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Debugging AI with Instant 
In-Game Scrubbing
David Young

6.1 Introduction

Catching AI in the act of making a wrong decision is vital in understanding what logic 
error occurred and what the root cause of the problem was. Unfortunately, the time 
between seeing a decision acted out and the actual act of making that decision can mean 
that all relevant information has already been discarded. Ideally if the entire game simu-
lation could be rewound to the exact moment in time when the error occurred, it would 
make notoriously difficult problems to debug, trivial to understand why they occurred.

Game engines have typically made reproducing these types of problems easier using 
deterministic playback methods (Dickinson 2001), where the entire state of the game simu-
lation can jump back in time and resimulate the same problem over and over (Llopis 2008). 
Unfortunately, retrofitting determinism into an engine which currently is not deterministic 
is nontrivial and requires meticulous upkeep to prevent inadvertently breaking determinism.

Luckily, debugging AI decision-making and animation selection after the fact does not 
mandate resimulation or even reproduction of the issue. Using an in-game recorder sys-
tem provides all the flexibility necessary to record all relevant data as well as allowing 
the visual representation of the game simulation to be stepped back and forth in time 
to understand when, where, and why the error occurred. This chapter will lay out the 
architecture of the in-game recorder system used internally in the creation of AAA games 
developed by Activision Treyarch.
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64 6. Debugging AI with Instant In-Game Scrubbing

6.2 In-Game Recorder

At a high level, an in-game recorder is a relatively straightforward concept; after each sim-
ulation frame finishes, iterate through every game object and record the minimal amount 
of data necessary to reproduce the exact visual state of the object. To replay recorded data, 
pause the game simulation, and restore all recorded data of each recorded game object 
from a single simulation frame. In order for a recorder system to be practically useful 
though during development, other real-world considerations must be met. The recording 
of object data must have minimal to no impact on the speed of the game simulation, the 
memory requirements of the system must be fixed, and the recording of object data must 
have no impact on the outcome of simulating objects. With these requirements in mind, 
the remainder of the chapter will detail each of the main components used to create an 
in-game recording system, as well as the practical uses of debugging AI using recorded 
debug information in tandem with navigating through playback, also known as scrubbing 
through playback.

6.2.1 Recorder Architecture
The most fundamental building blocks of recorder data are individual packets of data 
stored about recorded game objects. After a single frame of the game simulation finishes, 
a single packet of recorder data is constructed per object storing information such as posi-
tion, orientation, joint matrices, and visibility. The entirety of all packets recorded per 
simulation frame will fluctuate and are collectively stored within a frame of recording 
data. Each recorded frame is timestamped with the absolute time of the simulation as 
well as the relative time between the last recorded frame to facilitate quick retrieval and 
accurate playback.

All recorded frames of simulation are stored and managed by a single recorder man-
ager, which provides the interface between interacting with the recorder system as well as 
updating each subsystem to record object data. The manager internally stores a fixed-sized 
memory buffer which allocates and deallocates the memory consumed per packet and per 
frame of recorder data. When no additional free memory is available for allocation within 
the memory buffer, the oldest recorded frames of data are freed in order to allocate enough 
memory necessary to store a new frame’s worth of packet data.

The responsibility of serializing recorder data is left to individual record handler object 
implementations that only serialize record data based on the type of object they are classified 
for. In practice, only a few varieties of record handlers as necessary to cover recording ani-
mated models, first person view models, player characters, and player cameras. To handle the 
playback of recorded data, playback handler objects implement deserialization functionality 
based on the type of object they are classified for. Typically, there is a one-to-one mapping 
of record handlers and playback handlers registered for use by the recorder.

The last component of the system deals with the user’s interaction during record 
playback. A specialized controller implementation overrides the systems default con-
troller implementation when recorder playback is enabled. The controller’s button 
scheme is configured to provide access for free cam movement as well as rewinding, 
fast forwarding, and stepping through individual frames of recorded data. Additionally, 
the controller scheme allows for selecting particular objects of interest to limit render-
ing of additional debug information from superfluous objects. Figure 6.1 shows the 
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high-level relationships between each subsystem of the recorder’s architecture as well 
as the ownership of internal data used by the system.

