
87

8
Modular AI
Kevin Dill and Christopher Dragert

8.1 Introduction

Repetition is everywhere in AI. The same patterns, the same fragments of code, the same
chunks of data, the same subdecisions get used over and over again in decision after deci-
sion after decision. As a general rule, when we as software engineers see repetition we try
to encapsulate it: put it in a procedure, put it in a class, or build some abstraction so that
there is only a single instance of that repeated pattern. This encapsulation can now be
reused rather than rewriting it for each new use-case. We see this approach throughout
software engineering: in procedures, in classes, in design patterns, in C++ templates and
macros, and in data-driven design—to name just a few examples.

Reducing repetition has numerous advantages. It decreases the executable size. It
decreases the number of opportunities to introduce a bug, and increases the number of
ways in which the code is tested. It avoids the situation where you fix a bug or make an
improvement in one place but not others. It saves time during implementation, allowing
you to write new code rather than rewriting something that already exists. It allows you to
build robust, feature-rich abstractions that can perform complex operations which would
take too much time to implement if you were only going to use them once. Beyond all of
these incremental advantages, however, it also offers something fundamental. It allows
you to take a chunk of code in all of its nitty-gritty, detail-oriented glory, and wrap it up
into a human-level concept that can be reused and repurposed throughout your project.

8.1 Introduction
8.2 Theoretical Underpinnings
8.3 GAIA Overview
8.4 GAIA Infrastructure
8.5 Modular AI: Conceptual

Abstractions and Modular
Components

8.6 Combining
Considerations

8.7 Pickers
8.8 Conclusion
References

Copyright Material – Provided by Taylor & Francis

88 8. Modular AI

It allows you to work closer to the level of granularity at which you naturally think, and
at which your designers naturally think, rather than at the level which is natural to the
machine. It changes, for example:

d = sqrt(pow((a.x - b.x), 2) + pow((a.y – b.y), 2));

into:

d = Distance(a, b);

The challenge with AI, however, is that while there are often aspects of a decision that are
similar to other decisions, there are also invariably aspects that are quite different. The
AI might measure the distance between two objects both to determine whether to shoot
at something and to determine where to eat lunch, but the objects that are evaluated and
the way that distance is used in the larger decision is certain to be different (unless you
are building a nonplayer character (NPC) that likes to shoot at restaurants and eat its
enemies). As a result, while the distance function itself is a standard part of most math
libraries, there is a much larger body of code involved in distance-based decisions that is
more difficult to encapsulate and reuse.

Modular AI is fundamentally about this transition. It is about enabling you to rapidly
specify decision-making logic by plugging together modular components that represent
human-level concepts. It is about building up a collection of these modular components,
where each component is implemented once but used over and over, throughout the AI
for your current game, and on into the AI for your next game and the game after that. It
is about enabling you to spend most of your time thinking about human-sized concepts,
to build up from individual concepts (e.g., distance, line of sight, moving, firing a weapon)
to larger behaviors (taking cover, selecting and engaging a target) to entire performances
(ranged weapon combat), and then to reuse those pieces, with appropriate customization,
elsewhere. It is an approach that will allow you to create your decision-making logic more
quickly, change it more easily, and reuse it more broadly, all while working more reliably
and generating fewer bugs because the underlying code is being used more heavily and thus
tested more robustly, and also because new capabilities added for one situation immedi-
ately become available for use elsewhere as part of the reusable component they improved.

This chapter will first discuss the theoretical underpinnings of modular AI and relate
them to broadly accepted concepts from software engineering, and then describe in
detail the Game AI Architecture (GAIA). GAIA is a modular architecture, developed at
Lockheed Martin Rotary and Mission Systems, that has been used to drive behavior across
a number of very different projects in a number of very different game and simulation
engines, including (but not limited to) both educational games and training simulations.
Its roots go back to work on animal AI at Blue Fang Games, on boss AI for an action game
at Mad Doc Software, and on ambient human AI at Rockstar Games.

8.1.1 Working with this Chapter
This chapter goes into great depth, and different readers might be interested in different
aspects of the discussion. If your primary interest is in the big ideas behind modular AI and
how the modular pieces work together, your focus should be on Sections 8.2, 8.5, and 8.6. If
you are interested in an approach that you can take away right now and use in an existing

Copyright Material – Provided by Taylor & Francis

898.2 Theoretical Underpinnings

architecture, without starting over from scratch, then you should consider implementing
just considerations (Sections 8.5.1 and 8.6). Finally, if you are interested in a full architec-
ture that can be reused across many projects, across many game engines, and which allows
you to rapidly configure your AI in a modular way, then the full chapter is for you!

8.2 Theoretical Underpinnings

Modular AI, and modular approaches in general, seek to raise the level of abstraction of
development. Rather than focus on algorithms and code, a good modular solution leads
to a focus on AI behaviors and how they fit together, abstracting away the implementation
details. The question is how this can be done safely and correctly, while still giving design-
ers and developers the fine-grained control needed to elicit the intended behaviors.

Success in modular AI development is driven by the same principles found in good
software development: encapsulation, polymorphism, loose coupling, clear operational
semantics, and management of complexity. Each of these familiar concepts gains new
meaning in a modular context.

Modules themselves encapsulate a unit of AI functionality. Good modules follow
the “Goldilocks Rule”: not too big, not too small, but sized just right. Large modules
that include multiple capabilities inhibit reuse—what if only part of the functionality is
needed for a new AI? Modules that are too small do not do enough to raise the level of
abstraction. The goal is to capture AI functionality at the same level that a designer uses
to reason about NPCs in your game. Then, the development problem shifts to select-
ing and integrating the behaviors and capabilities needed for a new NPC, rather than
implementing those capabilities from scratch, which is a highly appropriate level of
abstraction.

Using modules in this fashion requires that module reuse to be safe. For this, module
encapsulation must be strictly enforced. Preventing spaghetti interactions between mod-
ules ensures that each module can run correctly in isolation. This is essential for reuse—
even subtle dependencies between modules quickly become problematic.

Encapsulation leads naturally to the creation of a module interface. Much like an
API, a module interface describes exactly how to interact with that module. It shows the
inputs that it can accept, the outputs that it provides, and details the parameters that
are exposed for customization of module behavior when applied to a specific AI. With
an explicit interface, handling dependencies between behaviors becomes a much simpler
problem of connecting the inputs and outputs needed to properly express the behavior.
Since each module is properly encapsulated, the results of adding and removing new mod-
ules become predictable.

Polymorphism arises as a result of this loose coupling. Imagine a module tasked with
fleeing from an enemy. As a bite-sized module, it could perform the checks and tests
needed to find an appropriate flee destination, and then send off a move output. The mod-
ule that receives this output no longer matters. One AI can use a certain type of move
module, while a different AI can use another. The exact type of move module should not
matter much. Complicating factors, like “is my NPC on a bicycle,” or “is she on a horse,”
and so on, can all be handled by the move module, or by other submodules. This keeps
each module cleanly focused on a single functional purpose while ensuring that similar
behaviors are not repeated across modules.

Copyright Material – Provided by Taylor & Francis

90 8. Modular AI

8.3 GAIA Overview

GAIA is a modular, extensible, reusable toolset for specifying procedural decision-making
logic (i.e., AI behavior). GAIA emphasizes the role of the game designer in creating decision-
making logic, while still allowing the resulting behavior to be flexible and responsive to the
moment-to-moment situation in the application.

Taking those points more slowly, GAIA is:

 • A library of tools that can be used to specify procedural decision-making logic (or
“AI behavior”).

 • Focused on providing authorial control. In other words, the goal of GAIA is not to
create a true artificial intelligence that can decide what to do on its own, but rather
to provide a human author with the tools to specify decisions that will deliver the
intended experience while still remaining flexible enough to handle varied and
unexpected situations.

 • Modular, meaning that behavior is typically constructed by plugging together pre-
defined components. Experience has shown that this approach greatly improves
the speed with which behavior can be specified and iterated on.

 • Extensible, making it easy to add new components to the library, or to change the
behavior of an existing component.

 • Reusable, meaning that GAIA has been designed from the ground up with reuse
in mind. This includes reuse of both code and data, and reuse within the current
project, across future projects, and even across different game engines.

GAIA is data driven: behavior is specified in XML files and then loaded by the code at
runtime. This chapter will generally refer to the XML as the configuration or the data and
the C++ as the implementation or the code. For simplicity, this chapter will also use the
term NPC to denote GAIA-controlled entities, PC to denote player-controlled entities, and
character to denote entities that may be either NPCs or PCs.

