable *fullBodyTable;
    const AnimationTable *aimTable;
    const AnimationTable *shootTable; 
};

Listing 10.13. Animation state for the current BT action.

struct BehaviorTreeNode
{
    // ...
    // used by action nodes to request animation state 
    int animationStateIndex; 
};
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definition. These functions will query the ATs when the animation state is changed. They 
will also manage blend weights for the selected animations based on specific gameplay logic.

As shown in Listing 10.14, we have created an AnimationStateMachine, which is 
essentially a collection of many animation states. We have also added three functions for 
managing animations for all three different animation tables.

Finally, in Listing 10.15, we add a reference to the ASM. Additionally, we store the indi-
ces of the current rows we got our animations from in currentStateIndex. This will 
come in handy when we look at networking AI animations later in this chapter.

10.6.5 Transitions
It is trivial to add the concept of a transition to our ASM. Transitions are very similar to 
the animation states, except they are not requested specifically by a BT action. They are 
chosen by the ASM while transitioning from one animation state to a state requested by 
the BT. The BT itself is unaware of transitions and leaves this responsibility to the ASM 
completely. The transition can have their own full-body, additive layers, and related ATs. 
While searching for an animation in an AT for a transition, it is acceptable if no fitting 
animation is found. In that case, the ASM will just blend animations from the previous to 
next state directly. This helps the animation team, as they only add transition animations 
where they fit and rely on animation blending in other cases.

Listing 10.14. Definition of the ASM.

typedef void(*ATFunction)(AIAgent *agent, AnimationTable* table);

struct AnimationStateMachine
{
    AnimationState states[MAX_ANIMATION_STATES];
    int numAnimationStatesInUse;

    ATFunction fullBodyAnimUpdate;
    ATFunction aimAnimUpdate;
    ATFunction shootAnimUpdate;
};

Listing 10.15. Storing current animations and Animation State for an AIAgent.

struct AIAgent
{
    //...
    AnimationStateMachine *animationStateMachine;

    int currentStateIndex;
    int currentFullBodyRowIndex;
    int currentAimRowIndex;
    int currentShootRowIndex;
    //...
};
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10.6.6 Aiming and Shooting
While designing the ASM in the earlier section, we gave the responsibility of managing 
the aiming and shooting logic to the ASM. In our case, using the logic in ATFunction, 
the ASM will decide to aim and shoot independent of the BT action based on the exis-
tence of tables and their respective functions. This is where our FPS version of the ASM is 
slightly different from traditional state machines.

This method helps to keep our BT simpler, as it will not have to worry about manag-
ing shooting and aiming. The BT can still influence animation selection for aiming and 
shooting by changing Blackboard variables. We can also disable the aiming and shooting 
logic completely if needed. In the case of an FPS game, whenever possible, the AI agents 
shoot the players, or choose to perform melee combat at a close range. This solution solves 
the problem in the ASM instead of the BT, making it easier for the BT to handle high-level 
logic.

In some games, shooting needs to be controlled as a behavior in the BT. In such cases, 
this approach may not be suitable as it does not give fine-grain control over shooting using 
behaviors. One suggestion is to split the shooting and aiming logic into another, light-
weight state machine. Then this state machine can be controlled independently by adding 
more attributes and logic to the BT actions.

10.6.7 Animation Alias Tables
So far, whenever we referred to an animation in an AT, we were actually referring to an 
Animation Alias. An AT is purely a one-to-many mapping, responsible for choosing one 
of the many variations of a given animation. This simple table empowers animators to 
create a lot of animation variety by truly staying independent of AI logic and behaviors. 
Table 10.4 shows an example of an AAT for a human soldier.

We complete our AIAgent definition by adding a reference to an AnimationAlias 
Table in Listing 10.16.

At runtime, we can allow switching between different AATs. In fact, we can use them to 
change the AI’s look and feel in order to make them more interesting. For example, when 
a human soldier is shot, we can switch to another AAT with wounded animations. This 
is achieved by using one default AAT and another override AAT, as seen in Listing 10.16.

Listing 10.16. Adding Animation Alias Tables (AATs) to an AIAgent.

struct AIAgent
{
    //...
    AnimationAliasTable *aliasTableDefault;
    AnimationAliasTable *aliasTableOverride;
    //...
};

Table 10.4 Example of Animation Alias Table for a Human Soldier
animation_alias variation 0 variation1 variation2

rifle_idle rifle_idle_lookaround rifle_idle_smoke rifle_idle_checkgun

Copyright Material – Provided by Taylor & Francis 



14310.7 Networking AI

We also allow multiple active layers of tables and search for animations starting with 
the aliasTableOverride table first. If no override animation is found, then we will 
fall back to the aliasTableDefault table. This allows creating smaller batches of ani-
mation variations.

