Index

A
A* algorithm, 146–148, 164–166
Absolute utility, 24
Abstractions, perception and, 472–474
Adaptation, 481–482
 emotion-based, 490–492
 skill-based, 488–490
 style-based, 492–493
Agent-driven parameter, 392
 prone navigation, 401
 sample structure, 393
 sidestep navigation, 402–403
 standing and crouching, 398
 swim navigation, 401–402
Agent forces, prototype implementation, 199–200
Aggressive search, NPC, 306, 308
AI agent, 389
 movement path, 400
 voxel-based navigation mesh/navmesh
 (see Voxel-based navigation mesh/navmesh)
AI chromosomes, 252
AI-driven experience management, 523
 choosing between stories, 525–526
 high-level view, 527
 implementations
 PaSSAGE, 530–531
 Player Appraisal Controlling Emotions, 531
 player in game environment, 524–525
Player-Specific Automated Storytelling, 531
Sports Commentary Recommendation System, 531
 modifying narrative, 525
 technique
 emotional modeling, 528–529
 goal inference, 528
 machine-learned narrative selection, 530
 narrative generation, 526–527
 objective function maximization, 529–530
 play style modeling, 527
AI Game Programming Wisdom 3, 366, 381
Alien Swarm, 491
Ambience of life
 buddy AI, The Last of Us, 432–433, 441
 designing, 89–91
Ambush skill, Infected characters, 413, 415–416
An Experimental Study of Apparent Behavior, 473
Animation, 443
 additive, 456–457
 and AI, 7
 behaviors, 109–112, 458–460
 blackboard, 36–37
 blending movement, 452–454
 complexity explosion, 104–105
 controller, 112–113
 delay times, 37–38
 full-body state machine, 109
 functional testing, 114
gameplay and, 107–108
graphs, 102–104
interrupting movement, 452–454
layering, 455–456
looping (see Looping animations)
masking, 454–455
mirroring, 455
NPC realization behaviors (see Nonplayer characters (NPCs), behavior realization)
one-off (see One-off animations)
problem of scalability, 104–105
SoC, 106–107, 114–115
state machine, 104
system refactoring, 114–115
transition (see Transition animations)
twinning, 35–36
walk, 451–452
Animation-driven movement, 444
ANN, see Artificial neural network (ANN)
Anticipation, 195–196
Anticipatory collision
agent forces, 199–200
agent state, 196–197
avoidance force, 200–201
guaranteed collision avoidance, 204–207
human motion simulation, 203–204
parameter tuning, 202–203
predicting, 197–199
runtime performance, 202
time horizon, 198–199
Any-angle pathfinding
any-angle paths, 162
discretize and search, 161
grid paths, 162
A* paths, 161, 163
Archetypal analysis (AA), 487
Archetypes, 487, 492
Armed combat, buddy AI
balancing, 439–440
cheating, 440
shooting, 439
Artificial evolution techniques, 489
Artificial neural network (ANN), 484
Assassin’s Creed, 492
Attribution theory, 475–476
Auditory perception, Tom Clancy’s Splinter Cell Blacklist
calculating audio distance, 320–321
fairness, 321–322
Aurora Neverwinter Toolset, 486, 493
Autonomous formation, 220
Avoidance force
code, 201
computing, 201
corner cases, 201
direction, 200
magnitude, 200–201
B
Backtracking, 295–296
Backward checking, 286–287
Balanced k-d tree, 332
Balancing, buddy AI, 439–440
Baldur’s Gate II, 145–146
Bandit algorithms, 266
Base maps
structure, 349–350
type, 350
Battlefield: Bad Company 2, 487
Battle of the Bulge (iOS), 243–244, 253
Bayesian networks, 485
Behavioral Mathematics for Game AI, 378
Behavior realization, nonplayer characters, 443
action tokens, 458–460
blackboards, 460
combining actions, 454–456
decoupling extracted motion, 446
displacement direction and orientation, 446–449
micro behaviors, 458–459
motion correction, 446
move and shoot tokens, 459
movement models, 444–446
on-screen realization, 460
per-bone blending, 453–454
pose matching, 453
pose-only blending, 453–454
rank categories, 460
speed correction, 450–452
tracking, 456–457
using additives with idles, 459
Behavior trees (BTs), 23
complexity, 73
simple, 71–72
Bézier spline, 230
Bit-wise operations, 299
Blackwell Handbook of Childhood Cognitive Development, 474
Blending movement, animations, 452–454
Blend tree, 102–105, 107–108
Blind formation, 219
Boolean vision model, 28
Borderlands, 511
Bottom-up approach, 512
Breadcrumbing, 328
Brute force, 285–286
Buddy AI, The Last of Us, 431
armed combat
 balancing, 439–440
 cheating, 440
 shooting, 439
combat utility
 gifting, 438
 grapples, 438
 throwing, 437–438
cover
 runtime cover generation, 435–437
 share, 437
finishing touches
 ambience, 441
 callouts, 441
 vocalizations, 440
start from scratch
 ambient following, 432–433
 approach, 432
 dodging, 434–435
 follow positions, 433–434
 moving, 434
 plan, 432
 teleportation, 435