8.3.1 GAIA Control Flow
GAIA makes decisions by working its way down a tree of decision makers (reasoners) that
is in many ways similar to Damian Isla’s original vision of a Behavior Tree (BT) (Isla 2005).
As in a BT, different reasoners can use different approaches to decision-making, which
gives the architecture a flexibility that is not possible in more homogenous hierarchical
approaches (e.g., hierarchical finite-state machines, teleoreactive programming, hierarchi-
cal task network planners, etc.).

Each reasoner picks from among its options. The options contain considerations, which
are used by the reasoner to decide which option to pick, and actions, which are executed if
the option is selected. Actions can be concrete, meaning that they represent things that the
controlled character should actually do (e.g., move, shoot, speak a line of dialog, cower in
fear, etc.), or abstract, meaning that they contain more decision-making logic.

The most common abstract action is the AIAction_Subreasoner, which contains
another reasoner (with its own options, considerations, and actions). Subreasoner actions
are the mechanism GAIA uses to create its hierarchical structure. When an option that
contains a subreasoner is selected, that subreasoner will start evaluating its own options

Copyright Material – Provided by Taylor & Francis

918.3 GAIA Overview

and select one to execute. That option may contain concrete actions or may, in turn, con-
tain yet another subreasoner action.

Options can also contain more than one action, which allows them to have multiple
concrete actions, subreasoners, or a combination of both, all operating in parallel.

8.3.2 GAIA Implementation Concepts
Reasoners, options, considerations, and actions are all examples of conceptual abstrac-
tions. Conceptual abstractions are the basic types of objects that make up a modular AI.
Each conceptual abstraction has an interface that defines it, and a set of modular compo-
nents (or just components) that implement that interface. As discussed above, there are
multiple different types of reasoners, for example, but all of the reasoners—that is, all of
the modular components that implement the reasoner conceptual abstraction—share the
same interface. Thus the surrounding code does not need to know what types of com-
ponents it has. The reasoner, for example, does not need to know what particular types
of considerations are being used to evaluate an option, or how those considerations are
configured—it only needs to know how to work with the consideration interface in order
to get the evaluation that it needs. This is the key idea behind modular AI: identify the
basic parts of the AI (conceptual abstractions), declare an interface for each abstraction,
and then define reusable modular components that implement that interface.

Modular components form the core of modular AI reuse—each type of component is
implemented once but used many times. To make this work, each type of component
needs to know how to load itself from the configuration, so that all of the parameters that
define the functionality of a particular instance of a modular component can be defined
in data.

Continuing with the distance example from the introduction, GAIA makes distance
evaluations reusable by providing the Distance consideration. The configuration
of a particular Distance consideration specifies the positions to measure the dis-
tance between, as well as how that distance should be evaluated (Should it prefer closer?
Farther? Does it have to be within a particular range?). For example, a sniper selecting a
target to shoot at might use a Distance consideration to evaluate each potential target.
This consideration might be configured to only allow the sniper to shoot at targets that
are more than 50 m and less than 500 m away, with a preference for closer targets. This
consideration could then be combined with other considerations that measure whether
the prospective target is friend or enemy, how much cover the target has, whether it is a
high-value target (such as an officer), and so on. What is more, the consideration does not
work in isolation—it makes use of other conceptual abstractions in its configuration. For
instance, the two positions are specified using targets, and the way the distance should
be combined with other considerations is specified using a weight function. Targets and
weight functions are two of the other conceptual abstractions in GAIA.

One advantage of this approach is that it is highly extensible. As development progresses
and you discover new factors that should be weighed into a decision, you can create new
types of considerations to evaluate those factors and simply drop them in. Because they
share the same interface as all the other considerations, nothing else needs to change. Not
only does this make iterating on the AI behavior much faster, it also decreases the chance
that you will introduce a bug (because all changes are localized to the consideration being
added, which can be tested in isolation). Consequently, it is safer to make more aggressive

Copyright Material – Provided by Taylor & Francis

92 8. Modular AI

changes later in the development cycle, allowing you to really polish the AI late in devel-
opment once gameplay has been hammered out and QA is giving real feedback on what
you have built.

This ability to rapidly specify and then easily reuse common functionality greatly
reduces the amount of time it takes to specify behavior, generally paying back the cost
of implementation within weeks. We have used modular AI with great success on sev-
eral projects where there were only a few months to implement the entire AI—including
one game whose AI was implemented in less than 4 months that went on to sell millions
of copies.

8.3.3 An Example Character: The Sniper
Throughout this chapter, we will use as our example a sniper character that is based on,
but not identical to, a character that was built for a military application. Broadly speak-
ing, the sniper should wait until there are enemies in its kill zone (which happens to be
an outdoor marketplace), and then take a shot every minute or two as long as there are
still enemies in the marketplace to engage, but only if (a) it is not under attack and (b) it has
a clear line of retreat. If it is under attack then it tries to retreat, but if its line of retreat
has been blocked then it will start actively fighting back, engaging targets as rapidly as it
can (whether they are in the kill zone or not). The overall structure for this configuration
is shown in Figure 8.1.

At the top level of its decision hierarchy, our sniper has only four options to choose
between: snipe at a target in the kill zone, retreat, fight back when engaged, or hide and
wait until one of the other options is available. The decision between these options is fairly
cut-and-dried, so a fairly simple reasoner should work. GAIA includes a RuleBased
 reasoner that works much like a selection node in a BT—that is, it simply evaluates its
options in the order in which they were specified and takes the first one that is valid given
the current situation. In this case, a RuleBased reasoner could be set up as follows:

 • If the sniper is under fire and its line of retreat is clear, retreat.
 • If the sniper is under fire, fight back.

Rule-based reasoner

Retreat

Pick a path,
execute the

retreat

Shoot, move,
reload, etc.

Set pose Raise weapon

Sequence reasoner

Pull back under
cover, occasionally

peek out

Pause Fire

Fight back Snipe Hide

Figure 8.1

Overall structure for a sniper AI. Aspects of the AI that are not fully defined are shown with
dotted lines.

Copyright Material – Provided by Taylor & Francis

938.4 GAIA Infrastructure

 • If the sniper’s line of retreat is clear, there is a valid target in the kill zone, and a
minute or two has elapsed since the sniper’s last shot, snipe.

 • Hide.

None of those options are likely to contain concrete actions. Retreat, for example, will
require the AI to pick a route, move along that route, watch for enemies, react to enemies
along the way, and so forth. Fight back requires the AI to pick targets, pick positions to
fight from, aim and fire its weapon, reload, and so on. Hide requires it to pull back out
of sight and then periodically peer out as if checking whether targets have become avail-
able. Thus, once the top-level reasoner has selected an option (such as Snipe), that option’s
subreasoner will evaluate its own options. In Figure 8.1, we see that the Snipe option, for
example, uses a Sequence reasoner to step through the process of taking a shot by first
getting into the appropriate pose (e.g., the “prone” pose), then raising its weapon, pausing
(to simulate aiming), and finally firing.

8.4 GAIA Infrastructure

Before delving into the different conceptual abstractions and modular components, it is
helpful to have an understanding of the surrounding infrastructure. This section pro-
vides an overview of the major singletons, data stores, and other objects which, while
not themselves modular, support evaluation of and communication between the modular
components.

8.4.1 The AIString Class
Strings are tremendously useful, but they also take up an unreasonable amount of space
and are slow to compare. Many solutions to this problem exist; GAIA’s is to use the djb2
hash function (http://www.cse.yorku.ca/~oz/hash.html) to generate a 64 bit hash for
the strings and then to keep a global string table that contains all of the raw strings (as
std::strings). This lets GAIA do constant time comparisons and store copies of strings
in 64 bits. It also lets GAIA downcase the string when it is hashed, so that comparisons are
case insensitive (which makes them much more designer friendly). On the other hand, it has
an up-front performance cost and makes a permanent copy of every string used (whether
the string itself is temporary or not), so GAIA still uses char* and std::string in
places where the AIString does not make sense (such as debug output).

Of note, no hash function is a guarantee. If you do take this approach, it is a very good
idea to have an assert that checks for hash collisions; simply look in the string table each time
you hash a string and ensuring that the stored string is the same as the one you just hashed.

