
49

5
Six Factory System Tricks for
Extensibility and Library Reuse
Kevin Dill

5.1 Introduction

These days, many games employ a data-driven AI. In other words, the decision-making
logic for the AI is not hardcoded in C++ but instead is placed in a configuration file
(generally using XML or some similar format) and loaded at runtime. This file gener-
ally specifies the configuration of a variety of different types of polymorphic objects.

The standard solution for instantiating polymorphic objects while maintaining loose
coupling between the object’s implementation and its owner is the factory pattern (Gamma
et al. 1995). Not all factory implementations are equal, however. This chapter presents tricks
and lessons learned from the factory system for the Game AI Architecture (GAIA), with
a strong emphasis on providing actual implementation details that you can use. GAIA is
discussed in detail in a later chapter of this book (Dill 2016); this chapter focuses specifi-
cally on its factories and on aspects of those factories that are worthy of reuse. Specific
topics include:

5.1 Introduction
5.2 Background
5.3 Trick #1: Abstracting the

Data Format
5.4 Trick #2: Encapsulating

the Initialization Inputs
5.5 Trick #3: Consistent

Object Construction and
Initialization

5.6 Trick #4: Injecting External
Code into the AI

5.7 Trick #5: Using Templates
and Macros to Standardize
Factory Definitions

5.8 Trick #6: Global Object
Configurations

5.9 Conclusion
References

Copyright Material – Provided by Taylor & Francis

50 5. Six Factory System Tricks for Extensibility and Library Reuse

 • A brief overview of both the factory pattern and the design requirements that
drove our implementation.

 • Trick #1: Abstracting the data format.
 • Trick #2: Encapsulating the information objects will need to initialize themselves.
 • Trick #3: A consistent approach for object construction and initialization.
 • Trick #4: The injection of code from outside of the AI library.
 • Trick #5: The use of templates and macros to standardize factory definitions.
 • Trick #6: Using global object configurations to remove duplication from the data.

After implementing the ideas contained here, you will have a factory system that:

 • To the greatest extent possible, eliminates code duplication. This greatly simplifies
debugging and maintenance, as well as reducing the chance that a bug will be
introduced in the first place.

 • Makes it easy to add new factories (one line of code) or to add new objects to an
existing factory (two lines of code).

 • Provides a powerful, consistent, easy-to-use mechanism for instantiating and ini-
tializing the objects being constructed.

 • Is decoupled from the data format, so you can switch formats without rewriting
anything else.

 • Allows code from external libraries (such as the game engine) to be injected into
the AI library without creating dependencies on the external library (critical for
AI library reuse).

 • Enables reuse within the configuration (i.e., the XML).

5.2 Background

GAIA is a modular AI architecture that is designed to be (a) extensible, meaning that as
new capabilities are needed, they can easily be added and (b) reusable, meaning that the
architecture can be quickly and easily ported from project to project, including across dif-
ferent game engines (and even to things that are not game engines, like high fidelity military
simulations). Both of these requirements have implications for the factory implementation.
In order to understand them, however, we first need to understand what factories are, what
conceptual abstractions and modular objects are, and how they interact.

5.2.1 The Factory Pattern
The factory pattern gives us a way to instantiate polymorphic objects from data without
exposing the type of the object outside of the factory itself. To break that down, imagine
that your configuration contains regions that are used for triggers, spawn volumes, and
other similar purposes. Your designers want more than one way to define a region, how-
ever, so they have you implement a “circle” region (takes a center point and radius), a
“rectangle” region (takes two sides of an axis-aligned rectangle), and a “polygon”
region (takes an arbitrary sequence of vertices and creates a closed polygon from them).