6.3 Recording Data Primitives

Since a recorder is only a visualization of the past, when constructing primitive packet 
data, only the minimal visual information needed to reconstruct the state of the game 
object is necessary to be serialized. Typically, at a minimum, this piece of data includes 
the game object id, the type of the object, the position of the object, and if the object is tar-
getable during recorder playback. Figure 6.2 shows examples of different types of recorder 
packet information based on what type of primitive is being recorded.

Looking at a particular packet type, the RecorderModelPacket, let us dissect what 
exact information is being stored per game object. The first data member stored about 
the game model is a unique identifier representing the game object available throughout 
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Figure 6.1

High-level class diagram of the recorder architecture.

RecorderModelPacket

+id: int
+type: int
+next: *RecorderPacket
+targetable: bool
+position: vector3d
+angles: quaternion
+bones: matrix[]

RecorderBoxPacket

+id: int
+type: int
+next: *RecorderPacket
+targetable: bool
+position: vector3d
+angles: quaternion
+min: vector3d
+max: vector3d
+color: vector3d

RecorderTextPacket

+id: int
+type: int
+next: *RecorderPacket
+targetable: bool
+position: vector3d
+angles: quaternion
+text: char[]
+color: vector3d

Figure 6.2

Example data structures of different recorder packet types.
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the engine. Although no information about the particular model is stored in the packet, 
retrieval of this information is available with the use of the unique id. The next field stored 
defines what type of object the id corresponds to and is similarly used through the engine 
to classify specific game objects.

A pointer to the next packet is stored within each recorder packet to form a singly 
linked list of all packet data within a frame. A singly linked list of packets is used as the 
internal data structure for recorder frames since individual packets can have varying sizes 
depending on the game object they are serializing. For instance, recording model data is 
dependent on the number of bones a particular model has, which varies model to model 
even though the game object type is the same.

The next field represents if the model should be selectable to toggle additional recorded 
debug information during recorder playback. The position field is self-explanatory and rep-
resents the current position of the object within the world. The angles field represents the 
current orientation of the model. The last field represents the current orientation and posi-
tion of all skeletal bones the model has. If the model has no skeletal bones, this field is left 
null; otherwise an array of bone matrices is stored. Although it may seem counterintuitive 
to store a verbose representation for a game object’s entire skeleton, storing animated bone 
matrices is preferable to storing animation data directly in order to account for physically 
driven or inverse kinematic bone constraints.

In addition to storing game object data, the recorder provides storing  additional debug 
only primitives, which provide much of the debug capabilities of using a recorder system. 
Exposing a multitude of debug primitives such as lines, spheres, boxes,  polygons, and text 
primitives associated with specific game objects allow for easily visualizing the underlying 
decision-making structures of an AI system. During normal game  simulation, rendering 
the same debug primitives submitted to the recorder allows for identical debug capabilities 
during runtime as well as when scrubbing through recorder playback.

While recording every game object in this manner can be extremely useful during 
development, selectively recording only game objects of interest can greatly extend the 
amount of recording time allotted by the fixed memory budget. The use of recorder chan-
nels’ facilities allowing users to select what type of objects should be recorded at any given 
time within the system. Each game object type can be classified to belong in one or more 
channel classifications such as AI, animation, script, and fx. Debug primitives can also 
specify which channel they should belong to so they appear appropriately when debug-
ging specific systems such as animation or scripting.

6.3.1 Record Handlers
Since each game object type typically has dramatically different requirements for seri-
alizing visual representation, the recorder exposes a simple interface to implement dif-
ferent record handlers. A record handler primarily serves two different functions within 
the recorder: calculating the amount of memory required for any specific game object 
instance as well serializing the game object type within the specified allocated memory. 
Each record handler instance is in turn registered with the recorder specifying the type of 
game object the handler is able to serialize.

int GetRecordSize(entity* gameObject);
void Record(replay_packet* memory, entity* gameObject);
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When a game object is being processed by the recorder for serialization, the correspond-
ing record handler is first queued about the amount of memory required to construct a 
replay packet of information about the game object. If enough free memory exists within 
the memory buffer, the recorder will immediately call Record passing in the requested 
memory; otherwise the recorder must first deallocate the oldest recorded data within the 
memory buffer until the requested size can be allotted.

