
21

3
Logging Visualization in
FINAL FANTASY XV
Matthew W. Johnson, Fabien Gravot, Shintaro Minamino,
Ingimar Hólm Guðmundsson, Hendrik Skubch,
and Youichiro Miyake

3.1 Introduction

Data analytics have had a variety of uses in the gaming industry, most commonly in
online games and the mobile market. However, in the development of FINAL FANTASY
XV, an action style Role Playing Game (RPG), we have found an additional use for data
logging combined with visualization. One challenge we face with a large team, measur-
ing in the hundreds working across the globe, is ensuring quality game data. In an ideal
scenario, the game’s design and tools would be well defined, and accurate data would
be ensured at the time of authoring. However, games often have changing requirements,
new features, and new fun and exciting ideas introduced during the development process.
These aspects can make it difficult to know precise boundaries of still-developing areas
of a game. Nevertheless, ensuring quality game data is still an important problem that
all teams address with varying techniques. Furthermore as the project scale continues to
grow, additional quality assurance challenges are introduced.

We address these issues in FINAL FANTASY XV through a comprehensive logging
and data analysis toolset. We log various aspects of the game in a database and use a
web-based front end for analysis. This enables us to investigate movement issues, moni-
tor event distributions in both time and space, and observe changes in the navigation
mesh over time. Conceptually, our approach enables similar analysis options as done
by Thorzen for The Witcher 3 (Thorzen 2015). However, Thorzen directly populated a

3.1 Introduction
3.2 Architecture
3.3 Statistical Analysis

3.4 Spatial Analysis
3.5 Conclusion
References

Copyright Material – Provided by Taylor & Francis

22 3. Logging Visualization in FINAL FANTASY XV

database with content information in order to find problematic data, while we are log-
ging gameplay information to a database and analyzing that data.

In this chapter, we will describe the architecture we used and the reasons behind the
choices we made, will look at the three main uses of our tool, and will discuss some of the
future work we plan. By leveraging data visualization, we found that identifying potential
issues, even in large worlds with lots of data, was easy and convenient for designers and
developers. Additionally, the logging system was not intrusive and had no adverse effects
to the gameplay experience and provided meaningful insight to our team.

3.2 Architecture

The architecture for this system was influenced by two main goals: (1) minimize impact
on game performance at all costs and (2) allow both designers and developers capabili-
ties to analyze the data via web browser. Since we log a lot of data, effectively searching
through it is important. Conveniently, these goals can be achieved with off-the-shelf
database and web technologies. Our implementation employs MongoDB as our data-
base and NodeJS as our web server. These meet the requirements while also allowing
substantial flexibility during the development of our visualization tool (MongoDB 2016,
NodeJS 2016).

3.2.1 Logging
In order to minimize the logging’s impact on performance, it needed to be fast and non-
blocking. A logging system that affects frame rate or causes gameplay issues is more harm-
ful than it is helpful. We implemented a nonintrusive logging system by doing most of the
heavy computation via a process that can run on a different computer, which is impor-
tant when playtesting on a console. In our case, the theoretical maximum bandwidth was
80 Mbps, which is a data volume limitation, but all the data described in this chapter did
not reach this limit.

In Figure 3.1, there are three main components. The game and application logger make
up the first component, which executes on the gaming console. The next component is the
log aggregator, which we will cover momentarily. The final component is the client side
view, for which we support a couple of options.

We will come back to Figure 3.1, but for now let us focus on the logging system, which is
compiled into the game’s runtime. As the player experiences the game, a variety of differ-
ent events contain log statements that save data to the logging system. Figure 3.2 shows

Game
code

Application
logger

Application
Log aggregator

Receiver
Sorted
binary

log

Database
printer

Database
server

CSV
printer

Web
server

Client
web

browser

Real-time
printer

Figure 3.1

Data flow from game to web browser visualization.