In data, each type of region needs to be defined differently, because they require different
arguments. In code, however, we do not want to have special case logic for each type of
region in each place they are used. Not only would this result in a huge amount of duplicate

Copyright Material – Provided by Taylor & Francis

515.2 Background

code, but it would be a complete nightmare if the designers requested a new type of region
late in the project! Instead, we define a base class for all of our regions that provides the
interface for all types of regions (with pure virtual functions like GetRandomPoint()
and IsInRegion()). Code which uses regions can simply interact with that interface.
Thus, for example, each nonplayer character (NPC) might have a spawner, defined in data,
which specifies the region where the NPC should spawn. That spawner could use any type
of region, but the spawner code works with the base class (i.e., the interface) so that it does
not have to know or care which specific type of region a particular NPC is using.

This still leaves a problem, however. All of the places in code that use regions need to be
able to create a region object of the appropriate subclass (rectangle, circle, etc.), as specified
in the data, but we do not want them to have to know the particular type of region that is
being created, nor do we want to have to duplicate the code for creating and loading in a
region of the correct type. We solve this by creating a region factory, which is responsible
for looking at the data, determining the type of region, creating an object of the appropriate
subclass (a.k.a. instantiating it), initializing that object using the values stored in the data (the
center and radius for the circle, the two sides for the rectangle, etc.), and then returning the
object using the interface’s type. Internally, factories are typically just giant if-then-else
statements, so a naïve implementation of the region factory might look like Listing 5.1.

5.2.2 Conceptual Abstractions and Modular Components
GAIA defines conceptual abstractions, which represent the different fundamental types of
objects that make up our AI, and modular components, which are specific implementations
of their respective abstractions. In other words, the conceptual abstraction is the interface,
and the modular components are the subclasses which implement that interface. The region,
discussed in the previous section, is one example of a conceptual abstraction, and the rect-
angle, circle, and polygon regions are different types of modular components that implement

Listing 5.1. A naïve implementation of a region factory.

AIRegionBase*
AIRegionFactory::Create(const TiXmlElement* pElement) {
 // Get the type of region we want to create
 std::string nodeType = pElement->Attribute("Type");

 // Create a region of the specified type
 AIRegionBase* pRegion = NULL;
 if (nodeType == "Circle") {
 pRegion = new AIRegion_Circle(pElement);
 } else if (nodeType == "Rectangle") {
 pRegion = new AIRegion_Rect(pElement);
 } else if (nodeType == "Polygon") {
 pRegion = new AIRegion_Poly(pElement);
 }

 return pRegion;
}

Copyright Material – Provided by Taylor & Francis

52 5. Six Factory System Tricks for Extensibility and Library Reuse

that abstraction. GAIA contains many other conceptual abstractions (targets and actions, to
name just two), and each type of conceptual abstraction has many different types of modular
components. Each conceptual abstraction has its own factory, which knows how to instanti-
ate all of its modular components. Thus the region factory instantiates all of the different
types of regions, the target factory instantiates all of the targets, and so on.

5.2.3 Extensibility
One of the primary design goals of GAIA (and a key advantage of Modular AI) is that
it is extensible. In other words, we need to be able to rapidly and safely add new types
of modular components to meet new requirements from design. Furthermore, we also
need to be able to add new types of conceptual abstractions as we discover new reusable
concepts that can improve the way in which we build our AI. Finally, because we expect
to have quite a few different conceptual abstractions (currently, there are 12), and each
conceptual abstraction can define the interface for a lot of different types of modular
components (in some cases, dozens), we want to ensure that there is as much consistency
and as little code duplication as possible either within a given factory (as it handles the
different types of modular components) or between the factories for different concep-
tual abstractions.

Trick #3 discusses how we support the addition of new types of modular components
and minimize code duplication in their instantiation, while Trick #5 discusses how we add
new types of conceptual abstractions and minimize code duplication between factories.

5.2.4 Reuse
GAIA was designed to be used like middleware. In other words, it is an independent code
library that can be plugged in and used with any project, on any game engine. In order to
make it easy to decouple GAIA from a particular application (such as a game) and reuse it
on another, GAIA cannot have any dependencies on the application.