8.4.2 Factories
GAIA uses factories to instantiate all of the modular objects that make up the AI. In other
words, the portion of a configuration that defines a consideration, for example, will be
contained within a single XML node. GAIA creates the actual C++ consideration object
by passing that XML node (along with some supporting information, like a pointer to the
NPC that this configuration will control) to the AIConsiderationFactory, which
instantiates and initializes an object of the appropriate type. GAIA’s factory system was
the topic of an earlier chapter in this book, so we will not repeat the details here (Dill 2016).

Copyright Material – Provided by Taylor & Francis

94 8. Modular AI

8.4.3 The AIDataStore Base Class
Data stores are AIString-indexed hash tables that can store data of any type. GAIA
uses them as the basis for its blackboards and also all of its different types of entities.
As a result, individual modular components can store, share, and retrieve information
to and from the blackboards and/or entities without the rest of the AI having to know
what is stored or even what type the information is. This allows data to be placed in the
configuration that will be used by the game engine if an action is executed, for instance,
or even for the game engine to pass data through to itself. Of course, it also allows AI
components to share data with one another—we will see an example of this in the sniper
configuration, below.

There are many ways to implement this sort of hash table, and GAIA’s is not particularly
special, so we will skip the implementation details. It is worth mentioning, however, that
since the data stores are in essence of global memory, they run the risk of name collisions
(that is, two different sets of components both trying to store data using the same name).
With that said, experience has shown that as long as you have a reasonably descriptive
naming convention, this is not normally a problem. Nevertheless, GAIA does have asserts
in place to warn if the type of data stored is not the expected type. This will not catch every
possible name collision, but it should catch a lot of them.

GAIA currently has two types of blackboards and three types of entities, described
as follows.

8.4.3.1 The AIBlackboard_Global Data Store

The game has a single global blackboard, which can be used as a central repository for
information that should be available to every AI component, regardless of what character
that component belongs to or what side that character is on.

8.4.3.2 The AIBlackboard_Brain Data Store

Every AI-controlled character also has a blackboard built into its brain. The brain black-
board allows the components that make up that character’s AI to communicate among
themselves.

8.4.3.3 The AIActor Data Store

Every NPC is represented by an actor. The game stores all of the information that the
AI will need about the character (e.g., its position, orientation, available weapons, etc.),
and AI components can look that information up as needed. The actor also contains an
AIBrain, which contains the top-level reasoner and all of the decision-making logic for
that character.

On some projects, actors are used to represent every character, whether AI controlled
or not. In these cases, actors that are not AI controlled may not have a brain or, if they
switch back and forth between AI and player control, they will have a brain but it will be
disabled when the AI is not in control.

8.4.3.4 The AIContact Data Store

As hinted above, there are two ways to keep track of what an NPC knows about the other
characters in the game. The first is to use actors to represent every character and give
the AI components in each NPC’s brain direct access to the actors for other characters.

Copyright Material – Provided by Taylor & Francis

958.4 GAIA Infrastructure

This works, but it either means that all NPCs will have perfect information, or that every
AI component has to properly check whether they should know about a particular piece
of information or not. Furthermore, even if the AI components make these checks, it still
means that everything that they know is correct. This makes it much more difficult to,
for example, allow the AI to know that an enemy exists but have an incorrect belief about
its location.

The alternative is to have each NPC create a contact for every other character that it
knows about, and store its knowledge of that NPC on the contact. Thus the contacts repre-
sent what the NPC knows about other characters in the game, whether that knowledge is
correct or not. For example, imagine an RPG where the player steals a uniform in order to
sneak past hostile guards. The guards would each have a contact that stores their knowl-
edge of the player, and if the guards are fooled then that contact would list the player as
being on their side even though he or she is actually an enemy. This allows each NPC to
have its own beliefs about the characters that it is aware of, but it also means that the AI
has to store a lot of redundant copies of the information for each character.

There is no single right answer here, which is why GAIA supports both approaches—
the best one is the one that best supports the needs of the individual project. Using actors
to represent all characters is simpler and more efficient when there is little uncertainty
in the environment (or the behavior of the characters is not greatly affected by it), while
using contacts is better when imperfect situational awareness plays an important role in
the behavior of the NPCs.

8.4.3.5 The AIThreat Data Store

Threats represent things that an NPC knows about and should consider reacting to. They
can include enemy characters (whether represented as actors or contacts), but may also
include more abstract things such as recent explosions, or locations where bullets have
impacted. This enables characters to react to the impact of a sniper’s shot even if they do
not actually know about the shooter, or to break out of cover based on where rounds are
impacting rather than where they are being fired from, for example. Like contacts, threats
are not used by every project, and are stored on the brain blackboard.

8.4.4 Singletons
Singletons provide managers that are globally accessible. You can access a singleton from
anywhere in the codebase by simply calling the static Get() function for that class. You
can also replace the default implementation of any singleton with a project-specific ver-
sion (which must be a subclass) by calling Set().

8.4.4.1 The AIManager Singleton

The AI manager is responsible for storing all of the actors. It also has an Update() func-
tion that the game should call every tick in order to tick the actors, and thus their brains.

8.4.4.2 The AISpecificationManager and AIGlobalManager Singletons

As we have said, GAIA is data driven. All of the decision-making for an NPC is stored in its
configuration, in XML. The specification manager is responsible for loading, parsing, and
storing all of the configurations. Then, when the game creates an NPC’s brain, it specifies
the name of the configuration that character should use.

Copyright Material – Provided by Taylor & Francis

96 8. Modular AI

Duplication can happen in data as well as in code. GAIA partially addresses this
by allowing configurations to include globals, which are component specifications
that can be reused within a configuration or across all configurations. The globals
are stored by the global manager. Globals were discussed in the earlier chapter on
factories (Dill 2016).

8.4.4.3 The AIOutputManager Singleton

Good debug output is critical to AI development. GAIA has the usual mix of log messages,
warnings, errors, and asserts, along with “status text,” which describes the current deci-
sion (and is suitable for, for example, displaying in-engine next to the NPC in question).
The output manager is responsible for handling all of those messages, routing them to the
right places, enabling/disabling them, and so forth.

8.4.4.4 The AITimeManager Singleton

Different game engines (and different games) handle in-game time in different ways. The
time manager has a single function (GetTime()), and is used throughout the AI to imple-
ment things like cooldowns and maximum durations. The built-in implementation just
gets system time from the CPU, but most projects implement their own time manager that
provides in-game time instead.

8.4.4.5 The AIBlackboard_Global Singleton

As described above, the global blackboard is a shared memory space that can be used to
pass information between the game and the AI, and/or between AI components. It is a
singleton so that it will be globally accessible, and also so that projects can implement
their own version which is more tightly coupled with the data being shared from the game
engine if they wish.

8.4.4.6 The AIRandomManager Singleton

Random numbers are central to many games, both inside and outside of the AI. The
 random manager contains functions for getting random values. The default implementa-
tion uses the dual-LCG approach described by Jacopin elsewhere in this volume (Jacopin
2016), but as with other singletons individual projects can replace this with a custom
implementation that uses some different RNG implementation if they so desire. For
example, we have a unit test project whose RNG always returns 0, making it much easier
to write deterministic tests.

8.5 Modular AI: Conceptual Abstractions and Modular Components

Conceptual abstractions define the base class types that the architecture supports. In other
words, these abstractions define the interfaces that the rest of GAIA will use. A modular
component is the counterpart, with each component providing a concrete implementation
for a conceptual abstraction. This approach, where objects interact through well-defined
interfaces, allows GAIA to provide an environment that supports loosely coupled modu-
lar composition untethered from specific implementations. The developer is free to think
about types of abstractions that will produce desired behaviors, and then configure the
implementation by reusing and customizing existing modular components, or by creating

Copyright Material – Provided by Taylor & Francis

978.5 Modular AI: Conceptual Abstractions and Modular Components

new components as necessary. This section will describe the major conceptual abstrac-
tions used by GAIA, provide examples of their use, and give their interfaces.

8.5.1 Considerations
Considerations are the single most useful conceptual abstraction. If you are uncertain
about building a full modular AI, or are just looking for a single trick that you can use to
improve your existing architecture, they are the place to start.

Considerations are used to represent each of the different factors that might be weighed
together to make a decision. At the core, each type of consideration provides a way to
evaluate the suitability of an action with respect to the factor being considered. Listing 8.1
shows the consideration interface in full.