C

Caesar, 50
Callouts, buddy AI, 441
Canabalt, 503–504, 510
Canonical Fortune’s algorithm, 331
Cardinality constraint, 296
Cascading elitism, 489–490
Cautious search, NPC, 305–308
Cellular automata, 335–336
Character behavior design
 abstractions, 472–474
 attribution theory, 475–476
 perception of motion, 472–474
 point light animations, 472–473
 problem of characters as tokens, 476–477
 psychology
 development, 474–475
 practical application, 477
 shape fitting, 472–473
 stop-motion animation, 473
 teleological stance, 474–475
Chase skill, Infected characters, 412, 415
Cheating, buddy AI, 440
Choco, procedural content generation, 515
Chokepoints, 373–375
Choreographed formations
 autonomous formation following, 220
 blind formation following, 219
 formation design, 218–219
 slots assignment, 219
Civilization V, 509–511
Climb mesh generation, 227–230
Climb parser, 230
Climb path generation, 229–230
Clustering algorithms, 486–488
C-means, 486–487
Cognitive task reaction time, 33
Collaborative filtering (CF) algorithms,
 493–494
Collision avoidance algorithms, 174, 178
Combat Coordinator, 428–429
Combat utility, buddy AI
 gifting, 438
 grapples, 438
 throwing, 437–438
Combat vector, 428–429
Communal analysis
 clustering algorithms, 486–488
 goal, 486
 K-means clustering, 486–488
 simplex volume maximization, 487–488
Company of Heroes, 369
Compositional control, PCG, 510
Computer Shogi Association (CSA), 256
Congestion maps, 173–174
 alternatives, 178
 benefits, 179
 drawbacks, 179
 flow fields with, 177–178
 hysteresis, 180
 path planning, 175–177
 performance considerations, 179–180
 traversal cost computation, 176
Consistency, Tom Clancy’s Splinter Cell
 Blacklist, 314
Constrained optimization, 337
Constraint, 285
 arcs, 301
 class declaration, 297
 equality, 289, 291
 graphical representation, 288
 inequality, 289, 292
 at most, 298
 propagated, 294
Constraint-driven methods, 506–507
Constraint programming, 283
 ad hoc algorithm, 284
 backtracking, 295
 backward checking, 286–287
 brute force, 285–286
 constraint arcs, 301
 example, 284–285
 finite-domain representation, 299–301
 forward checking, 287–290, 295
 gory implementation, 295–299
 inconsistencies, detecting, 290–294
 randomized solutions, 301
 undo, 295
 variable ordering, 301
 work queue, 301
Constraint satisfaction problems (CSPs), 285
Constructionist approach, 503–504
Content explosion, 14–15
Context, 32
Context Free Art, 515
Context steering behaviors, 183
 avoid behavior, 187–188, 190
 chase behavior, 187
 combining and parsing, 188
 coordinate system, 189
 danger and interest map, 187
 drafting behavior, 191
 final map processing, 188
 optimizations, 192–193
 post-processing, 192
 processing, 191–192
 racing line behavior, 189–190
 scalar values, 186
 subslot calculations, 189
Contextual awareness, Tom Clancy’s Splinter Cell Blacklist, 322, 324–325
Contextual one-off animations, 458
Counterattacks, 386–387
Cover, The Last of Us
 buddy AI, 435–437
 edge features, 435–437
 human enemy AI, 424–426
 post, 424
 share, 437
CryENGINE, 308
Cul-de-sacs, 373–375
D
Data-driven design, Infected characters, 411
Debugging
 Infected characters, The Last of Us, 412
 procedural content generation, 514
Delayed authoring, 534
Desert Fox, 253
Diffusion process, 328
Direction maps (DMs), 175, 178
Direct manipulation, PCG, 510
Discretize pathfinding, 161
Distractions, Infected characters, 410
Distraction stimuli, 306
DMs, see Direction maps (DMs)
Dodging, buddy AI, 434–435
Domain, 285
Dragon Age: Origins, 145
Drive on Moscow, 253
Driver: San Francisco, 85–86
Dual-utility reasoning
 rank, 24–25
 weight, 24–25
 Zoo Tycoon 2, 25–26
Dwarf Fortress, 503, 511
 break down and understand system, 520
 don’t overcomplicate, 520