Conceptual abstractions provide one way to do this. Continuing our spawning example,
imagine that the selection of a spawn position is part of a decision that is made inside of
GAIA. However, the designers want a custom type of region that is game-specific. Our custom
region can be implemented in the game engine but inherit from the AIRegionBase inter-
face (which is part of GAIA). The rest of GAIA can then access it via the interface without
any dependencies on the game-specific code. This example may seem a bit contrived—how
often will a region implementation be game-specific? The answer is, “more often than you
might think.” That aside, there are other conceptual abstractions that are much more often
game-dependent. Actions, for example, are modular components that are executed as a
result of the AI’s decisions. The vast majority of them (move, shoot, play an animation, speak
a line of dialog, etc.) need to call into the game engine. These actions are injected into GAIA
in exactly the same way as our hypothetical game-specific region.

There is still a problem, however. We need some mechanism for the factories to be
able to instantiate application-specific modular components, but the factories are part of
GAIA, not the application! Thus we need to be able to add application-specific components
to the factory without adding dependencies on the application or disturbing the code that
instantiates all of the modular components that are built into GAIA. The solution to this
problem is the subject of Trick #4, while Tricks #1 and #2 discuss other ways to make reuse
of the AI library easier. Finally, Trick #6 discusses reuse of data, rather than code.

Copyright Material – Provided by Taylor & Francis

535.3 Trick #1: Abstracting the Data Format

5.3 Trick #1: Abstracting the Data Format

The first thing to keep in mind as you design your load system is that the format of your
configuration may change. For example, the factory in Listing 5.1 uses a TiXmlElement,
which is an object from Tiny XML (a popular open-source XML parser [Thomason n.d.]).
The problem with depending on a specific implementation like this, or even depending
on a specific format like XML, is that over time you might discover that XML is too ver-
bose, or that the publisher requires you to use a binary data format, or that the designers
are more comfortable working in JSON or YAML, or that some project wants to use an
application-specific format, or that your favorite XML parser does not compile using
the archaic version of GCC that some application requires, or that its implementation
does not meet your stringent memory management requirements, or . . . you get the idea.
Consequently, the format of your data (and the code to parse it) should be wrapped so
that it can be replaced in a single location rather than having to chase its tendrils through
the entire application. Ideally, it should be treated like any other conceptual abstraction –
that is, define the parser interface and provide one or more implementations that ship
with the AI library, but also allow the application to define its own parser if needed. This
allows the AI library to support project-specific data formats without adding dependen-
cies on the project.

In GAIA, we parse all of the configurations when the application is loaded and store
them internally as AISpecificationNodes. Specification nodes have a name (the
label from the XML node), a type (the type attribute from the XML node), and attri-
butes and subnodes (the remaining attributes and subnodes from the XML). This is a
pretty thin wrapper, but it gives us enough leverage to support JSON or YAML, for
example.

Wrapping the data in this way provides another major benefit as well. Because we con-
trol the representation, we can control the way it is accessed. Thus, instead of exposing the
data in a raw format, we provide a host of functions that allow you to get data of different
types. This includes functions that read in simple types (floats, integers, Booleans, [x, y, z]
positions, etc.) as well as abstract types (i.e., conceptual abstractions such as regions). As a
result, we can do things such as:

 • Standardize the way configurations are formatted so that it will be consistent for
all modular components (e.g., Booleans must be “true” or “false”, not “yes”
or “no”, and positions are specified using separate x, y, and z attributes rather
than a single attribute that provides all three values).

 • Check for errors in the data format (e.g., ensure that a parameter that is supposed
to be a float is actually a valid number and not, for example, “12.2.4”).

 • Standardize default values (e.g., a position that does not specify z will have it set to 0).
 • Provide conventions for specifying particular values (e.g., we allow both “FLT_
MAX” and “−FLT_MAX” as floating point numbers, since both are important in
the way our AI is specified).

 • Provide a consistent set of conventions for handling the situation where values
are missing or of the wrong type (e.g., the code requests a particular attribute
as a float, but that attribute was not specified or is a nonnumeric string such as
“true”).