To understand how these work in action, let’s take a look at the sniper’s decision to
snipe at an enemy. It will only select this option if:

 • The line of retreat is clear.
 • There is a target in the kill zone.
 • It has been “a minute or two” since the last time the sniper took a shot.

Building the configuration for this option requires three considerations: one for each of
the bullet items above. Each one is a modular component that implements the consider-
ation interface.

First, an EntityExists consideration is used to check whether there are any ene-
mies in the area that the sniper will retreat through. The EntityExists consideration
goes through all of the contacts (or all of the actors, or all of the threats, depending on how

Listing 8.1. The consideration interface.

class AIConsiderationBase
{
public:
 // Load the configuration.
 virtual bool Init(const AICreationData& cd) = 0;

 // Called once per decision cycle, allows the
 // consideration to evaluate the situation and determine
 // what to return.
 virtual void Calculate() = 0;

 // These are GAIA's weight values. They return the
 // results computed by Calculate().
 virtual float GetAddend() const;
 virtual float GetMultiplier() const;
 virtual float GetRank() const;

 // Certain considerations need to know if/when they are
 // selected or deselected.
 virtual void Select() {}
 virtual void Deselect() {}
};

Copyright Material – Provided by Taylor & Francis

98 8. Modular AI

it is configured) to see whether there is at least one which meets some set of constraints. In
this case, the constraints are that the entity must be an enemy and that it must be inside
the area that the sniper plans to escape through. That area is defined using a region, which
is another conceptual abstraction (described below). This first consideration vetoes the
option (i.e., does not allow it to be picked) if there is an enemy blocking the line of retreat,
otherwise it allows the option to execute (but the other considerations may still veto it).

Next, the sniper needs to pick a contact to shoot at, and for this a second EntityExists
consideration is used. The contact must be an enemy and must be in the kill zone. Other
constraints can easily be added—for example, the sniper could be configured to prefer con-
tacts that are closer, those that have less cover, and/or those that are high-value targets (such
as officers). The consideration is configured to use a picker (discussed in a later section) to
select the best target and store it on the brain’s blackboard. If the option is selected then the
Fire action will retrieve the selected target from the blackboard, rather than going through
the process of selecting it all over again. As with the escape route, this consideration will
veto the option if no target is found, otherwise it has no effect.

Finally, an ExecutionHistory consideration is used to check how long it has been
since the sniper last fired a shot. This consideration picks a random delay between 60 and
120 seconds, and vetoes the option if the time since the last shot is less than that delay.
Each time the option is selected (i.e., each time the reasoner picks this option and starts
executing it) the consideration picks a new delay to use for the next shot.

Considerations are the single most powerful conceptual abstraction, and can be used with
or without the other ideas described in this chapter. They are straightforward to implement
(the only slightly tricky part is deciding how to combine them together—that topic is discussed
in detail later in this chapter), but all by themselves allow you to greatly reduce duplication and
increase code reuse. Once you have them, configuring a decision becomes a simple matter of
enumerating the options and specifying the considerations for each option. Specifying a con-
sideration is not much more complex than writing a single function call in code—it typically
takes anywhere from a few seconds to a minute or two—but each consideration represents
dozens, or often even hundreds of lines of code. From time to time you will need to add a new
consideration, or add new capabilities to one that exists—but you only need to do that once for
each consideration, and then you can use it again and again throughout your AI.

As considerations are heavily reused, they also allow you to take the time to add nuance
to the decision-making that might be difficult to incorporate otherwise. EntityExists
is a good example of how complex—and powerful—considerations can become, but even
a very simple consideration like ExecutionHistory can make decisions based on how
long an option has been executing, how long since it last ran, or whether it has ever run
at all. This allows us to implement things like cooldowns, goal inertia (a.k.a. hysteresis),
repeat penalties, and one-time bonuses with a single consideration (these concepts were
discussed in detail in our previous work [Dill 2006]). It can also support a wide range of
evaluation functions that drive decision-making based on that elapsed time—for exam-
ple, by comparing to a random value (as we do in this example) or applying a response
curve (as described in Lewis’s chapter on utility function selection and in Mark’s book
on Behavioral Mathematics [Lewis 2016, Mark 2009]). Having a single consideration that
does all of that means you can reuse it in seconds, rather than spending minutes or even
hours reimplementing it. It also means that when you reuse it, you can be confident that it
will work because it has already been heavily tested and thus is unlikely to contain a bug.

Copyright Material – Provided by Taylor & Francis

998.5 Modular AI: Conceptual Abstractions and Modular Components

One issue not discussed above is how the reasoners actually go about combining con-
siderations in order to evaluate each option. This is a big topic so we will bypass it for now
(we devote an entire section to it below) and simply say that considerations return a set of
weight values which are combined to guide the reasoner’s decisions.

8.5.2 Weight Functions
While considerations do a lot to reduce duplication in your code base, there is still a lot of
repetition between different types of considerations. Consequently, many of the remaining
conceptual abstractions were created in order to allow us to encapsulate duplicate code
within the considerations themselves. The first of these is the weight function.

Many different types of considerations calculate a floating point value, and then convert
that single float into a set of weight values. The weight function abstraction is responsible
for making that conversion. For example, the Distance consideration calculates the dis-
tance between two positions, and then uses a weight function to convert that floating point
value into a set of weight values. Some games might use a Health consideration, which
does the same thing with the NPC’s health (or an enemy’s health, for that matter). Other
games might use an Ammo consideration. The ExecutionHistory consideration that
we used on the sniper is another example. It actually has three weight functions: one to use
when the option is selected, one to use if it has never been selected, and one to use if it was
previously selected but is not selected right now.

Of course, not all considerations produce a floating point value. The EntityExists
consideration, for example, produces a Boolean: TRUE if it found an entity, FALSE if it
did not. Different instances of the EntityExists consideration might return different
weight values for TRUE or FALSE, however. In the sniper example, one EntityExists
consideration vetoes the option when an entity was found (the one that checks line of
retreat) while the other vetoes the option if one is not found (the one that picks a target to
shoot at). This is done by changing the configuration of the weight function that each one
uses. Other considerations might also produce Boolean values—for instance, some games
might have a LineOfSight consideration that is TRUE if there is line of sight between
two characters, FALSE if there is not.

There are a number of different ways that we could convert from an input value to
a set of weight values. For floating point numbers, we might apply a response curve
(the BasicCurve weight function), or we might divide the possible input values into
sections and return a different set of weight values for each section (e.g., veto the Snipe
option if the range to the enemy is less than 50 m or more than 300 m, but not if it
is in between—the FloatSequence weight function), or we might simply treat it
as a Boolean (the Boolean weight function). We might even ignore the input values
entirely and always return a fixed result (the Constant weight function)—this is often
done with the ExecutionHistory consideration to ensure that a particular option
is only ever selected once or that it gets a fixed bonus if it has never been selected, for
example.

The consideration should not have to know which technique is used, so we use a con-
ceptual abstraction in which the conversion is done using a consistent interface and
the different approaches are implemented as modular components (the BasicCurve,
FloatSequence, Boolean, or Constant weight functions, for example). The inter-
face for this conceptual abstraction is given in Listing 8.2.

Copyright Material – Provided by Taylor & Francis

100 8. Modular AI

Coming back to the sniper example, both of the EntityExists considerations would
use a Boolean weight function. The Boolean weight function is configured with two
sets of weight values: one to return if the input value is TRUE, the other if it is FALSE. In
these two cases, one set of weight values would be configured to veto the option (the TRUE
value for the escape route check, the FALSE value for the target selection), while the other
set of weight values would be configured to have no effect on the final decision.

The ExecutionHistory consideration is a bit more interesting. It has three weight
functions: one to use when the option is executing (which evaluates the amount of time
since the option was selected), one to use if the option has never been selected (which evalu-
ates the amount of time since the game was loaded), and one to use if the option has been
selected in the past but currently is not selected (which evaluates the amount of time since
it last stopped executing). In this instance, when the option is selected (i.e., when the sniper
is in the process of taking a shot) we use a Constant weight function that is configured
to have no effect. We also configure the weight function for when option has never been
selected in the same way—the sniper is allowed to take its first shot as soon as it has a target.
The third weight function (which is used if the option is not currently selected but has been
executed in the past) uses a FloatSequence weight function to check whether the input
value is greater than our cooldown or not, and returns the appropriate result. This weight
function is also configured to randomize the cooldown each time the option is selected.