 real-world analog, 520
 simulation principles, 519
E
1849
 benefits, 55
 buildings, 50
 condition checking frequency, 53–54
 condition definition language, 54
 conditions and actions, 51–52
 data model, 54–55
 game mechanics, 50
 game simulation, 50
 lessons, 55–56
 related work, 56–57
resource bins, 51
resources, 50–51
rule execution, 52–53
workers, 50
Ellie’s Buddy AI, The Last of Us, see Buddy AI, The Last of Us
Emotional modeling, 528–529
Emotion-based adaptation, 482
Alien Swarm, 491
finite-state machine, 491
The Journey to Wild Divine, 491
Left 4 Dead 2’s, 491
The Open Racing Car Simulator, 492
skin conductance level, 491
survivor intensity, 490–491
EmotionFX, 106
Ending search, NPC, 312
Endless Web, 511
Engineering constraints, 513
Environmental awareness, Tom Clancy’s Splinter Cell Blacklist
changes in objects, 319–320
connectivity, 317–319
Equality constraint, 289, 291, 297
Equilibrium distribution, 466
Euclidean distance, 146
Euro-style board war games, 244–245
Evolutionary algorithm, 505
Experiential control, PCG, 510
Exposure map, 420–421, 427–428
Extracting motion from animation, 444
F
Falloff function model
partial derivatives, 340
point-based influence, 330–331
FEAR
bark, 19–20
dialogue, 20
production budget, 20
Finite-domain CSPs, 285
Finite-domain representation, 299–301
Finite-state machine (FSM), 23, 491
First person shooter (FPS), 19, 483
Flanking
attacks, 385
human enemy AI, 428–429
Flocks, 210
Follow positions, buddy AI, 433–434
Follow skill, Infected characters, 415
Forced neighbors, 133–134
Formation adaptation, 221
Forward checking, 287–290, 295–296
Functional testing, 114
Fuse
climb meshes, 228–229
climb mesh generation, 227–228
climb path generation, 229–230
parsing climb paths, 230
traversal setups, 226–227
virtual controller input, 230–232
G
Galactic Arms Race, 506, 508–509
Game AI
animation, 7
autonomy, 5–6
content explosion, 14–15
conversations, 9–10
definition, 4–5
design, 4
development, 6–7
dynamic storylines, 10–11
feedback, 4
frontiers of field, 8
fuzzy border, 5–6
interaction, 4
modeling and displaying emotion, 12–13
online games, 7
pathfinding, 8–9
player modeling, 11–12
replayability, 10
requirement, 4
scale, 13–14
social relationships, 13
unexplored, 15
usability testing, 11
vocabulary, 4
Game analytics, 482
adaptation, 482
emotion-based, 490–492
skill-based difficulty, 488–490
style-based, 492–493
communal analysis, 486–488
individual analysis, 483–486
recommendation systems, 482, 493–494
and team matching techniques, 494–495
Game design constraints, 512–513
Game-driven movement, 444
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game mechanics</td>
<td>50</td>
</tr>
<tr>
<td>Game metrics</td>
<td>483</td>
</tr>
<tr>
<td>Game simulation</td>
<td>50</td>
</tr>
<tr>
<td>Game state, factorizing, 47–48</td>
<td></td>
</tr>
<tr>
<td>Game telemetry</td>
<td>483</td>
</tr>
<tr>
<td>Gap detection, NPC searching, 311–312</td>
<td></td>
</tr>
<tr>
<td>Genetic algorithm, evolution and, 251–252</td>
<td></td>
</tr>
<tr>
<td>Gifting, buddy AI</td>
<td>438</td>
</tr>
<tr>
<td>Goal inference, AI-driven experience</td>
<td>528</td>
</tr>
<tr>
<td>Goal-Oriented Action Planning (GOAP)</td>
<td>117</td>
</tr>
<tr>
<td>action predicates</td>
<td>122, 125–126</td>
</tr>
<tr>
<td>actions</td>
<td>121–122</td>
</tr>
<tr>
<td>competition tests</td>
<td>119</td>
</tr>
<tr>
<td>data structures</td>
<td>120–121</td>
</tr>
<tr>
<td>optimization</td>
<td>118–120</td>
</tr>
<tr>
<td>plans</td>
<td>122</td>
</tr>
<tr>
<td>runtime measurement</td>
<td>118–119</td>
</tr>
<tr>
<td>runtime profiling</td>
<td>123</td>
</tr>
<tr>
<td>scaling tests</td>
<td>119</td>
</tr>
<tr>
<td>state predicates subsets</td>
<td>123–125</td>
</tr>
<tr>