Copyright Material – Provided by Taylor & Francis

54 5. Six Factory System Tricks for Extensibility and Library Reuse

5.4 Trick #2: Encapsulating the Initialization Inputs

Initializing a modular component often requires more than just that component’s speci-
fication node. For example, for a component in an AI for NPCs, the component may
need access to the NPC it is a part of, or to a shared blackboard used by all of that
NPC’s AI components. What is more, even if a specific modular component does
not need these things, other components that share the same conceptual abstraction
might, or might contain components that do, so we want to pass all of the necessary
metadata through every object’s initialization regardless of whether we think it is going
to be needed or not.

The simple solution is to wrap all of the initialization inputs (including the specification
node) into a single object—in GAIA, it is the AICreationData. Each creation data is
required to contain an AISpecificationNode and a pointer to the AIActor that repre-
sents the NPC that this component helps to control, as well as a variety of other required and
optional metadata.

One nice thing about this approach (i.e., encapsulating all of the metadata in an
AICreationData) is that it gives us a place to hang our hat as we add shared data
and capabilities to the factory system. For example, there will often be cases where the
application needs to pass application-specific data to its application-specific compo-
nents. The application might have its own blackboard that handles things like line-
of-sight queries (so that it can control the rate at which they happen), and it might
implement a specialized line-of-sight AI component that makes use of these queries,
for instance. This line-of-sight component needs access to the application’s blackboard,
but it is created by the AI library’s factory, so the application blackboard needs to be
added to the AICreationData. There are a number of possible ways to handle this.
The one that GAIA uses is to have the AICreationData include a pointer to an
AICreationData_App, which is just an empty base class that the application can sub-
class off to inject its custom data. Another (arguably better) solution would be to allow the
application to create a subclass of the AICreationData and place application-specific
values there.

Other examples of the usefulness of the AICreationData can be found in some of
the tricks below.

5.5 Trick #3: Consistent Object Construction and Initialization

One mistake that we made when implementing GAIA is that we allowed every factory
to use its own approach for initializing the objects. Our earliest factories worked like
the one shown in Listing 5.1—that is, they simply passed the TiXmlElement, or the
AISpecificationNode, or the AICreationData (depending on how early they
were) into the constructor of the object being created.

As development progressed, however, we discovered that there were features we wanted
to support in our factories that simply were not possible with this approach, so over time
we started to have a variety of different approaches used by different factories, or even by
different types of modular components in a single factory. This resulted in a mess that,
while manageable if you understand the code, is highly confusing to engineers who are
trying to integrate GAIA into a new application. Consequently, we have worked out a

Copyright Material – Provided by Taylor & Francis

555.5 Trick #3: Consistent Object Construction and Initialization

robust approach to object construction and initialization, and are slowly converting the
entire library to use it. This approach has four basic steps:

 1. Instantiate the object.
 2. Optionally run a preload function on the object, which allows default values to be

set by the object’s owner before it is initialized.
 3. Initialize the object from the creation data.
 4. Check if the initialization succeeded. If so, return the object. Otherwise, delete it

and return NULL.

In order to ensure that this four-step process is applied consistently, we implemented
it as part of the AICreationData, as shown in Listing 5.2. This implementation

Listing 5.2. Using the AICreationData to instantiate and initialize objects.

class AICreationData {
public:
 // Not shown: Accessors and storage for the metadata from
 // trick #2.
 ...

 // The PreLoadCallback is called by ConstructObject()
 // after the object has been instantiated but before it
 // is initialized.
 typedef void (*PreLoadCallback) (AIBase* object);
 void SetPreLoadFunction(PreLoadCallback pFunction) {
 m_pPreLoadFunction = pFunction;
 }

 // Construct an object of the specified type, using this
 // creation data to initialize it.
 template<class T>
 T* ConstructObject() const {
 T* pObject = new T;

 if (m_pPreLoadFunction)
 m_pPreLoadFunction(pObject);

 bool bSuccess = pObject->Init(*this);
 if (!bSuccess) {
 // Print an error in the log!
 AI_ERROR ("Failed to initialize object of type "
 "'%s'", GetNode().GetType().c_str());

 delete pObject;
 pObject = NULL;
 }

 return pObject;
 }
};