Copyright Material – Provided by Taylor & Francis

233.2 Architecture

the logging system’s architecture. A single log entry can be arbitrarily complex and is
composed of multiple elementary data chunks described in Table 3.1. Each chunk in
the same log entry shares the same context ID, which is generated by atomic increment.
Figure 3.2 shows two log entries, comprised of nine total chunks. As an example, when a
player takes damage or an NPC activates a script, the system generates a context ID for
that event and tags the relevant data chunks in the log. Since these events can happen
simultaneously, the log system executes on multiple threads and writes to a double buffer.
When a buffer fills, it is swapped out and sent to the sentinel. The sentinel accumulates
data and adaptively sends it to the log aggregator over TCP/IP. The sentinel adapts to
the rate of data commits to the aggregator, which is a function of how much data are
coming in from the buffer. Based on the data-logging rate, the sentinel will send data
between once per second to ten times per second. Furthermore, the sentinel also sends
its own statistics to the log aggregator, so that system can also be monitored and tuned
for performance.

Writing a chunk is a three-step process:

 1. Reserve: Increase the number of users of the buffer, and reserve the memory
needed for writing the whole chunk. This is normally a nonlocking function
because it only increments the buffer’s atomic variables. If there is not enough
memory, then we have to block until the next buffer swap.

 2. Write: Save the data.
 3. Finish: Reduce the number of users of the buffer. The sentinel will wait until the

buffer is unused before sending the data via TCP/IP.

�read 1 Double buffer

Current write buffer

(8) (9) (3)

(1)

(2)

(5)
(7)

(6) Transmit

Sentinel thread

Adaptive sleep

Log
aggregator

(4)(1) LogBuilder log(”ActorPosition”);

�read N
(5) LogBuilder log(”PQS”);
(6) log.Log(”ActorId”, actorId);

(4) log.Finish();

(9) log.Finish();

(3) log.Log(”Position”, position);

(8) log.Log(”QueryId”, queryId);
(7) log.Log(”Position”, position);

(2) log.Log(”ActorId”, actorId);

Swap

Figure 3.2

Logging library implementation pipeline shows multithreaded logging process.

Table 3.1 Elementary Data Chunk for Logging

Context Id Unique Id for one log
Action Id Identify the chunk role
Name Id String to identify the data inside the database
Type Id Type of the binary data
Data Array of the binary data

Copyright Material – Provided by Taylor & Francis

24 3. Logging Visualization in FINAL FANTASY XV

The sentinel is working on its own thread and regularly wakes up to swap the buffer
and send the logged data to the log aggregator via TPC/IP. The update frequency varies
based on the rate of data sent. What is more, the statistics of this adaptive sleep are also
logged and can be used to further tune the algorithm.

3.2.2 The Log Aggregator
Returning to Figure 3.1, the next component is the log aggregator. Since the logging sys-
tem receives chunks for different log entries from multiple threads, essentially nothing is
in a desirable order. The log aggregator’s role is to fix this issue so that data are easier to
store, manipulate, visualize, and understand. The aggregator performs another important
task, which is offloading parts of the processing done by the runtime in order to minimize
performance impact. Once the chunks are ordered per log entry, they can be used by one
of the several printers.

We currently have three different printers:

 • The CSV printer: Parses binary data to a CSV file. Useful for debugging or local
tests.

 • The database printer: The most useful of the three, it stores data inside a global
database. It parses the binary to JSON and makes it ready for later analysis. This
printer also has a local buffer, which is used to reduce network congestion on the
database server.

 • The real-time printer: Similar to the database printer since its output format is
identical (JSON), uses a different protocol, based on web server push notification
technology (i.e., “web socket”). This printer provides streaming data, which pro-
vides nearly real-time updates on the client web browser. With this printer, we are
able to display the player and enemies on a 2D map while playing the game, which
is useful for analyzing and tuning the AI.

3.2.3 The Data Format
Although the logging system allows an arbitrarily complex log, we still need to be able to
analyze it. Consequently, we defined several standard log headers. A log header is gener-
ated with a class wrapper around the data, which will generate the common elements.

One of these shared data formats is the session header. The session identifies a
game play experience. Each session is stored in a different database collection. The
session header is explained in Table 3.2 and allows filtering for which data collection

Table 3.2 Common Headers Used for Logging Sessions

Machine name (Computer Machine ID—physical hardware)
Session Id Unique ID for this execution of the game
User (Windows login of user)
Start time Time stamp of session play starting
Binary name Vs—Solution name
Binary version Change list number from Versioning Software
Configuration (Visual studio Build Configuration—Release/Debug/etc.)
Platform PS4, Xbox, PC

Copyright Material – Provided by Taylor & Francis

253.3 Statistical Analysis

will be used for further analysis. For example, if a developer was interested in look-
ing at data generated from a specific tester at a specific time that a particular artifact
occurred, then they can more easily investigate the parameters logged around that
issue.