<td>states</td>
<td>123</td>
</tr>
<tr>
<td>use of profile</td>
<td>119–120</td>
</tr>
<tr>
<td>valuable tests</td>
<td>119</td>
</tr>
<tr>
<td>Goal velocity</td>
<td>197</td>
</tr>
<tr>
<td>GOAP, see Goal-Oriented Action Planning</td>
<td></td>
</tr>
<tr>
<td>Planning (GOAP)</td>
<td></td>
</tr>
<tr>
<td>Go/no-go time</td>
<td>32–33</td>
</tr>
<tr>
<td>Google, procedural content generation</td>
<td>515</td>
</tr>
<tr>
<td>Gory implementation</td>
<td>295–299</td>
</tr>
<tr>
<td>Gradient descent</td>
<td></td>
</tr>
<tr>
<td>local minimum</td>
<td>338</td>
</tr>
<tr>
<td>optimization method</td>
<td>337</td>
</tr>
<tr>
<td>Grammar-based approach</td>
<td>504–505</td>
</tr>
<tr>
<td>Graphical user interface (GUI)</td>
<td>240</td>
</tr>
<tr>
<td>Grapples, combat utility</td>
<td>438</td>
</tr>
<tr>
<td>Greedy matching/selection</td>
<td>63–64</td>
</tr>
<tr>
<td>Grids</td>
<td>164</td>
</tr>
<tr>
<td>Group collision avoidance</td>
<td></td>
</tr>
<tr>
<td>formation adaptation</td>
<td>221</td>
</tr>
<tr>
<td>velocity correction</td>
<td>221</td>
</tr>
<tr>
<td>Group navigation</td>
<td></td>
</tr>
<tr>
<td>behaviors</td>
<td>212–213</td>
</tr>
<tr>
<td>choreographed formations</td>
<td></td>
</tr>
<tr>
<td>autonomous formation</td>
<td></td>
</tr>
<tr>
<td>following</td>
<td>220</td>
</tr>
<tr>
<td>blind formation following</td>
<td>219</td>
</tr>
<tr>
<td>formation design</td>
<td>218–219</td>
</tr>
<tr>
<td>slots assignment</td>
<td>219</td>
</tr>
<tr>
<td>emergent group structure</td>
<td></td>
</tr>
<tr>
<td>boids and derivatives</td>
<td>217</td>
</tr>
<tr>
<td>implementing</td>
<td>217–218</td>
</tr>
<tr>
<td>local formations</td>
<td>217</td>
</tr>
<tr>
<td>flocks</td>
<td>210</td>
</tr>
<tr>
<td>formations</td>
<td>210–211</td>
</tr>
<tr>
<td>group collision avoidance</td>
<td></td>
</tr>
<tr>
<td>formation adaptation</td>
<td>221</td>
</tr>
<tr>
<td>velocity correction</td>
<td>221</td>
</tr>
<tr>
<td>members relationship model</td>
<td></td>
</tr>
<tr>
<td>hierarchical entity architecture</td>
<td>215–216</td>
</tr>
<tr>
<td>leader</td>
<td>214</td>
</tr>
<tr>
<td>virtual group entity</td>
<td>214–215</td>
</tr>
<tr>
<td>pathfinding</td>
<td>216–217</td>
</tr>
<tr>
<td>pipeline</td>
<td>213–214</td>
</tr>
<tr>
<td>social groups</td>
<td>211–212</td>
</tr>
<tr>
<td>GUI, see Graphical user interface (GUI)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>HeBTs, see Hinted-execution Behavior</td>
<td></td>
</tr>
<tr>
<td>Trees (HeBTs)</td>
<td>69</td>
</tr>
<tr>
<td>adaptation</td>
<td>84–85</td>
</tr>
<tr>
<td>base behavior</td>
<td>80–81</td>
</tr>
<tr>
<td>behavior controllers</td>
<td>78</td>
</tr>
<tr>
<td>behavior trees</td>
<td></td>
</tr>
<tr>
<td>complexity</td>
<td>73</td>
</tr>
<tr>
<td>simple</td>
<td>71–72</td>
</tr>
<tr>
<td>concept</td>
<td>73–74</td>
</tr>
<tr>
<td>conditions</td>
<td>76–77</td>
</tr>
<tr>
<td>design/engineering collaboration</td>
<td></td>
</tr>
<tr>
<td>workflow</td>
<td>70</td>
</tr>
<tr>
<td>group behaviors</td>
<td>85–86</td>
</tr>
<tr>
<td>higher levels</td>
<td>78–79</td>
</tr>
<tr>
<td>high-level tree</td>
<td>82–83</td>
</tr>
<tr>
<td>multilevel architecture</td>
<td>77–79</td>
</tr>
<tr>
<td>problem, explaining</td>
<td>70–71</td>
</tr>
<tr>
<td>prototype idea</td>
<td>80–82</td>
</tr>
<tr>
<td>results, analyzing</td>
<td>83–84</td>
</tr>
<tr>
<td>selectors</td>
<td>74–75</td>
</tr>
<tr>
<td>Hostile stimuli</td>
<td>306</td>
</tr>
<tr>
<td>Human enemy AI, The Last of Us, 419</td>
<td></td>
</tr>
<tr>
<td>behaviors</td>
<td>426</td>
</tr>
<tr>
<td>building blocks</td>
<td>420–421</td>
</tr>
<tr>
<td>cover</td>
<td>424–426</td>
</tr>
<tr>
<td>flanking</td>
<td>428–429</td>
</tr>
</tbody>
</table>
Index