Decoupling serialization from the recorder’s main responsibilities allows for extending 
the recorders support for new game object types within the game engine without having 
to modify the recorder system itself. In particular, new game object types are easily imple-
mented by creating a new record handler and assigning an instance of the record handler 
during recorder registration.

One area to note though is the opaque nature of the record handler memory system. 
Replay packet memory passed into the Record function is merely uninitialized memory 
passed from the recorder’s memory buffer. The recorder itself only knows how to interpret 
the initial recorder packet fields: id, type, next, targetable, position, and angles shared 
between all record packets but does not know how to interpret the remaining additional 
memory within varying packet types. The record handler must work in tandem with the 
playback handler in order to properly interpret the additional memory.

6.4 Recording Simulation Frames

All recorder packets from a single simulation frame are stored within a single recorder 
frame structure. Figure 6.3 shows the data structure of a typical recorder frame instance. 
Looking at the fields of a recorder frame, the first field, id, represents the unique identifier 
of the recorder frame. The next two fields store pointers to the previous recorded frame 
as well as the next recorder frame if one exists. Since frame time may vary and correctly 
associating a recorded frame to a specific timestamp is critical within the recorder system 
both the absolute time of the simulation as well as the delta time since the last recorded 
frame are stored in order to play back recorded frames with the same consistence as the 
original user experienced. The last field, packets, points to the head of the singly linked 
list of recorder packet data that are associated with the frame. As traversal of packet data 
is always linear, a linked list was sufficient for fast access times.

RecorderFrame

+id: int
+previous: *RecorderFrame
+next: *RecorderFrame
+absoluteTime: float
+deltaTime: float
+packets: *RecorderPacket

Figure 6.3

Recorder frame data structure.
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Managing each simulation frame of recorder data primarily focuses around fast access 
of adjacent frame data when traversing frames forward or backward in time. Each newly 
recorded frame of data stores a head pointer to the first packet of recorder data as well as a 
pointer to the previous and next address of additional simulation frame recordings. Using 
a doubly linked list data structure allows for minimal upkeep when frames are added or 
destroyed since new frames are always added to the beginning of the list, and deleting 
frames are pruned from the tail end of the list.

To enable proper playback of recorded frames, storing both the absolute time of the 
game world as well as the delta time since the last frame was recorded provides the abil-
ity for determining which recorded frame of data represents any specific moment of time 
within the game world as well as accounting for variances in time step. Even though most 
game simulations run at fixed time steps, the actual amount of time for a simulation frame 
may exceed the allotted time budget. Storing a relative delta time within each frame allows 
for replaying data at the same rate as the original capture rate.

Even though both an absolute and relative timestamp is stored, other system’s interac-
tions with the recorder are done strictly based on game time for simplicity. Calculating 
the correct game time utilizes the stored absolute times within each frame of data, while 
scrubbing backward and forward in time utilizes only the delta time stored within a frame.

6.4.1 Recorder Manager
Managing the recorder system revolves around two distinct responsibilities, record-
ing data after a simulation frame through a standard polling update loop and replaying 
recorded data when scrubbing through recorded frames. Figure 6.4 shows the high-level 
class diagram of the recorder manager’s member data and external interface.