In addition, all logs share a common header with the game time, a position (used for
spatial analysis), and the corresponding agent Id. These common headers offer format
consistency for the front-end methods.

3.2.4 Data Analysis
Data analysis is done through the database printer and accessed through a web front end
written in JavaScript. A separate front end interacts directly with the log aggregator for
real-time updates via the real-time printer. Accessing the database is a two-step process:
first determine the sessions that are to be analyzed, then retrieve the data you are inter-
ested in and aggregate the session results.

Our visualization toolset supports a variety of visualizations, which can be split into
two broad categories: spatial analysis and statistical analysis. Spatial analysis visual-
izations project the data on a 2D map via Leaflet and provides a Google map-like user
experience for exploring spatial data in the world of FINAL FANTASY XV (Leaflet 2016).
Statistical analysis uses more traditional visualization techniques, such as bar charts and
histograms, to allow us to investigate nonspatial characteristics in our data, for example,
temporal distributions of particular events.

3.3 Statistical Analysis

Different views were developed for displaying event information, which we were inter-
ested in tracking. The web client was implemented in JavaScript and data-driven docu-
ments (D3) (D3 2016). The first view we made available is a histogram of data gathered
from our point querying system described in later chapters of this book. The team was
interested in tracking the amount of use the system had and in which sections of the
game. Figure 3.3 shows the different play sessions logged on the left-hand side, with
the corresponding histogram on the right. In this example session, we can see that the
Ambient Spawn Query, a query responsible for spawning NPCs, is occurring nearly
700 times during this play session. In this example, it is easy to recognize the effects
of entering a large town with a high number of agents being spawned into the scene.
This type of visualization makes it convenient to recognize potential bugs related to our
point querying system.

We developed a separate view for monitoring the distribution of executed character
dialogues. When certain events happen in the game, one of many dialogue events can be
triggered, and these events are separated into groups. In Figure 3.4, we see six different
dialogue groups, each with multiple dialogues. By presenting this information in a bar
chart ordered by group and frequency, we can easily monitor potential issues that may
exist in our dialogue system. With this grouped histogram view, it is easy to see that one
script in our first group occurs more often than intended, and the parameters for that
script may need review. Visualization makes identifying these cases easy and convenient
for designers and developers.

Copyright Material – Provided by Taylor & Francis

26 3. Logging Visualization in FINAL FANTASY XV

3.4 Spatial Analysis

The statistical analyses are interesting, but the 2D map is arguably the more exciting use of
this system. We used Leaflet, an open-source JavaScript map library to create an interac-
tive 2D map of the FINAL FANTASY XV world. The library supports features like drawing
points, adding tool tips, displaying heat maps, and zoom levels. The range of possibilities
is large, and we continue to find new uses.

The first step is to load the appropriate data into Leaflet in order to create our 2D map.
The basic process is to generate a series of top–down orthographic camera screen shots.
The camera moves along a grid and captures the necessary images. Next, high-level zoom
images are generated by downscaling and merging those screen shots. By performing this
process, we enable mouse-wheel zoom on the world through a web browser. Once the data
loads, we can begin exploring the world.

0

AI
_T

AC
TI

CA
L_

Q
UE

RY
M

O
N_

 Z
IG

ZA
G2

_C
LO

SE
_R

_S
C

AI
_T

AC
TI

CA
L_

Q
UE

RY
BU

DD
Y_

 T
AL

K_
AP

PR
OA

CH
_H

EA
VY

AI
_T

AC
TI

CA
L_

Q
UE

RY
BU

DD
YS

TO
P_

 T
:SH

O
RT

-F
RI

EN
D:

N
O

CT
IS

AI
_T

AC
TI

CA
L_

Q
UE

RY
AM

BI
EN

T_
 ST

RO
LL

_Q
UE

RY

AI
_T

AC
TI

CA
L_

Q
UE

RY
AM

BI
EN

T_
 SP

AW
N_

Q
UE

RY
_S

TA
TI

C_
O

NL
Y

AI
_T

AC
TI

CA
L_

Q
UE

RY
AM

BI
EN

T_
 SP

AW
N_

Q
UE

RY
_S

AI
_T

AC
TI

CA
L_

Q
UE

RY
AM

BI
EN

T_
 SP

AW
N_

Q
UE

RY
_M

AI
_T

AC
TI

CA
L_

Q
UE

RY
AM

BI
EN

T_
 SP

AW
N_

Q
UE

RY

AI
_T

AC
TI

CA
L_

Q
UE

RY
AM

BI
EN

T_
 IN

TR
A_

GR
O

UP
_S

PA
W

N_
Q

UE
RY

AI
_T

AC
TI

CA
L_

Q
UE

RY
AM

BI
EN

T_
 G

RO
UP

_S
TR

O
LL

_Q
UE

RY

AI
_T

AC
TI

CA
L_

Q
UE

RY
BU

DD
Y_

ST
RO

LL
IN

G

AI
_T

AC
TI

CA
L_

Q
UE

RY
M

O
N_

 Z
IG

ZA
G2

_C
LO

SE
_L

_S
C

AI
_T

AC
TI

CA
L_

Q
UE

RY
M

O
N_

 O
RB

IT
_S

C

AI
_T

AC
TI

CA
L_

Q
UE

RY
BU

DD
Y_

W
AR

P

100

200

300

400

500

600 Co
un

tSID_5755243f9b36a728a8e501c8

SID_5755232dec64381d7898d95b

SID_5755229b9b36a728a8dec575

SID_575519539b36a728a8d767be

SID_575517daf606f2297435de76

SID_575515646d21381690a37947

SID_575513116d21381690a072b4

SID_57551022f606f229743575a9

SID_57550bfa9b36a728a8cb45bf

SID_57550b5271d79221004f529e

SID_575508dcec64381d78772325

SID_57550890f606f22974350100

SID_575507e5f606f2297434a201

SID_5755071af606f2297433e092

SID_57550625f606f22974337981

SID_5755052bf606f2297432c33e

SID_5754fd89ec64381d7861789c

SID_575503b26d213816909c706b

SID_5755186071d7922100543b7f

SID_57551a8fec64381d788501d0

SID_57551dfdf606f2297435e50b

AI
_T

AC
TI

CA
L_

Q
UE

RY
AM

BI
EN

T_
 G

RO
UP

_S
PA

W
N_

Q
UE

RY

Figure 3.3

A histogram of our point querying system logging all queries and their frequencies.

Copyright Material – Provided by Taylor & Francis

273.4 Spatial Analysis

3.4.1 Two-Dimensional Navigation Mesh Map
Any type of screenshot could be used in this process, but rather than using game screen-
shots, we used images of the game’s navigation mesh. This provided us with several bene-
fits. First, for quality assurance purposes when our navigation mesh data are being built, we
were also generating the 2D map screenshots. In addition to this, the process is automatic,
making it convenient to use. Next, by using the navigation mesh, we can ignore geometry
that may obstruct a top–down view, such as trees or buildings. Finally, the navigation mesh
covers all the areas in which NPCs and the player can travel allowing us to focus on areas
that are contained in the game play portions of the world. We export not one but several
maps at the same time, shown in Figure 3.5.

In Figure 3.5, there are six different uses of the leaflet visualization. These are: (a) con-
nectivity mesh, (b) large monster navigation mesh, (c) nonfiltered mesh, (d) filtered navi-
gation mesh, (e) difference image, and (f) zoomed in section of map shown in (d). We will
handle them out of order, starting with the nonfiltered map.