It is important to validate all of the animations within one AnimationAlias to 
ensure that they are compatible with one another. Some of the validations include ani-
mation length, animation event markers, and most importantly positions of certain key 
bones relative to the root bone.

10.7 Networking AI

Players connect to the game as clients, and all of the systems we have created so far work 
only on the server side. At this point, we need to add a network component to our AI 
system to see the AI in action on the client. As mentioned earlier, we will assume that an 
entity’s position and orientation are already parts of the general network layer. In the AI 
system, we are more concerned about animations as no generic animation networking 
layer exists in the engine otherwise.

To be able to achieve this, we will need to send across enough information to the client 
so that it can replicate the animation pose of the AI. This is where the ASM and ATs come 
in very handy, as the definitions for both are available on the client as well.

Table 10.5 lists the minimized AIAgent data that are sent over to the client, which is 
used to choose the same animations as the server. First is currentStateIndex, which 
allows the client to use the same animation state as the server. Now, the client can refer to 
the same AT tables as the server though the selection animation state, but it does not have 
any ability to choose animations yet.

On the server, ATs choose animations using a query of Blackboard variables. Unfortunately, 
there is no Blackboard available on the client, as our server handles all the decision-making 
authoritatively. If we could somehow tell the client the row number in the table, then we can 
look up the animation directly without needing a Blackboard at all. This is exactly why we 
send over row indices for all three ATs to the client: full-body, additive aim, and shoot.

With this setup, it is guaranteed that the client will always choose the same animations 
as the server. We need to run the same ATFunction on the client to be able to apply the 
chosen animations in the same way as server. Mostly, the server and client versions of 
ATFunction are very similar to each other in this case.

Using the row indices, we are merely choosing animation aliases and not actual anima-
tions. It is critically important that both server and client choose the same animation variation 
for a given animation alias. If this does not work properly, then the server and client may gen-
erate a different animation pose which can result in bugs. Let us take an example of a player 

Table 10.5 Animation State Machine Data Sent 
Over the Network to the Client AI System

Data Number of Bits

currentstateindex 8 bits (up to 256 states)
currentfullbodyrowindex 7 bits (up to 128 rows)
currentaimrowindex 4 bits (up to 16 rows)
currentshootrowindex 4 bits (up to 16 rows)
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shooting and damaging the AI. The bullet collision will be performed on the server using the 
animation pose on the server. If the animation chosen is different on the client as compared to 
server, then sometimes players might see that they are clearly hitting the AI on client, but in 
fact, on the server they are not. We will have to make sure that this never happens.

We could send an extra couple of bits for animations to solve this problem, but a more 
optimal solution is using a deterministic random seed, which results in the same variation 
on both ends.

10.8 Conclusion

Presented in this chapter is a basic AI system which supports a variety of behaviors, ani-
mations, and networked gameplay. There are many more aspects to this system that we 
could not discuss in this chapter, but hopefully you now have a solid idea of the foundation 
that can be extended to match your own needs.

Let us quickly recap what we covered in this chapter. We started with laying down the 
design and technical requirements and then moved on to implement a Blackboard sys-
tem. In addition to basic value-based variables, the Blackboard supported function-based 
variables to calculate up-to-date values. We used BTs as our behavior selection algorithm 
and also looked at how parallel conditions can be implemented to incorporate reactivity 
without complete evaluation of the tree every frame. We also introduced  interrupts to 
handle some common high-priority events.

Then we moved on to Animation Tables, which are smart animation databases capable 
of selecting animations based on Blackboard variables. We also added support for select-
ing more than one animation and used it for shooting and aiming animations. Next up 
was the ASM, which made use of Animation Tables to network AI animations. Finally, we 
created an AIAgent definition that keeps track of all these systems for every AI in the 
game. At this time, we considered our basic AI system complete and ready for prime time.

Although there are a myriad of AI architectures and techniques available, it is important to 
choose appropriate ones by keeping simplicity and flexibility of a system in mind, at least in 
the early stages of development. Once you choose the right architecture, you can always add 
more paradigms to your system as you go. Usually the best approach is to start with proven, 
simple AI techniques and mold them to your needs in order to get something working quickly. 
Then you can iterate based on feedback from the team and the changing needs of the game.
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