lethality, 427–428
perception, 421–423
polish, 429
posts, 424–426
skills, 426
stealth, 426–427

Human in the loop approach, 505–506
Hunters, 407–410, 413–414

Idle animations, 459

The Illusion of Life, 473
Inconsistencies, detecting, 290–294

Individual analysis
 goals, 483–484
 K-means clustering, 485
 player modeling
 artificial neural network, 484
 Bayesian networks, 485
 numeric weight vectors, 486
 support vector machines, 484–485

Inequality constraint, 289, 292, 298

Infected-canvass behavior, 413
 on-fire skill, 416
 requirements, 413
 selecting animation, 414
 sleep skill, 417

Infected characters, The Last of Us, 407
 ambush skill, 415–416
 characteristics, 408
 chase skill, 415
 data-driven design, 411
 debugging, 412
 distractions, 410
 follow skill, 415
 implementation, 412
 logical sounds, 418–419
 move-to behavior, 410, 415
 on-fire skill, 416
 philosophy, 410–411
 search skill, 413–415
 senses, 408–409
 skills, 412
 sleep skill, 417
 throw skill, 416
 types, 415–416
 vision type, 411
 wander skill, 416–417

Infinite-resolution influence mapping,
 see Influence map

Influence map, 327
 breadcrumbing, 328
 construction, 328
 example implementation, 340
 handling obstacles, 335–336
 influence source density, 340
 k-d tree
 application, 333
 construction, 333
 left-hand branch, 332
 range query, 333–334
 right-hand branch, 332
 splitting axis, 332–333
 temporal propagation, 335
 limitations, 329
 modular tactical (see Modular tactical influence maps)
 nontrivial topologies, 335–336
 optimization queries, 336–339
 point-based influence, 330–331
 propagation methods, 328
 query point, 330, 341
 representing AI guess, 328–329
 spatial reasoning, 375–377
 border calculations, 381–382
 force estimates over regions, 378–380
 intelligence illusion, 379–381
 propagation calculations, 377–378
 statistical approximations, 341
 suitability considerations, 340
 temporal influence propagation, 333–335
 2D to 3D geometry, 339–340
 update frequency, 341

Influence propagation algorithm, 380
Influence source density, 340
Information retrieval, 354–355
Initial stimulus-based trigger, NPC searching, 306

Interest search, 256
 analysis, 262–263
 classifying moves, 258–259
 dynamic calculation, 261–262
 Japanese chess (Shogi), 260–262
 quantifying, 257–258
 rethinking selective search, 257
 selection by variation, 257
 tree, 258
 Treebeard chess, 260
Interrupting movement, 452–454

Investigate skill, human enemy AI, 426
J

The Journey to Wild Divine, 491

JPS, see Jump point search (JPS)

Jump points, 132
- diagonal, 136
- primary, 134–135
- southwest diagonal, 139
- straight, 134–136
- westward straight, 138

Jump point search (JPS), 131–132
- forced neighbors, 133–134
- jump points, 134–136
- map preprocess implementation, 137–139
- pruning strategy, 132–133
- runtime implementation, 139–142
- wall distances, 136–137

K

k-d tree
- application, 333
- construction, 333
- influence source density, 340
- left-hand branch, 332
- range query, 333–334
- right-hand branch, 332
- splitting axis, 332–333
- temporal propagation, 335

Kernel density estimation, 336

K-means clustering
- communal analysis, 486–488
- individual analysis, 485

Knowledge representation
- influence mapping, 327
- procedural content generation components, 508
 - experiential chunks, 507
 - mixing-and-matching paradigms, 508–509
- subcomponents, 508
- templates, 507–508

Kohan II: Kings of War, 366
- attackable obstacles, 385
- greedy flood-fill-based approach, 368
- illusion of intelligence, 381
- tile based, 368