8.5.3 Reasoners
As discussed in previous sections, reasoners implement the conceptual abstraction that is
responsible for making decisions. The configuration of each reasoner component will specify
the type of reasoner, and also what the reasoner’s options are. Each option can contain a set
of considerations and a set of actions. The considerations are used by the reasoner to evaluate

Listing 8.2. The weight function interface.

class AIWeightFunctionBase
{
public:
 // Load the configuration.
 virtual bool Init(const AICreationData& cd) = 0;

 // Weight functions can deliver a result based on the
 // input of a bool, int, float, or string. By default
 // int does whatever float does, while the others all
 // throw an assert if not defined in the subclass.
 virtual const AIWeightValues& CalcBool(bool b);
 virtual const AIWeightValues& CalcInt(int i);
 virtual const AIWeightValues& CalcFloat(float f);
 virtual const AIWeightValues& CalcString(AIString s);

 // Some functions need to know when the associated option
 // is selected/deselected (for example, to pick new
 // random values).
 virtual void Select() {}
 virtual void Deselect() {}
};

Copyright Material – Provided by Taylor & Francis

1018.5 Modular AI: Conceptual Abstractions and Modular Components

each option and decide which one to select, and the actions specify what should happen when
the associated option is selected. The interface for this abstraction is given in Listing 8.3.

GAIA currently provides four different modular reasoner components:

 • The Sequence reasoner, which performs its options in the order that they are
listed in the configuration (much like a sequence node in a BT). Unlike the other
types of reasoners, the sequence reasoner always executes each of its options, so it
ignores any considerations that may have been placed on them.

 • The RuleBased reasoner, which uses the considerations on each option to deter-
mine whether the option is valid (i.e., whether it should be executed, given the cur-
rent situation). Each tick, this reasoner goes down its list of options in the order that
they are specified in the configuration and selects the first one that is valid. This is
essentially the same approach as that of a selector node in many BT implementations.

Listing 8.3. The reasoner interface.

class AIReasonerBase
{
public:
 // Load the configuration.
 virtual bool Init(const AICreationData& cd);

 // Used by the picker to add/remove options
 void AddOption(AIOptionBase& option);
 void Clear();

 // Enable/Disable the reasoner. Called when containing
 // action is selected or deselected, or when brain is
 // enabled/disabled.
 void Enable();
 void Disable();
 bool IsEnabled() const;

 // Sense, Think, and Act.
 // NOTE: Subclasses should not overload this. Instead,
 // they should overload Think() (ideally they shouldn't
 // have to do anything to Sense() or Act()).
 void Update();

 // Get the current selected option, if any. Used by the
 // picker.
 AIOptionBase* GetSelectedOption();

 // Most reasoners are considered to be done if they don't
 // have a selected option, either because they failed to
 // pick one or because they have no options.
 virtual bool IsDone();

protected:
 void Sense();
 virtual void Think();
 void Act();
};

Copyright Material – Provided by Taylor & Francis

102 8. Modular AI

 • The FSM reasoner, which allows us to implement a finite-state machine. For this
reasoner, each option contains a list of transitions, rather than having consider-
ations. Each transition specifies a set of considerations (which determines whether
the transition should be taken), as well as the option (i.e., the state) which should
be selected if the transition does fire. The reasoner uses a picker (described in
Section 8.7, below) to pick from among the transitions.

 • The DualUtility reasoner, which is GAIA’s utility-based reasoner. The dual
utility reasoner calculates two floating point values: the rank and the weight. It
then uses these two values, along with the random number generator, to select an
option. Dual utility reasoning is discussed in our previous work (Dill 2015, Dill
et al. 2012) and also in Section 8.6.2.

Of course, a modular architecture does not need to be limited to only these approaches to
decision-making. For example, we have often considered implementing a Goal-Oriented
Action Planner (GOAP) reasoner (for those cases when we want to search for sequences
of actions that meet some goal). Like the FSM reasoner, this would require a bit of clever
thinking but should be quite possible to fit into GAIA by implementing a new type of rea-
soner component.

8.5.4 Actions
Actions are the output of the reasoner—they are responsible for sending commands back
to the game, making changes to the blackboard, or whatever else it is that the reasoner has
decided to do. Their interface is given in Listing 8.4.

As discussed above, actions can either be abstract or concrete. Abstract actions are
actions which exist to guide the decision-making process, like the subreasoner action.
Other abstract actions include the Pause and SetVariable actions. The Pause action
delays a specified amount of time before marking itself as complete. It is commonly used in

Listing 8.4. The action interface.

class AIActionBase
{
public:
 // Load the configuration.
 virtual bool Init(const AICreationData& cd) = 0;

 // Called when the action starts/stops execution.
 virtual void Select() {}
 virtual void Deselect() {}

 // Called every frame while the action is selected.
 virtual void Update() {}

 // Check whether this action is finished executing. Some
 // actions (such as a looping animation) are never done,
 // but others (such as moving to a position) can be
 // completed.
 virtual bool IsDone() { return true; }
};

Copyright Material – Provided by Taylor & Francis

1038.5 Modular AI: Conceptual Abstractions and Modular Components

the Sequence reasoner, to control the timing of the concrete actions. The SetVariable
action is used to set a variable on a data store (most often the brain’s blackboard).

Concrete actions, by their very nature, cannot be implemented as part of the GAIA
library. They contain the game-specific code that is used to make NPCs do things.
Common concrete actions include things like Move, PlayAnimation, PlaySound,
FireWeapon, and so on. Our factory system handles the task of allowing the developer
to inject game-specific code into the AI (Dill 2016).

8.5.5 Targets
Targets provide an abstract way for component configurations to specify positions and/or
entities. For example, the Distance consideration measures the distance between two posi-
tions. In order to make this consideration reusable, GAIA needs some way to specify, in the
configuration, what those two positions should be. Perhaps one is the position of the NPC
and the other is the player. Perhaps one is an enemy and the other is an objective that the
NPC has been assigned to protect (in a “capture the flag” style game, for instance). Ideally,
the distance consideration should not have to know how the points it is measuring between
are calculated—it should just have some mechanism to get the two positions, and then it
can perform the calculation from there. Similarly, the LineOfSight consideration needs
to know what positions or entities to check line of sight between, the Move action needs to
know where to move to, the FireWeapon action needs to know what to shoot at, and so on.

GAIA’s solution to this is the target conceptual abstraction, whose interface is shown in
Listing 8.5. Targets provide a position and/or an entity for other components to use. For
example, the Self target returns the actor and position for the NPC that the AI controls.
The ByName target looks up a character by name (either from the actors or the contacts,
depending on how it is configured).

Listing 8.5. The target interface.

class AITargetBase
{
public:
 // Load the configuration.
 virtual bool Init(const AICreationData& cd) = 0;

 // Get the target's position. If the target has an
 // entity, it should generally be that entity's
 // position.
 virtual const AIVectorBase* GetPosition() const = 0;

 // Not all types of targets have entities. If this one
 // does, get it. NOTE: It's possible for HasEntity() to
 // return true (i.e. this type of target has an entity)
 // but GetEntity() to return NULL (i.e. the entity that
 // this target represents doesn't currently exist). In
 // that case, HasEntity() should return true, but
 // IsValid() should return false.
 virtual AIEntityInfo* GetEntity() const { return NULL; }
 virtual bool HasEntity() const { return false; }

(Continued)

Copyright Material – Provided by Taylor & Francis

104 8. Modular AI

All targets can provide a position, but some do not provide an entity. For example, the
Position target returns a fixed (x, y, z) position (which is specified in the target’s configu-
ration), but does not return an entity. The person writing the configuration should be aware
of this and make sure not to use a target that does not provide an entity in situations where an
entity is needed, but GAIA also has checks in place to ensure that this is the case. In practice
this is really never an issue—it simply would not make sense to use a Position target in a
situation where an entity is needed, so why would a developer ever do that?

As with all conceptual abstractions, some types of targets can be implemented in GAIA,
while others need to be implemented by the game. For example, some games might add a
Player target which returns the contact (or actor) for the PC. For other games (such as
multiplayer games, or games where the player is not embodied in the world) this type of
target would make no sense.

8.5.6 Regions
Regions are similar to targets, except that instead of specifying a single (x, y, z) position
in space, they specify a larger area. They are commonly used for things like triggers and
spawn areas, although they have a myriad of other uses. The sniper configuration, for
example, would use them to specify both the kill zone (the area it should fire into) and the
line of retreat (the area it plans to move through in order to get away).