RecorderManager

+memory: *MemoryBuffer
+record: *RecorderHandler []
+playback: *RecordPlayback []
+controller: *RecorderController
+targetld: int
+mode: int
+currentFrame: *RecorderFrame
+firstFrame: *RecorderFrame
+lastFrame: *RecorderFrame

+Update(int delta) : void
+RegisterHandler (int type, *RecordHandler handler) : void
+RegisterPlayback (int type, *RecordPlayback playback) : void
+SetMode(int mode) : void
+SetTime(int time) : void
+SetTarget(int id) : void

Figure 6.4

Recorder manager class diagram.
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Starting with one of the most critical internal tasks within the recorder manager is the 
correct allocation and deallocation of recorder packets and frames. Internally, the man-
ager uses the memory buffer to server as a circular buffer where the oldest recorded frames 
are discarded to allow new frames to be recorded. Initialization of the manager begins 
with allocating a contiguous memory block to become the memory which the buffer inter-
nally manages. Registration of both record handlers and playback handlers soon follows 
before the manager begins recording game object data.

The game engine’s overall management and update ticking of the recorder system 
are handled by a single instance of a recorder manager. The recorder manager’s update 
function is called after the end of the game simulation loop to ensure that all processing 
of game objects has been completed before record handlers process each game object. 
As the recorder manager processes each game object, the game object is first classified 
based on object type, and the corresponding record handler is used for determining the 
proper amount of memory to request from the buffer. Once memory has been allocated, 
the recorder manager passes both the allocated memory and game object directly to the 
record hander for serialization. After a packet of information is serialized, the manager 
will correctly fix up each packet pointer as well as assigning the frame’s starting pointer to 
the first packet of recorded information.

Once all packet data within a recorder frame are serialized, the manager will update 
the corresponding next and previous frame pointers of the current first frame of 
recorder data to attach the newly recorded frame of data to the doubly linked list. The 
new frame of data now becomes the first frame of data for the manager to use when 
playback is requested.

Additional information is stored within the manager to allow quick access to both 
the most recent recorded frame of data as well as the oldest recorded frame of data for 
scrubbing as well as updating the doubly linked list when frames are deallocated and new 
frames are allocated. During recorder playback, the current frame of data being replayed 
is stored separately to allow for quick resuming of in-game scrubbing as well as selectively 
stepping forward and backward.

6.4.2 Memory Management
Since the recorder continuously runs in the background working within a fixed memory 
budget, whenever the memory buffer is unable to allocate a requested amount of memory, 
the recorder manager will continuously deallocate the oldest recorded frame until enough 
free memory is available to accommodate the new allocation request. Continuously deal-
locating the oldest recorded frames and replacing those frames with new frame data 
achieve minimal memory fragmentation within the memory buffer, causing the buffer to 
act as a circular buffer, even though only contiguous memory is used.

Figure 6.5 shows the state of memory as frames are continuously added to the buffer 
until the amount of free memory remaining would not be sufficient for an additional 
frame of recorder data. In this case, Figure 6.6 shows how the memory buffer handles 
the deallocation of the first frame of stored data, Frame 1, being immediately replaced 
with Frame 3’s data. Acting as a circular buffer, the only portions of unable memory 
with this setup will be between the last recorded frame and the first recorded frame 
as  well as some portion of unusable memory at the tail end of the memory buffer’s 
allotted memory.
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6.5 Frame Playback

In order to play back recorded frames, a few considerations need to be made to prevent 
affecting the game simulation itself. Since restoring recorded data such as position and 
orientation will act directly on a game object’s current state, the recorder must wait till 
the end of recording the latest frame’s packet data before pausing the game simulation and 
overwriting game object data. Inversely before the recorder exits playback mode, the last 
recorded frame data must be reapplied to each game object to leave every game object in 
the same condition before playback mode was enabled.

When playback mode is requested to the recorder manager, the simulation pauses 
without any other work being necessary from the recorder unless an external source has 
requested the recorder to jump back in time to a specific timestamp. In this case when tra-
versing frame data based on a timestamp, the recorder will start with the latest recorded 
frame data and work backward within the linked list of data to find the frame either 
matching the exact requested timestamp, the first timestamp immediately before the 
requested time, or the oldest remaining timestamp within the linked list.