7 SCENE_ID_ACCIDENT_COLLIDE_G_02 | SCRIPT_GROUP_ACCIDENT_COLLIDE_GROUP

2 SCENE_ID_ACCIDENT_COLLIDE_G_03 | SCRIPT_GROUP_ACCIDENT_COLLIDE_GROUP

2 SCENE_ID_ACCIDENT_COLLIDE_I_02 | SCRIPT_GROUP_ACCIDENT_COLLIDE_GROUP

1 SCENE_ID_ACCIDENT_COLLIDE_P_02 | SCRIPT_GROUP_ACCIDENT_COLLIDE_GROUP

1 SCENE_ID_ACCIDENT_COLLIDE_P_03 | SCRIPT_GROUP_ACCIDENT_COLLIDE_GROUP

1 SCENE_ID_ACCIDENT_COLLIDE_NP_02 | SCRIPT_GROUP_ACCIDENT_COLLIDE_GROUP

4 SCENE_ID_DRIVE_LESTALLUM_ARRIVAL_01 | SCRIPT_GROUP_DRIVE_CAR_STOP_GROUP

4 SCENE_ID_TOWN_IN_DINER_CONV | SCRIPT_GROUP_DRIVE_CAR_STOP_GROUP

2 SCENE_ID_CAR_DOWN_LONG_01 | SCRIPT_GROUP_DRIVE_CAR_STOP_GROUP

1 SCENE_ID_CAR_DOWN_FIELD_08 | SCRIPT_GROUP_DRIVE_CAR_STOP_GROUP

1 SCENE_ID_CAR_DOWN_CARDIRT_CONV | SCRIPT_GROUP_DRIVE_CAR_STOP_GROUP

4 SCENE_ID_AC_GAL_NPC_TALK100103 | SCRIPT_GROUP_GROUP_GAL_AMBIENTCHATTER

2 SCENE_ID_AC_GAL_NPC_TALK020005 | SCRIPT_GROUP_GROUP_GAL_AMBIENTCHATTER

2 SCENE_ID_AC_GAL_NPC_TALK100104 | SCRIPT_GROUP_GROUP_GAL_AMBIENTCHATTER

2 SCENE_ID_AC_GAL_NPC_TALK990003 | SCRIPT_GROUP_GROUP_GAL_AMBIENTCHATTER

2 SCENE_ID_AC_GAL_NPC_TALK990009 | SCRIPT_GROUP_GROUP_GAL_AMBIENTCHATTER

2 SCENE_ID_AC_GAL_NPC_TALK990011 | SCRIPT_GROUP_GROUP_GAL_AMBIENTCHATTER

3 SCENE_ID_NICE_ATTACK_PN_04 | SCRIPT_GROUP_NICE_ATTACK_GROUP

2 SCENE_ID_NICE_ATTACK_PN_02 | SCRIPT_GROUP_NICE_ATTACK_GROUP

2 SCENE_ID_NICE_ATTACK_IN_03 | SCRIPT_GROUP_NICE_ATTACK_GROUP

2 SCENE_ID_NICE_ATTACK_IN_05 | SCRIPT_GROUP_NICE_ATTACK_GROUP

1 SCENE_ID_NICE_ATTACK_IN_04 | SCRIPT_GROUP_NICE_ATTACK_GROUP

3 SCENE_ID_LIGHT_ON_A_01 | SCRIPT_GROUP_LIGHT_ON_GROUP

2 SCENE_ID_LIGHT_ON_CONV_B_01 | SCRIPT_GROUP_LIGHT_ON_GROUP

1 SCENE_ID_LIGHT_ON_P_G | SCRIPT_GROUP_LIGHT_ON_GROUP

1 SCENE_ID_LIGHT_ON_P_I | SCRIPT_GROUP_LIGHT_ON_GROUP

2 SCENE_ID_ACCIDENT_NEARHIT_NI_01 | SCRIPT_GROUP_ACCIDENT_NEARHIT_GROUP

1 SCENE_ID_ACCIDENT_NEARHIT_IP_01 | SCRIPT_GROUP_ACCIDENT_NEARHIT_GROUP

1 SCENE_ID_ACCIDENT_NEARHIT_IG_02 | SCRIPT_GROUP_ACCIDENT_NEARHIT_GROUP

1 SCENE_ID_ACCIDENT_NEARHIT_SIMPLE_XG | SCRIPT_GROUP_ACCIDENT_NEARHIT_GROUP

1 SCENE_ID_TOWN_ID_LEST_DAY_01 | SCRIPT_GROUP_DRIVE_CAR_STOP_GROUP

Figure 3.4

A grouped histogram view showing one script executing more often than intended.

Copyright Material – Provided by Taylor & Francis

28 3. Logging Visualization in FINAL FANTASY XV

3.4.1.1 Nonfiltered Mesh

Figure 3.5c shows the whole set of auto-generated navigation meshes. In the live tool, the
map’s colors have meaning, which represent polygon flags such as water for sea monsters
or ceiling heights for flying creatures. The other figures show subsets of this set.