Regions are a conceptual abstraction because it is useful to supply the AI designer with
a variety of ways to specify them. Implementations might include a circular region (speci-
fied as a center position—or a target—and a radius), a parallelogram region (specified as
a base position and two vectors to give the length and angle of the sides), and a polygon
region (specified as a sequence of vertices). Similarly, some games will be perfectly happy
with simple 2D regions, while others will need to specify an area in all three dimensions.
The interface for this abstraction is given in Listing 8.6.

 // Checks whether the target is valid. For instance, a
 // target that tracks a particular contact by name might
 // become invalid if we don't have contact with that
 // name. Most target types are always valid.
 virtual bool IsValid() const { return true; }
};

Listing 8.6. The region interface.

class AIRegionBase
{
public:
 // Load the configuration.
 virtual bool Init(const AICreationData& cd) = 0;

 // Test if a specified position is within the region
 virtual bool IsInRegion(const AIVector& pos) const = 0;

(Continued)

Copyright Material – Provided by Taylor & Francis

1058.6 Combining Considerations

8.5.7 Other Conceptual Abstractions
Conceptual abstractions provide a powerful mechanism that allows us to encapsulate and
reuse code which otherwise would have to be duplicated. The abstractions discussed above
are the most commonly used (and most interesting), but GAIA includes a few others,
including:

 • Sensors, which provide one mechanism to pass data into the AI (though most
projects simply write to the data stores directly).

 • Execution filters, which can control how often reasoners and/or sensors tick.
 • Entity filters, which are an alternative to pickers for selecting an entity that meets

some set of constraints.
 • Data elements, which encapsulate the things stored in data stores.
 • Vectors, which abstract away the implementation details of how a particular game

or simulation represents positions (it turns out that not every project uses (x, y, z)).

Furthermore, as GAIA continues to improve, from time to time new conceptual abstractions
are found and added (vectors are the most recent example of this). GAIA includes a system
of macros and templatized classes that allow us to create most of the infrastructure for each
conceptual abstraction, including both their factory and the storage for any global configura-
tions, by calling a single macro and passing in the name of the abstraction (Dill 2016).

8.6 Combining Considerations

Considerations are the single most important type of modular component. They are, in
many ways, the key decomposition around which GAIA revolves. In general terms, they
are the bite-sized pieces out of which decision-making logic is built. They represent con-
cepts like the distance between two targets, the amount of health a target has left, or how
long it is been since a particular option was last selected. Reasoners use the considerations
to evaluate each option and select the one that they will execute—but how should reason-
ers combine the outputs of their considerations?

Over the years we have tried a number of different solutions to this problem. Some
were quite simple, others were more complex. This chapter will present one from each
end of the spectrum: a very simple Boolean approach that was used for a trigger system
in an experimental educational game (Dill and Graham 2016, Dill et al. 2015) and a more
complex utility-based approach that combines three values to perform the option’s evalua-
tion (Dill 2015, Dill et al. 2012). While the latter approach might initially seem too hard to
work with, experience has shown that it is both extremely flexible and, once the basic con-
ventions are understood, straightforward to use for both simple and complex decisions.

 // Set the outVal parameter to a random position within
 // the region
 // NOTE: IT MAY BE POSSIBLE FOR THIS TO FAIL on some
 // types of regions. It returns success.
 virtual bool GetRandomPos(AIVector& outVal) const = 0;
};

Copyright Material – Provided by Taylor & Francis

106 8. Modular AI

8.6.1 Simple Boolean Considerations
The simplest way to combine considerations is to treat them as Booleans. Each option is
given a single consideration, which either returns TRUE (the option can be selected) or
FALSE (it cannot). Logical operations such as AND, OR, and NOT can be treated as regular
considerations, except that they contain one or more child considerations and return the
combined evaluation of their children. Thus an option’s single consideration will often be
an AND or an OR which contains a list of additional considerations (some of which may,
themselves, be Boolean operations).

This approach was used for the trigger system in The Mars Game, which was an experi-
mental educational game, set on Mars, that taught topics drawn from ninth and tenth
grade math and programming. An example of a Mars Game trigger is shown in Listing 8.7
(specified in YAML). This particular trigger waits 15 seconds after the start of the level,
and then plays a line of dialog that gives a hint about how to solve a particular challenge
in the game, and also writes a value on the blackboard indicating that the hint has been
played. However, it only plays the hint if:

 • The hint has not already been played during a previous level (according to that
value on the blackboard).

 • The player has not already started executing a Blockly program on their rover.
 • The player’s rover is facing either south or west (i.e., 180° or 270°), since the hint

describes how to handle the situation where you start out facing the wrong way.

Listing 8.7. Trigger a hint.

playHint_2_9_tricky:
 triggerCondition:
 - and:
 - delay: # Wait 15 seconds after the
 - 15 # start of the level.
 - not:
 - readBlackboard: # Check the blackboard and
 - thisOneIsTrickyHint # only play it once.
 - not: # Don't play it if the player
 - isBlocklyExecuting: # has already started their
 - rover # program.
 - or:
 - hasHeading: # Only play it if the rover
 - rover # is facing south or west.
 - 180
 - hasHeading:
 - rover
 - 270
 actions:
 - playSound: # Play the hint dialog.
 - ALVO37_Rover
 - writeToBlackboard: # Update the blackboard so
 - thisOneIsTrickyHint # that it won't play again.

Copyright Material – Provided by Taylor & Francis

1078.6 Combining Considerations

This approach has the obvious advantage of great simplicity. Most developers—even game
designers—are comfortable with Boolean logic, so it is not only straightforward to implement
but also straightforward to use. It works quite well for things like trigger systems and rule-
based reasoners that make decisions about each option in isolation, without ever needing to
compare two options together to decide which is best. It suffers greatly, however, if there is
ever a case where you do want to make more nuanced decisions—and those cases often pop
up late in a project, when the designer (or QA, or the publisher, or the company owner) comes
to you to say “what it does is mostly great, but in this one situation I would like it to…”

With that in mind, most projects will be best served by an approach that allows Boolean
decisions to be specified in a simple way, but also supports complex comparisons when and
where they are needed—which brings us to dual utility considerations.

8.6.2 Dual Utility Considerations
Dual utility considerations are the approach used by GAIA. Each consideration returns
three values: an addend, a multiplier, and a rank. These three values are then combined to
create the overall weight and rank of the option, which are the two utility values that give
this approach its name.

8.6.2.1 Calculating Weight and Rank

Taking those steps one at a time, the first thing that happens is that the addends and
multipliers are combined into an overall weight for the option (WO). This is done by first
adding all of the addends together, and then multiplying the result by all of the multipliers.

 W A MO

i

n

i

i

n

i=












⋅












= =
∑ ∏

1 1

 (8.1)

Next, the option’s overall rank (RO) is calculated. This is done by taking the max of the
ranks of the considerations.

 R RO i
n

i= ()=Max 1 (8.2)

There are other formulas that could be used to calculate weight and rank, and GAIA does
support some alternatives (more on this in a later section), but the vast majority of the time
these two formulas are the ones that we use.

8.6.2.2 Selecting an Option

Once the weight and rank have been calculated, the reasoner needs to use them to select
an option. Exactly how this is done depends on the type of the reasoner, but all are based
on the dual utility reasoner.

The idea behind dual utility reasoning is that the AI will use the rank to divide the
options into categories, and then use weight-based random to pick from among the options
in the highest ranked category. In reality, there are actually four steps to accomplish this:

 1. Eliminate any options that have WO ≤ 0. They cannot be selected in step 4 and will
make step 2 more complicated, so it is best to eliminate them up front.

Copyright Material – Provided by Taylor & Francis

108 8. Modular AI

 2. Find the highest rank from among the options that remain, and eliminate any
option with a rank lower than that. This step ensures that only options from the
highest ranked category are considered.

 3. Find the highest weight from among the options that remain, and eliminate
options whose weight is “much less than” that weight. “Much less than” is defined
as a percentage that is specified in the reasoner’s configuration—and in many
cases the reasoner is configured to skip this step entirely. This step makes it possi-
ble to ensure that the weight-based random will not pick a very low weight option
when much better options exist, because doing so often looks stupid—the option
was technically possible, but not very sensible given the other choices available.