Scrubbing forward and backward in time works on a completely different principle than 
the game world’s time. Scrubbing can either occur stepping a single frame of data forward 
or backward or can replay data at the exact same rate as the original recording. When scrub-
bing in real time, the recorder’s update loop will maintain a delta time since scrubbing was 
requested and continuously move backward or forward replaying frame data based solely 
on the accrued delta time of each frame’s data. Managing time delta based on the original 
recording rate allows for frames of data to be replayed regardless of the game’s delta time, 
which may differ from the actual delta time between each frame of recorder data.

Frame 2 Frame 3Packet 2Packet 1 Packet 1 Packet 2

Figure 6.6

Memory buffer with minimal unusable memory and fragmentation.

Frame 1 Frame 2Packet 1 Packet 1 Packet 2 Free memory

Figure 6.5

Contiguous memory layout of recorder frames and frame packets.
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6.5.1 Controlling Recorder Playback
Once in playback mode, overwriting the standard controller scheme with a custom 
 controller scheme provides the necessary flexibility to manipulate playback. In particular, 
at least two speeds of operation for fast forwarding and rewinding are crucial for  interacting 
with playback. Being able to play back data at a normal game simulation rate allows for fine 
 tuning animation work while stepping the recorder one frame at a time is typically  necessary 
for debugging decision-making logic. Since behavior selection is typically determined on a 
specific frame of simulation, all relevant recorded debug primitives are  typically only drawn 
during a single frame of recording. In addition, the controller scheme is used for selectively 
targeting which game object’s debug primitives are rendered during  playback, which helps 
narrow debugging of any specific game object.

6.6 Debugging AI

AI in previous Treyarch titles used a recorder system extensively for animation, decision-
making, and steering debugging. To debug animation playback and selection, an AI’s 
entire animation tree was recorded with each of the AI’s animation contribution, rate, 
normalized time, and selection criteria available. Scrubbing back and forth in time was 
pivotal for debugging animation pops, incorrect animation blends, and incorrect anima-
tion selection.

Debugging decision-making with the recorder allowed for recording an AI’s entire 
behavior tree in game, which displayed which branches within the tree were currently 
executing as well as where within other possible decision branches, execution terminated 
prematurely. Whenever an AI exhibited an incorrect behavior or lacked selecting the cor-
rect behavior, it was trivial to immediately drop into recorder playback; scrub backward 
in time, and immediately understand which branch of the behavior tree did not execute 
as expected.

Debugging steering-related bugs with the recorder typically involved understanding 
and addressing undesired velocity oscillations or incorrect animation selections, which 
caused AI to run into each other or other obstacles. Rendering both the velocity, steering 
contributions, as well as projected animation translation of an AI frame by frame visually, 
quickly narrowed down incorrect AI settings, incorrectly authored animations, and mali-
cious scripting overriding normal AI movement behavior.

6.6.1 Synchronizing External AI Tools
In addition to in-game debugging with the recorder, external AI tools tapped directly 
into the recorder’s current timestamp. Using a custom message bus system, the recorder 
would broadcast what current timestamp was being scrubbed, which allowed other 
tools to synchronize playback of externally stored information with the recorder’s visual 
playback. Utilizing the same message bus, the recorder could also be controlled exter-
nally through other tools to enter playback mode and jump to specific timestamps. In 
addition, a new type of assert was added to the engine called a recorder assert, which 
would pause the game simulation and set the camera immediately to a particular game 
object notifying all other external tools to synchronize with the targeted game object 
through the recorder.
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6.7 Conclusion

Debugging the root cause of any AI bug can be a challenge; let alone during development 
where the state of the world is constantly fluctuating and new additions, modifications, and 
removals are occurring simultaneously. Although the use of a recorder is not a panacea 
and cannot stop bugs from being added, the ability to debug directly in production levels 
without the need to reproduce the issue in a test map once seen by the user is an  incredibly 
 powerful tool that saves countless man hours. No logging of debug information or text 
output can even begin to compare with the immediateness of being able to visualize every 
frame of game simulation both backward and forward in time. Past and present develop-
ment of AI at Treyarch now uses a recorder as a central tool around which other tools and 
processes are created, and the benefits of such a system are still being discovered.
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