Copyright Material – Provided by Taylor & Francis

56 5. Six Factory System Tricks for Extensibility and Library Reuse

passes the preload function in as an argument, which has fairly arcane syntax. It also
relies on the fact that all of our modular components inherit from AIBase (which is
the base class of all of their interfaces). If we were starting over, we would probably
address both of these issues by using a functor object for preload, but the details of
that improvement are beyond the scope of this chapter (especially since it has not been
implemented yet!).

Listing 5.3 shows the Create() method with all improvements. Notice that this func-
tion is still just as concise as Listing 5.1. Adding a new type of modular object just means
adding another clause to the if-then-else, which amounts to two lines of code. Also
note that while the creation data supports preload functions, the factory itself does not
use them. If it is used, the preload function is set by the owner of the object the factory is
creating and is generally used to specify default values.

5.6 Trick #4: Injecting External Code into the AI
The tricks up to this point have focused on the process of instantiating objects. The
remainder of the tricks will focus on other aspects of the factory system.

The next issue we address is the need to inject application-specific code into the AI
library without creating any AI dependencies on the application. This is especially impor-
tant for a library that is expected to be reused across many projects, but even within a single
project it can be awfully nice to have the AI cleanly decoupled from the game.

We accomplish this by allowing the game to add custom object creators to the fac-
tories. We call these object creators constructors, although they should not be confused
with a class’s constructor function. A constructor is a sort of mini-factory that knows
how to instantiate some subset of the modular components for a particular conceptual
abstraction. The GAIA library includes a default constructor for each conceptual abstrac-
tion. That default constructor is responsible for instantiating the modular components

Listing 5.3. The region factory’s Create() function, with all improvements.

AIRegionBase*
AIRegionFactory::Create(const AICreationData& cd) {
 // Get the type of region we want to create
 const AIString& nodeType = cd.GetNode().GetType();

 // Create a region of the specified type
 AIRegionBase* pRegion = NULL;
 if (nodeType == "Circle") {
 pRegion = cd.ConstructObject<AIRegion_Circle>();
 } else if (nodeType == "Rectangle") {
 pRegion = cd.ConstructObject<AIRegion_Rect>();
 } else if (nodeType == "Polygon") {
 pRegion = cd.ConstructObject<AIRegion_Poly>();
 }

 return pRegion;
}

Copyright Material – Provided by Taylor & Francis

575.6 Trick #4: Injecting External Code into the AI

built into the core library. Applications can also implement their own constructors and
add them to the factory. Like most things in GAIA, the constructors all share a common
base class that defines their interface, and the factory only interacts with that interface,
so application-specific dependencies in the constructor will not place any requirements
on GAIA.

To give a concrete example, let us return to our region factory. We built three types of
regions into our AI library, as you will recall: the circle, rectangle, and polygon regions.
Imagine that our game requires custom regions that are tied to specific navmesh nodes, or
that our game has custom mechanics for underwater movement and has to have regions
that reflect those mechanics, or that our game supports multi-story structures such as
parking garages. We need to be able to add game-specific regions that know how to prop-
erly use the game-specific concepts that define the regions’ location and extent.

In order to handle this, we first implement one or more game-specific region classes, all
inheriting from AIRegionBase (as do the circle, rectangle, and polygon regions). Note
that GAIA cannot depend on the game, but it is fine for the game to depend on GAIA,
so there is no problem with including AIRegionBase.h in our game-specific code (if
this were not true, the game would not be able to use GAIA at all). Next, we implement
a game-specific region constructor that knows how to create our game-specific regions. The
game-specific region constructor does not have to know how to create the circle, rectangle,
or polygon regions—those are already handled by the default constructor that is built into
the AI library. Finally, when the game is initialized, before anything is loaded, we add the
game- specific region constructor to the region factory. Then, when a region is read in from
the data the region factory goes down its list of constructors and calls the Create() func-
tion on each one until it finds a constructor that successfully returns a non-NULL region.
If the region is game- specific, then it will be returned by the game-specific constructor. If
it is one of the core types (like circle or rectangle) then it will be returned by the default
constructor.