 4. Use weight-based random to select from among the options that remain.

A couple things are worth calling out. First, notice step 1. Any option can be eliminated
simply by setting its weight to 0, no matter what the weights and ranks of the other options
are. What is more, looking back at Equation 8.1, any consideration can force the weight of
an option to 0 (i.e., veto it) by returning a multiplier of 0, no matter what the values on the
other considerations. Anything times 0 is 0. This provides a straightforward way to treat
dual utility options as if they had purely Boolean considerations when we want to. We say
that an option is valid (which is to say that it is selectable) if it has WO > 0 and invalid if it
does not. The rule-based reasoner works by checking its options in order, and selecting the
first valid one, regardless of rank.

8.6.2.3 Configuring Dual Utility Considerations

The key to implementing dual utility considerations is to provide default values that
ensure that even though the system is capable of considerable complexity, the complex-
ity is hidden when configuring a consideration unless and until it is needed. This section
will discuss the default values, naming conventions, and other tricks that GAIA uses to
accomplish this. Along the way, it will give examples that might be used by our sniper AI
to pick a target.

In GAIA, the most basic way to specify weight values is to simply specify the addend,
multiplier, and/or rank as attributes in the XML. Any of the three values that are
not specified will be set to a default value that has no effect (i.e., an addend of 0, a
multiplier of 1, and a rank of −FLT_MAX, which is the smallest possible floating
point value). Thus the developer who is configuring the AI only needs to specify the
values that he or she wants to change.

As an example, a good sniper should prefer to shoot at officers. In order to implement
this, the game can place a Boolean “IsOfficer” value on each contact (remember that con-
tacts are data stores, so we can store any value that we want there). This value would be true
if the NPC believes that contact to be an officer (whether or not the belief is true), false oth-
erwise. Then, in the configuration, we use a BooleanVariable consideration to look up
this value from the PickerEntity target (the picker entity is the entity that we are con-
sidering picking). The consideration uses a Boolean weight function to set the multiplier
to 10 if the value is true, otherwise it does nothing (i.e., returns default values). Assuming
that there are about 10 enlisted enemies (each with a weight of roughly 1) per officer (with a
weight of roughly 10) this means that, all other things being equal, the sniper will shoot at
an officer about half of the time. This consideration’s configuration is shown in Listing 8.8.

Copyright Material – Provided by Taylor & Francis

1098.6 Combining Considerations

In some cases, a consideration wants to prevent its option from being selected no mat-
ter what the other considerations say. For example, when the sniper is picking its target we
might want to ensure that it only shoots at entities that it thinks are enemies. This could be
implemented by storing the “Side” of each contact as an AIString, with possible values of
“Friendly,” “Enemy,” or “Civilian.” If the “Side” is not “Enemy,” then the sniper should not select
this target no matter where it is or whether it is an officer or not. This could be configured by
specifying a multiplier of 0, but configurations should be more explicit and easier to read.
With this in mind, rather than specifying an addend, multiplier, and rank, weights can
specify a Boolean veto attribute. If veto is true then, under the covers, the multiplier
will be set to 0. If it is false, then the default values will be used for all three weight values.

The resulting consideration for the sniper would look like Listing 8.9. This consider-
ation is much like the one in Listing 8.8, except that it looks up a string variable rather
than a Boolean one, and passes the result into a String weight function. The string
weight function tries to match the string against each of its entries. If the string does not
match any of the entries, then it returns the default values. In this case, that means that
if the string is “Enemy,” then the consideration will have no effect (because when veto
is false it returns the default values), otherwise it will set the multiplier to 0 (because
veto is TRUE) and thus make the option invalid.

As an aside, the considerations in Listings 8.8 and 8.9 do a nice job of showing exactly
why modular AI is so powerful. These considerations evaluate the value from a variable on
a data store. It could be any variable on any data store. In this particular case the data store
is specified using a target (rather than being, say, the NPC’s actor or the brain’s blackboard),

Listing 8.8. A consideration that prefers to pick officers.

<Consideration Type="BooleanVariable"
 Variable="IsOfficer"
 DataStore="Target">
 <DataStoreTarget Type="PickerEntity"/>
 <WeightFunction Type="Boolean">
 <TrueWeights Multiplier="10"/>
 </WeightFunction>
</Consideration>

Listing 8.9. A consideration that vetoes everything other than enemies.

<Consideration Type="StringVariable"
 Variable="Side"
 DataStore="Target">
 <DataStoreTarget Type="PickerEntity"/>
 <WeightFunction Type="String">
 <Entries>
 <String Value="Enemy" Veto="False"/>
 </Entries>
 <Default Veto="True"/>
 </WeightFunction>
</Consideration>

Copyright Material – Provided by Taylor & Francis

110 8. Modular AI

which again could be any type of target that specifies an entity. Once the consideration
has looked up the value for the variable, it passes that value to a weight function to be con-
verted into weight values. Without the ideas of considerations, and data stores, and weight
functions, we would have to write a specialized chunk of code for each of these checks that
is only used inside of the sniper’s target selection, and is duplicated anywhere else that a
Boolean data store variable is used. Furthermore, that code would be dozens of lines of
C++ code, not a handful of lines of XML. Most importantly, though, the values being spec-
ified in the XML are for the most part the sorts of human concepts that we would use when
describing the logic to a coworker or friend. What should the AI evaluate? The target that
it is considering shooting (the PickerEntity target). How should it evaluate that target?
By checking whether it is an enemy, and whether it is an officer. What should it do with
this evaluation? Only shoot at enemies, and pick out the enemy officers about half the time.

There is one other detail to configuring considerations that has not been discussed yet.
In order to be selected, every option needs to have a weight that is greater than 0, but the
default addend for all of the considerations is 0. If we do not have at least one consideration
with an addend greater than 0 then the overall weight is guaranteed to be 0 for the same
reason it is when we set the multiplier to 0—anything times 0 is 0. Furthermore, we would
like the default weight for all options to be something reasonable, like 1.

We address this problem with the Tuning consideration, which is a consideration that sim-
ply returns a specified addend, multiplier, and rank, and which has a default addend
of 1. The option’s configuration can (and often does) specify a Tuning consideration, but if it
does not then a default Tuning consideration with an addend of 1 will automatically be added.

8.6.2.4 Changing Combination Techniques at Runtime

Up until now, we have said that the option owns the considerations, and is responsible for
combining them together for the reasoners. This is actually slightly inaccurate. The option
has an AIConsiderationSet, which in turn contains the considerations. The consid-
eration set is responsible for combining its considerations and returning the overall weight
and rank, and it can also return the combined addend and multiplier for its considerations
without multiplying them into an overall weight. Its interface is shown in Listing 8.10. This
distinction is important, because it means that we can place flags on the consideration set
to specify that the considerations in that particular set should be combined with different
rules. What is more, there is a special type of consideration that contains another consid-
eration set (called the AIConsideration_ConsiderationSet). This makes it pos-
sible to have different rules for some of the considerations on an option than for the others.

The most commonly used alternate approaches for combining considerations are ones
that apply different Boolean operations to the weights. By default, if any consideration
vetoes an option (i.e., returns a multiplier of 0) then that option will not be selected. This
is in essence of a conjunction (i.e., a logical AND)—all of the considerations have to be
“true” (i.e., have multiplier greater than 0) in order for the option to be “true” (i.e., valid).
In some cases, rather than an AND, we want a logical OR—that is, we want the option
to be valid as long as at least one consideration does not have a multiplier of 0. This is
implemented by having the consideration set ignore any consideration with a multiplier
less than or equal to 0, unless every consideration has a multiplier that is less than or
equal to 0. Similarly, NOT is implemented by having the consideration replace any multi-
plier that is less than or equal to 0 with 1, and any multiplier that is greater than 0 with 0.

Copyright Material – Provided by Taylor & Francis

1118.7 Pickers

GAIA also supports different approaches for combining the ranks: rather than taking
the max, it can take the min or add all of the considerations’ ranks together to get the
overall rank. All of these changes are configured just like everything else—which is to say
that there is an attribute that tells the consideration set which calculation method to use,
and the defaults (when the attribute is not specified) are to use the standard approaches.

More techniques for configuring dual utility considerations and for working with util-
ity in general can be found in Dill (2006), Dill et al. (2012), Lewis (2016), and Mark (2009).