L

The Last of Us, 21, 28–29
- buddy AI, 431
 - armed combat, 439–440
 - combat utility, 437–438
 - cover, 435–437
 - finishing touches, 440–441
 - start from scratch, 432–435
- human enemy AI, 419
 - behaviors, 426
 - building blocks, 420–421
 - cover, 424–426
 - flanking, 428–429
 - lethality, 427–428
 - perception, 421–423
 - polish, 429
 - posts, 424–426
 - skills, 426
 - stealth, 426–427
- Infected characters, 407
 - ambush skill, 415–416
 - characteristics, 408
 - chase skill, 415
 - data-driven design, 411
 - debugging, 412
 - distractions, 410
 - follow skill, 415
 - implementation, 412
 - logical sounds, 418–419
 - move-to behavior, 410, 415
 - on-fire skill, 416
 - philosophy, 410–411
 - search skill, 413–415
 - senses, 408–409
 - skills, 412
 - sleep skill, 417
 - throw skill, 416
 - types, 415–416
 - vision type, 411
 - wander skill, 416–417
- Launchpad level generator, 505, 512
- Layers of animation, 455–456
- **League of Legends, 12**
- **Left 4 Dead, 10, 490, 528–529**
- Left 4 Dead 2's (L4D2), 491
- Lethality, human enemy AI, 427–428
- Limbic brain, 245, 251
Linear programming (LP), 207, 241
Little Red Riding Hood, 523–525, 530–531
Living Scenes, 89–90
 execution, 91, 94
 NPCs, 95
 performing through smart zones, 90–91
 realization, 94
 trigger management, 93
Locomotion, 109
 animations, 36, 403
 context, 110
 forward, 103
 NPC, 115
Looping animations
 correcting speed, 451
 displacement direction and orientation, 446–448
 pose matching, 453
Losing target triggering method, NPC
 searching, 306–307
LP, see Linear programming (LP)
M
 Machine-learned narrative selection technique, 530
 Machine learning algorithms, 484
 Marine Mania, 25
 Mario-like game, 513
 Masking animations, 454–455
 MCTS algorithms, see Monte Carlo tree search (MCTS) algorithms
 Mecanim, 106
 Merchant’s inventory modeling, M/M/1 queues, 467
 add_rate parameters, 468–469
 computational considerations, 469–470
 remove_rate parameters, 468–469
 three-item inventory changes with time, 467–468
 virtual observation, 468
 Stationary distribution, 464–466
 transient distribution, 464–466
 Modular tactical influence maps
 advantage, 344–345
 allied agent, 347
 architecture, 343–344
 base map structure, 349–350
 templates, 350–352
 types of base maps, 350
 working maps, 352–353
 implementations, 346–347
 information retrieval, 354–355
 location for area of effect attack, 362
 movement to safer spot, 362
 nearest battlefront location, 362–364
 population of map data, 353–354
 propagation, 348–349
 querying information, 356–357
 usage
 gathering information, 356–357
 positioning, 360–361
 targeting, 357–360
 Molotov cocktail, 410
 Monte Carlo tree search (MCTS) algorithms, 255, 276
 applying to games, 280
 enhancements and variations, 279
 implementation, 279
 Morpheme, 106
 Move-to behavior, Infected characters, 410, 415
 Moving
 buddy AI, The Last of Us, 434
 translation logic to animgraph, 107–108
 Multiobjective evolutionary algorithm, 484
 Multiplayer online battle arena, 494
Index

N
Narrative generation technique, 526–527
Navigation behaviors, 212–213
Navigation pipeline, 213–214
Neocortex, 245
state evaluation, 249–251
tree-search algorithm, 248–249
Neverwinter Nights, 489
Nonnegative matrix factorization (NMF), 486–487
Nonplayer characters (NPCs)
behavior realization, 443
action tokens, 458–460
blackboards, 460
combining actions, 454–456
contextual one-off animations, 458
decoupling extracted motion, 446
displacement direction and orientation, 446–449
micro behaviors, 458–459
motion correction, 446
move and shoot tokens, 459
movement models, 444–446
on-screen realization, 460
per-bone blending, 453–454
pose matching, 453
pose-only blending, 453–454
rank categories, 460
speed correction, 450–452
tracking, 456–457
using additives with idles, 459
factorizing game state, 47–48
human enemy AI, The Last of Us (see Human enemy AI, The Last of Us)
locomotion, 115
perception testing, 421–423
possibility maps, 42–45
searching
aggressive search, 306, 308
cautious search, 305–308
ending search, 312
gap detection, 311–312
initial stimulus-based trigger, 306
losing target triggering method, 306–307
performing, 309–310
search spot, 309–311
techniques, 237–238
triggering, 306–307

search map locations, 427
Tom Clancy's Splinter Cell Blacklist (see Tom Clancy's Splinter Cell Blacklist)
Nontrivial topologies, influence map, 335–336
NPCs, see Nonplayer characters (NPCs)
Numeric weight vectors, 486

O
Object identification certainty, 27–28
camouflage, 29
identification certainty, 29–30
incorporating movement, 29
Objective function maximization technique, 529–530
Obstacles
attackable, 385–386
handling, influence map, 335–336
reciprocal velocity obstacle, 206, 220–221
Offline AI, 266
Offline UCB1, 273–275
One-off animations
contextual, 458
displacement direction and orientation, 446, 448–449
micro behaviors, 458–459
On-fire skill, Infected characters, 416
Online AI, 265–266
Online UCB1, 266–268
applying to games, 268–270
javascript, 269
On-screen realization, nonplayer characters, 460
Open post, 424
The Open Racing Car Simulator, 492
OpportunisticShooter, 428
Optimal reciprocal collision avoidance (ORCA), 204–208
Optimization-based generator, PCG, 505–506
Optimization query, influence map, 336–339