One other trick that only comes up very rarely, but is easy to support with constructors, is
that occasionally a project will want to replace the built-in implementation of some modu-
lar component with a custom version. For example, imagine that your AI library is used
by a project that specifies positions using something other than (x, y, z) triplets (this is
not a completely contrived example—one of the projects that uses GAIA has this problem,
although this is not how we solved it). You still want to have rectangle, circle, and polygon
regions, but the built-in regions will not work for you. You can solve this by implementing
project-specific circle, rectangle, and polygon regions that are instantiated by the project-
specific constructor. When the factory goes through its constructors, it does so in reverse
order of the order they were added, so the custom constructors will be checked first and the
default constructor will be checked last. Thus when the custom constructor is checked and
successfully returns a region with a type of “Circle”, for example, the factory stops check-
ing the remaining constructors, so the project-specific type will be used in place of the one
built into the AI library.

In the interests of reducing duplication in this chapter (just as we do in our code), we
will refrain from providing a code listing showing the region factory for this trick. The
implementation of these ideas can be found along with the ideas from the next trick in
Listings 5.4 and 5.5.

Copyright Material – Provided by Taylor & Francis

58 5. Six Factory System Tricks for Extensibility and Library Reuse

Listing 5.4. Using templates to encapsulate duplicate factory code in a base class.

template<class T>
class AIConstructorBase {
public:
 virtual ~AIConstructorBase() {}

 // Attempts to create an object from the creation data.
 // Pure virtual so that child classes will be forced to
 // implement it.
 virtual T* Create(const AICreationData& cd) = 0;
};

template<class T>
class AIFactoryBase {
public:
 virtual ~AIFactoryBase();

 // Add a custom constructor. Takes ownership.
 void AddConstructor(AIConstructorBase<T>* pCnstr) {
 m_Constructors.push_back(pCnstr);
 }

 // Looks through all the constructors for one that can
 // create a region. Any constructor which doesn't know
 // how to handle an object of the creation data's type
 // should simply return NULL.
 T* Create(AICreationData& cd);

private:
 std::vector<AIConstructorBase<T>*> m_Constructors;
};

template<class T>
T* AIFactoryBase<T>::Create(AICreationData& cd) {
 T* pRetVal = NULL;

 // NOTE: Pay attention to the stop condition - we break
 // out as soon as we find a constructor that can handle
 // this creation data. We want to try them in the
 // reverse order from which they were added, so loop
 // backwards.
 for (int i = (int)m_Constructors.size() - 1;
 !pRetVal && (i >= 0); --i)
 {
 pRetVal = m_Constructors[i]->Create(cd);
 }

 if (!pRetVal)
 AI_ERROR_CONFIG("Factory failed to create an object "
 "of type '%s'.",
 cd.GetNode().GetType());

 return pRetVal;
}

Copyright Material – Provided by Taylor & Francis

595.7 Trick #5: Using Templates and Macros to Standardize Factory Definitions

5.7 Trick #5: Using Templates and Macros
to Standardize Factory Definitions

The approach in Trick #4 gives us a strong basis for our factories, but we do not want
to have to copy-and-paste all of the code to implement it for every different conceptual
abstraction—if we do, it is virtually guaranteed that the factories will diverge over time
(and indeed, in GAIA they did). This quickly becomes a maintenance nightmare, as each
factory is mostly the same but ever-so-slightly different than all the others.

Looking more closely, the only major differences between the region factory and
another factory (such as the action factory or the target factory) are:

 1. The type of object they create (AIRegion vs. AITarget or AIAction).
 2. The implementation of the default constructor’s Create() function (which has

to actually instantiate objects of the appropriate types).
As a first step, then, we can use C++ templates that take the type of the object being cre-
ated and handle most of the duplication. The result is shown in Listing 5.4.