3.4.1.2 Connectivity Mesh

Figure 3.5a shows the navigation mesh’s walking connectivity. For adjacent regions with
differing patterns in the image, it means agents are incapable of path planning between

(a) (b)

(c) (d)

(e) (f)

Figure 3.5

Leaflet map visualization of the navigation mesh of the FINAL FANTASY XV world. (a) connec-
tivity mesh, (b) large monster navigation mesh, (c) nonfiltered mesh, (d) filtered navigation
mesh, (e) difference image, and (f) zoomed in section of map shown in (d).

Copyright Material – Provided by Taylor & Francis

293.4 Spatial Analysis

them because the regions are not connected. In the web tool, these regions are depicted
with differing colors. This allows us to quickly check for invisible walls or unintentional
holes in the mesh. We can also confirm whether an agent should be able to walk between
two points or not. Navigation mesh generation is an automated process, based on a variety
of rules (angle of a slope, step-height of a character, etc.). Depending on how the world is
edited, otherwise-connected regions can become disconnected and vice versa. This tool
lets us confirm mesh accuracy as the world map evolves.

3.4.1.3 Filtered Meshes

The generated mesh has navigation mesh above the sea, over roof tops, and even inside big
rocks, anywhere it is possible to for an agent to stand. To avoid this, a common solution is
to use a seed point. Only areas connected to the seed point will be kept. By using the walk
connectivity shown in Figure 3.5a, we can generate Figure 3.5d, which is the filtered mesh
that is used in the game for humanoid characters.

Figure 3.5b is similar to Figure 3.5d but with a different archetype. It is really useful
to be able to check the map for the different archetypes. Different characters have dif-
ferent sizes, different step heights, and so on, and so Figure 3.5d is the navigation mesh,
which is available for humans. Figure 3.5b on the other hand is for large creatures, namely
the Behemoth. The Behemoth is one of FINAL FANTASY XV’s largest creatures, and it
requires a lot of space in order to walk about, making its navigable area smaller than a
human’s. The white area in these images is where agents, whether human or behemoth,
can go.

3.4.1.4 Difference Image

Lastly, Figure 3.5e is a difference map showing the difference between two subsequent
versions of the world’s navigation mesh. White regions in this image are the same as pre-
vious versions. Dark areas are places where changes occurred. This allows designers and
developers to monitor changes over time, which can make it easy to confirm errors when
AI behavior suddenly or unexpectedly changes in one area of the map.

Figure 3.5f depicts a zoomed version of a small region shown in the bottom of 3.5d, the
interior of a large building.

3.4.2 Heat Map Visualization
Heat maps are an effective and convenient method for displaying density information over
a 2D map. One example of heat map use was tracking the player’s position to monitor map
coverage by the quality assurance team. Here, however, we describe an interesting feature
related to data packaging.

In FINAL FANTASY XV, we have numerous animations and data variations depending
on a character’s age, culture, and other characteristics. As we cannot load all possible ani-
mations into memory, we must know which ones to preload and where. We used the log
data to display a heat map of animation IDs. This allowed designers to check for inconsis-
tencies and rarely used animations, which helped to package animations into the relevant
areas. Figure 3.6 shows an example of such a heat map.

Copyright Material – Provided by Taylor & Francis

30 3. Logging Visualization in FINAL FANTASY XV

3.5 Conclusion

Interactive visualization techniques like the ones described here have improved the effi-
ciency of developing large-scale video games. A number of characteristics from the game
are collected and analyzed during the development process, which has made debugging
and investigation of data issues more efficient. Map tools, like Leaflet, also enable us to
monitor spatial issues that might arise in the game. These types of tools are particularly
exciting because their future potential is just starting to be explored.

References

Data Driven Documents [Computer Software]. (2016). Retrieved from https://d3js.org/
Leaflet [Computer Software]. (2016). Retrieved from https://leafletjs.com/
MongoDB [Computer Software]. (2016). Retrieved from https://www.mongodb.com
NodeJS [Computer Software]. (2016). Retrieved from https://nodejs.org/en/
Thorzen, M. (2015). Content optimization pipeline for an open world game, GDC 2015.

Figure 3.6

Heat map visualization of events being executed by NPCs in a small town.

Copyright Material – Provided by Taylor & Francis