P
PAM, see Predictive avoidance method (PAM)
Parameterized control, PCG, 509
Path caching, 372–373
Pathfinding

group navigation, 216–217
idealized environment, 174–175
Path planning, 371
congestion maps, 175–177
efficient state representation, 239–240
Path smoothing, 177–179
PCA, see Principle component analysis (PCA)
PCG, see Procedural content generation (PCG)
Per-bone blending, 453–454
Perception
 auditory
 calculating audio distance, 320–321
 fairness, 321–322
 human enemy AI, The Last of Us, 421–423
 motion, 472–474
 visual, 314–317
Personality in triune architecture, 246
Photon mapping, 336
Placement mechanism, 328
Planning Domain Definition Language (PDDL), 524, 527–528
Platformers, 483
Platoon leaders, 365
Player Appraisal Controlling Emotions (PACE), 531
Player experience modeling, 506
Player interaction, with PCG, 510–511
Player modeling, 11–12
 artificial neural network, 484
 Bayesian networks, 485
 definition, 484
 numeric weight vectors, 486
 support vector machines, 484–485
Player-Specific Automated Storytelling (PAST), 531
Player-Specific Stories via Automatically Generated Events (PaSSAGE)
 AI-driven experience management, 530–531
 style-based adaptation, 492–493
Play style modeling, 527
Point-based influence, 330–331
Point light animations, 472–473
Polish, The Last of Us, 429
Polygons, voxel-based navmesh generation, 392
 sloping side after simplification, 395
 staircase side before simplification, 395
 triangulating, 394–396
Portal, 15
Pose matching, 451, 453
Pose-only blending, 453–454
Position, agent state, 197
Possibility maps, 42
 NPC's location, 43
 probability maps, combining, 46–47
 using, 42–45
Posts
 definition, 424
 selector, 424–426
 types, 424
Potassco, 515
Predictive avoidance method (PAM), 203–204
Preference control, PCG, 509
Prince of Persia, 268, 273
Principle component analysis (PCA), 486–487
Probability map, 42
 guard, 46
 possibility and, combining, 46–47
 static, 47
 updating, 45–46
Procedural content generation (PCG), 15, 501
 academic research, 515
 bottom-up approach, 512
 Choco, 515
 constraint-driven methods, 506–507
 constructionist approach, 503–504
 Context Free Art, 515
 debugging, 514
 Elite, 501–502
 engineering constraints, 513
 evolutionary algorithm, 505
 game design constraints, 512–513
 Google, 515
 grammar-based approach, 504–505
 knowledge representation
 components, 508
 experiential chunks, 507
 mixing-and-matching paradigms, 508–509
 subcomponents, 508
 templates, 507–508
 mechanical role, 509–510
 optimization-based generator, 505–506
 player interaction with, 510–511
 Potassco, 515
 relationship with art, 513
 simulation-based approaches, 503
 StructureSynth, 515
 top-down approach, 512
 tuning, 514
 wiki, 515
Simulation-based approaches, 503
Simulation principles, *Dwarf Fortress*, 519–521
Skill-based adaptation, 482, 488
 artificial evolution techniques, 489
 cascading elitism, 489–490
 reinforcement learning algorithms, 489
 weighted behavior selection techniques, 489
Skin conductance level (SCL), 491
Sleep skill, Infected characters, 417
Smart Objects, 90
Smart Zones
 behavior orchestration, 94
 definition by game designers, 91–93
 juggler spectacle, 98
 NPC behaviors, 95
 overlapping zones management, 95
 performing Living Scenes, 90–91
 practice, 91–95
 role assignment, 93–94
 role interruption, 95
 runtime architecture, 93
 scenario, 96–97
 Smart Zone 1, 96
 Smart Zone 2, 96
 Smart Zone 3, 96
 Smart Zone 4, 96
 Smart Zone 5, 96
 trigger management, 93
Unity3D, 97–99
SoC, see Separation of concerns (SoC)
Social awareness, 322–324
Social groups, 211–212
Spatial analysis, 327
Spatial coverage, extending voxel-based navmesh
 metadata use, 399–401
 reintroducing discarded space, 397–399
Spatial partitioning, 366–367
 homogeneity, 366–367
 region generation
 designer defined, 367
 navmesh based, 368
 tile based, 368–369
 static vs. dynamic regions, 369
Spatial reasoning, 327, 366
 characteristics
 attackable obstacles, 385–386
 avenues of approach, 383–385
 consolidation, 386–387
 counterattacks, 386–387
flanking attacks, 385
high-traffic areas, 383
scent of death, 383
influence maps, 375–377
 border calculations, 381–382
 force estimates over regions, 378–380
 intelligence illusion, 379–381
 propagation calculations, 377–378
 working with regions, 369
 chokepoints, 373–375
 cul-de-sacs, 373–375
 distance estimation, 371–372
 path caching, 372–373
 path planning, 371
 picking places to attack, 370
 picking places to scout/explore, 370
 picking unit positions, 370–371
Splitting axis, k-d tree, 332–333
Sports Commentary Recommendation System (SCoReS), 531
Squad leaders, 365
SSGs, see Simple subgoal graphs (SSGs)
Starcraft, 145, 273
Start from scratch, buddy AI
 ambient following, 432–433
 approach, 432
 dodging, 434–435
 follow positions, 433–434
 moving, 434
 plan, 432
 teleportation, 435
State machines, 103
Stationary distribution, M/M/1 queues, 464–466
Stealth, human enemy AI, 426–427
Steering behaviors, 183
 Band-Aids, 184
 child behaviors, 184
 flocks vs. groups, 185
 lack of context, 185–186
 prioritization, 185
 weighting, 184
Stop-motion animation, 473
Strategy games, 483
 attackable obstacles, 385
 RTS game, 240, 366, 494
 tile-based, 366
StructureSynth, procedural content generation, 515
Style-based adaptation, 482, 492–493
Subgoal graphs, 145
 core graph, 157
 preliminaries, 146–147
 simple (see Simple subgoal graphs (SSGs))
 three-level graph, 156
 two-level (see Two-level subgoal graphs (TSGs))
 variants on game maps, 146
 visibility graphs, 148
Support vector machines (SVMs), 484–485
Survivor intensity (SI), 490–491
Swim navigation, 401–402
System refactoring, 114–115
T
Tactical Environment Awareness System (TEAS), 318, 324
Tactical point system (TPS), 308–309
Team balancing, 482
Team matching techniques, 494–495
Telemetry, 483, 487
Teleological stance, 474–475
Teleportation, buddy AI, 435
Templates
 modular tactical influence maps, 350–352
 procedural content generation, 507–508
 proximity map, 351
 threat map, 352
Temporal influence propagation, 333–335
A Theory of Fun for Game Design, 365
Theta*, 163–164
 algorithm, 166–167
 example trace, 167
 pseudocode, 166
 Dijkstra's algorithm, 178
 paths, 168–170
 problem formalization, 164
Threat map, 350, 352
Throwing, combat utility, 437–438
Throw skill, Infected characters, 413, 416
Tile-based map, 368–369
Tile-based strategy games, 284, 366
Time horizon, 198–199
Time-to-collision, 197–199
Tokens, characters problem, 476–477
Tomb Raider, 225
Tom Clancy’s Splinter Cell Blacklist, 28
 auditory perception
 calculating audio distance, 320–321
 fairness, 321–322
 consistency, 314
 contextual awareness, 322, 324–325
 disappearing NPC problem, 325–326
 environmental awareness
 changes in objects, 319–320
 connectivity, 317–319
 fairness, 313
 good feedback, 314
 intelligence, 314
 social awareness, 322–324
 visual perception, 314–317
Top-down approach, procedural content generation, 512
Tracking
 additive aiming poses, 456–457
 inverse kinematics, 457
Transient distribution, M/M/1 queues, 464–466
Transition animations, 444, 451
 correcting speed, 451
 displacement direction and orientation, 446, 448–449
 pose matching, 453
Traversal setups, 225–227
Treebeard chess, 260
Tree-search algorithm, 248
Triune brain model, 245–246
TSGs, see Two-level subgoal graphs (TSGs)
Tuning, procedural content generation, 514
Two-level grid graphs, 157
Two-level property (TLP), 153
Two-level subgoal graphs (TSGs)
 constructing, 153–154
 n-level graphs, 156–158
 searching using, 154–155
U
UCB1
 offline, 273–275
 online (see Online UCB1)
UCT, 276–278
 applying to games, 280
 enhancements and variations, 279
 implementation, 279
 pseudocode, 278
 selection and expansion phases, 276–277
 simulation and propagation phases, 277–278
Unity3D, 97–99
Usability testing, 11
User-based CF approach, 494
Utility-based AI, 23–26