With this done, the declaration of the region factory becomes much shorter, as shown
in Listing 5.5. Of note, as this listing shows, GAIA’s factories are also singletons. The sin-
gleton pattern is beyond the scope of this chapter, but it is well known and GAIA is not
doing anything horribly unusual with it.

Listing 5.5 is quite good, but there is still a lot of code there. We are going to add new
conceptual abstractions from time to time, and we want this to be as simple as possible. With
C++ macros we can. Macro programming is painful, but the macros we need are fairly sim-
ple, and we only need to implement them once (and you, lucky reader, can benefit from our
example).

The first step is to write a macro that can construct the code in Listing 5.5, but can sub-
stitute other words in place of “Region.” Thus we could pass “Action” or “Target” into the
macro to get the action factory or the target factory. That macro is shown in Listing 5.6.

Listing 5.5. The region factory when a templatized base class is used.

class AIRegionBase;

class AIRegionConstructor_Default
 : public AIConstructorBase<AIRegionBase> {
public:
 virtual AIRegionBase* Create(const AICreationData& cd);
 };

class AIRegionFactory
 : public AIFactoryBase<AIRegionBase>
 , public AISingletonBase<AIRegionFactory> {
public:
 AIRegionFactory() {
 AddConstructor(new AIRegionConstructor_Default);
 }
};

Copyright Material – Provided by Taylor & Francis

60 5. Six Factory System Tricks for Extensibility and Library Reuse

Next, we define a macro that calls other macros, and passes in the name of each con-
ceptual abstraction to each one. Listing 5.7 shows what this macro would look like if we
had only region, action, and target conceptual abstractions, along with the call into it that
actually creates the factories using the macro from Listing 5.6.

The GAIA_EXECUTE_FACTORY_MACRO is also used to define the singleton object
for each factory, and to add the conceptual abstraction into the global object manager
(global objects are the subject of Trick #6). Thus, when we want to add a new type of con-
ceptual abstraction to GAIA, all that we need to do is add the name of the abstraction to
the GAIA_EXECUTE_FACTORY_MACRO, and then implement the Create() function
for the default constructor. Everything else—all of the infrastructure to create the factory,
make it a singleton, and support its global storage—is created auto-magically by the mac-
ros. This is a huge boon, especially since we only add new conceptual abstractions very
rarely (maybe once every year or two at this point), so it saves us from having to remember
all the different places that changes would need to be made when we do.

Listing 5.7. The GAIA _ EXECUTE _ FACTORY _ MACRO macro.

#define GAIA_EXECUTE_FACTORY_MACRO(_FACTORY_MACRO) \
 _FACTORY_MACRO(Action) \
 _FACTORY_MACRO(Region) \
 _FACTORY_MACRO(Target)

GAIA_EXECUTE_FACTORY_MACRO(DECLARE_GAIA_FACTORY);

Listing 5.6. The factory declaration macro.

#define DECLARE_GAIA_FACTORY(_TypeName) \
class AI##_TypeName##Base; \
 \
class AI##_TypeName##Constructor_Default \
 : public AIConstructorBase<AI##_TypeName##Base> { \
public: \
 virtual AI##_TypeName##Base* \
 Create(const AICreationData& cd); \
}; \

\
class AI##_TypeName##Factory \
 : public AIFactoryBase<AI##_TypeName##Base> \
 , public AISingletonBase<AI##_TypeName##Factory> { \
public: \
 AI##_TypeName##Factory() { \
 AI##_TypeName##Constructor_Default* pDefault = \
 new AI##_TypeName##Constructor_Default; \
 \
 AddConstructor(pDefault); \
 } \
};

Copyright Material – Provided by Taylor & Francis

615.8 Trick #6: Global Object Configurations

5.8 Trick #6: Global Object Configurations

Duplication can be as much of a problem in the configuration as it is in the code. For
example, imagine that we have a region which defines a spawn volume for a whole bunch
of different NPCs. We do not want to have to copy-and-paste this region into every NPC
configuration—if nothing else, it is likely to change as the designers tune the game, and we
do not want to have to hunt down all the copies in order to change it!