8.7 Pickers

The last topic that we will cover in this chapter is pickers. Pickers use a reasoner to go
through a list of things (typically either the list of contacts, actors, or threats, but it
could also be the list of transitions on an FSM option) and select the best one for some
purpose (e.g., the best one to talk to, the best on to shoot at, the best one to use for cover,
etc.). There are slight differences between the picker used by the EntityExists con-
sideration (which picks an entity) and the one used by an FSM reasoner (which picks a
transition), but the core ideas are the same; in the interests of brevity, we will focus on
picking entities.

While most reasoners have all of their options defined in their configuration, a picker’s
reasoner has to pick from among choices that are determined at runtime. For example,

Listing 8.10. The AIConsiderationSet interface.

class AIConsiderationSet
{
public:
 bool Init(const AICreationData& cd);

 // Evaluate all of the considerations and calculate the
 // overall addend, multiplier, weight, and rank.
 void Calculate();

 // Sets the best rank and weight currently under
 // consideration. These don't change the calculated
 // values, but they will change the values returned by
 // GetRank() and GetWeight().
 void SetScreeningWeight(float bestWeight);
 void SetScreeningRank(float bestRank);

 // Get the rank and weight. GetWeight() returns 0 if
 // the screening rank or screening weight checks fail.
 float GetWeight() const;
 float GetRank() const;

 // Get the raw values, unscreened.
 float GetAddend() const;
 float GetMultiplier() const;
 float GetWeightUnscreened() const;
 float GetRankUnscreened() const;
};

Copyright Material – Provided by Taylor & Francis

112 8. Modular AI

we might use a picker to look through our contacts to pick something to shoot at, or to look
through our threats to pick one to react to, or to look through nearby cover positions to pick
one to use (although the game would have to extend GAIA with support for cover positions
to do this last one). The EntityExists considerations in our sniper example use pickers
to pick something to shoot at, and also to check for an entity that is blocking its line of retreat.
The first picker should use a dual utility reasoner, because it wants to pick the best entity. The
second one might use a rule-based reasoner, because it just needs to know whether such an
entity exists or not.

Picker options are created on-the-fly by taking all of the entities in some category (for
instance all of the actors, or all of the contacts, or all of the threats), and creating an option
for each one. Each of these options is given the same considerations, which are specified
in the configuration. The considerations can access the entity that they are responsible for
evaluating by using the PickerEntity target. For example, the picker that is used to pick
a sniper’s target might have considerations that check things like the distance to the target,
whether it is in the kill zone, how much cover it has, whether it is an enemy, whether it is an
officer, and so forth. The picker that checks line of retreat would simply check whether each
entity is an enemy, and whether it is in the region that defines the escape route.

Putting everything together, a simple option for the sniper that considers taking a shot
might look like Listing 8.11. This option uses an EntityExists consideration to pick
a target, and then stores the selected target in the SnipeTarget variable on the brain’s
blackboard. The picker has two considerations—one to check that the target is an enemy,
and the other to check that it is between 50 m and 300 m away. It uses a Boolean weight
function to veto the option if a target is not found. If a target is found, it uses the Fire
action to take a shot. In reality, we would probably want to add more considerations to the
picker (to make target selection more intelligent), but the key ideas are shown here.

Listing 8.11. An option for the sniper, which picks a target and shoots at it.

<Option Type="ConsiderationAndAction">
 <Considerations>
 <!-- Look through the contacts, pick a target, store it
 on the brain's blackboard as SnipeTarget. -->
 <Consideration Type="EntityExists"
 Location="Contacts"
 Variable="SnipeTarget">

 <Picker>
 <!-- This picker uses a dual utility reasoner because
 it wants to pick the *best* target. A picker
 that just wants to check whether any entity
 meets some set of constraints (like the one for
 checking line of retreat) would likely use a
 rule-based reasoner instead. -->
 <Reasoner Type="DualUtility"/>

(Continued)

Copyright Material – Provided by Taylor & Francis

1138.7 Pickers

 <Considerations>
 <!-- Only targets between 50m and 300m away -->
 <Consideration Type="Distance">
 <FromTarget Type="Self"/>
 <ToTarget Type="PickerEntity"/>
 <WeightFunction Type="FloatSequence">
 <Entries>
 <Entry Exact="50" Veto="true"/>
 <Entry Exact="300" Veto="false"/>
 </Entries>
 <Default Veto="true"/>
 </WeightFunction>
 </Consideration>

 <!-- Only enemies -->
 <Consideration Type="StringVariable"
 Variable="Side"
 DataStore="Target">
 <DataStoreTarget Type="PickerEntity"/>
 <WeightFunction Type="String">
 <Entries>
 <String Value="Enemy" Veto="False"/>
 </Entries>
 <Default Veto="True"/>
 </WeightFunction>
 </Consideration>

 <!-- Other considerations (like the one to prefer
 officers, or one to check that the target is
 in the kill zone) could be added here. -->

 </Considerations>
 </Picker>

 <!-- Use a default Boolean weight function – that is,
 veto if a target is not found -->
 <WeightFunction Type="Boolean"/>
 </Consideration>

 <!-- The considerations to check line of retreat and time
 since the last shot would go here. -->
 ...

 </Considerations>

 <Actions>
 <!-- Fire at the target the picker picked -->
 <Action Type="Fire">
 <Target Type="DataElement_EntityList"
 Variable="SnipeTarget"/>
 </Action>
 </Actions>
</Option>

Copyright Material – Provided by Taylor & Francis

114 8. Modular AI

8.8 Conclusion

Modular AI is an approach to AI specification that draws heavily on principles from soft-
ware engineering to dramatically reduce code duplication and increase reuse. It allows the
developer to rapidly specify decision-making logic by plugging together modular com-
ponents that represent human-level concepts, rather than by implementing code in C++.
Because these components are implemented once and then widely reused, they become
both more robust (i.e., more heavily tested) and more feature laden (i.e., capable of more
subtle nuance) than would be feasible if each component were only ever used once. What’s
more, because most of the work consists of invoking code that has already been written, AI
specification can be done much, much faster than would otherwise be possible. Modular
AI has been used with success on several projects that were only a couple months long,
including one game that sold over 5,000,000 copies in which we implemented all of the
boss AI, from scratch (including implementing the architecture), in less than 4 months.

This chapter presented a full modular architecture (GAIA), which uses a variety of differ-
ent types of modular components. Of all of those conceptual abstractions, considerations are
by far the most powerful. For those who are constrained to work within an existing architec-
ture, it is very possible to get much of the benefit of modular AI even within an existing archi-
tecture, simply by implementing considerations and allowing them to drive your evaluation
functions. We took this approach on another best-selling game with great success.

References

Dill, K. 2006. Prioritizing actions in a goal based RTS AI. In AI Game Programming
Wisdom 3, ed. S. Rabin. Boston, MA: Charles River Media, pp. 321–330.

Dill, K. 2015. Dual utility reasoning. In Game AI Pro 2, ed. S. Rabin. Boca Raton, FL: CRC
Press, pp. 23–26.

Dill, K. 2016. Six factory system tricks for extensibility and library reuse. In Game AI Pro
3, ed. S. Rabin. Boca Raton, FL: CRC Press, pp. 49–62.

Dill, K., B. Freeman, S. Frazier, and J. Benito. 2015. Mars game: Creating and evaluating an
engaging educational game. Proceedings of the 2015 Interservice/Industry Training,
Simulation & Education Conference, December 2015, Orlando, FL.

Dill, K. and R. Graham. 2016. Quick and dirty: 2 lightweight AI architectures. Game
Developer’s Conference, March 2016, San Francisco, CA.

Dill, K., E.R. Pursel, P. Garrity, and G. Fragomeni. 2012. Design patterns for the con-
figuration of utility-based AI. Proceedings of the 2012 Interservice/Industry Training,
Simulation & Education Conference, December 2012, Orlando, FL.

Isla, D. 2005. Handling complexity in Halo 2 AI. http://www.gamasutra.com/view/feature/
130663/gdc_2005_proceeding_handling_.php (accessed June 26, 2016).

Jacopin, É. 2016. Vintage random number generators. In Game AI Pro 3, ed. S. Rabin. Boca
Raton, FL: CRC Press, pp. 471–478.

Lewis, M. 2016. Choosing effective utility-based considerations. In Game AI Pro 3, ed.
S. Rabin. Boca Raton, FL: CRC Press, pp. 167–178.

Mark, D. 2009. Behavioral Mathematics for Game AI. Boston, MA: Charles River Media.

Copyright Material – Provided by Taylor & Francis