Global object configurations allow us to define a configuration for a particular object
once, and then use it elsewhere just as if we had copy-and-pasted it into place. We can do
this for any conceptual abstraction—so we can have global regions, global targets, global
actions, and so on. In the configuration file, we place the globals in a special node, named
for the type of conceptual abstraction (RegionDefinitions, TargetDefinitions,
ActionDefinitions, etc.). Each global configuration has to be given a unique name,
which is used to look it up elsewhere. For example, we might have two Circle regions that
represent spawn zones for friendly and enemy troops:

<RegionDefinitions>
 <Region Name="FriendlySpawnRegion"
 Type="Circle" Center="(0,0,0)" Radius="100"/>
 <Region Name="EnemySpawnRegion"
 Type="Circle" Center="(300,0,0)" Radius="100"/>
</RegionDefinitions>

We can then refer to these regions using the special type “Global” and the unique name,
as follows:

<Region Type="Global" Name="EnemySpawnRegion"/>

In order to make this work, we need two things. First, we need a global object manager,
which is a singleton. When the configurations are parsed, the global object manager is res-
ponsible for reading in all of the global definition nodes (such as the RegionDefinitions
node) and storing away all of the global configurations. Second, the templatized Create()
function in the AIFactoryBase class from Listing 5.4 needs to be extended, so that it
resolves any globals before invoking the constructors. The modified function definition is
shown in Listing 5.8.

Listing 5.8. The AIFactoryBase’s Create() function with support for globals.

template<class T>
T* AIFactoryBase<T>::Create(AICreationData& cd) {
 T* pRetVal = NULL;

 // Check if this is a global, and if so use the
 // specification node stored on the global manager.
 const AISpecificationNode& node = cd.GetNode();
 const AIString& nodeType = node.GetType();
 if (nodeType == "Global") {

(Continued)

Copyright Material – Provided by Taylor & Francis

62 5. Six Factory System Tricks for Extensibility and Library Reuse

5.9 Conclusion

In this chapter we covered a number of different tricks that have been learned through
the hard work of fixing mistakes and refactoring of the factory system for our reusable
AI library, GAIA. Together, these tricks provide a consistent approach for specifying and
initializing objects across all of our factories, allow us to decouple the AI library from the
rest of the game, unify the factory code so that new factories (along with all of their sup-
port structures) can be created with a single line of code, and greatly reduce the duplication
both within the factory code and also within the configurations themselves. The result is a
factory system that supports our goals of extensibility (new modular components can be
added with two lines of code, and new conceptual abstractions can be added with only one)
and reuse (the AI library is cleanly decoupled from the rest of the game, allowing us to reuse
the AI library with impunity).

References

Dill, K. 2016. Modular AI. In Game AI Pro 3, ed. S. Rabin. Boca Raton, FL: CRC Press,
pp. 87–114.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston, MA: Addison-Wesley, pp. 107–116.

Thomason, L. n.d. TinyXML Main page. http://www.grinninglizard.com/tinyxml/ (accessed
June 10, 2016).

 AIString globalName =
 node.GetAttributeString("Name");

 const AISpecificationNode* pActualNode =
 AIGlobalManager::Get().Find(globalName);

 if (!pActualNode) {
 AI_ERROR("Factory does not have a definition "
 "for a global object named '%s'.",
 globalName.c_str());
 } else {
 // Set the node on the creation data to the
 // actual node for this global, create the
 // object, then set the node on the creation
 // data back to its previous value.
 cd.SetNode(*pActualNode);
 pRetVal = Create(cd);
 cd.SetNode(node);

 return pRetVal;
 }
 }

 // The rest is the same as Listing 4.
 ...
}

Copyright Material – Provided by Taylor & Francis