V
Value semantics, 299
Variables, 285
 class declaration, 297
 graphical representation, 288
 ordering, 301
 undo, 295
VCI, see Virtual controller input (VCI)
Velocity, 197
Velocity correction, 221
Vertex contraction, 158
Virtual controller input (VCI), 230–232
Virtual group entity, 214–215
Visibility graphs, 163
Vision sweet spot, 28
Vision zones, 27–28
 camouflage, 29
 identification certainty, 29–30
 incorporating movement, 29
Visual perception, Tom Clancy’s Splinter Cell
 Blacklist, 314–317
Vocalizations, buddy AI, 440
Voronoi diagrams, 331
Voxel-based navigation mesh/navmesh, 389
 agent-driven parameter (see Agent-driven parameter)
 border voxels, 393–394
 crouch-only triangles, 397–400
 enter voxelization, 391–394
 extending spatial coverage
 metadata use, 399–401
 reintroducing discarded space, 397–399
 goals, 390–391
 multiple generation parameter passes, 403
 nonwalkable voxels, 392
 playing with heuristic, 403–404
 prone navigation, 401
 recap, 396–397
 sidestep navigation, 402–403
 stand-only triangles, 397–399
 swim navigation, 401–402
 triangulating polygons, 394–396
 walkable voxels, 392

W
Walk animation, 451–452
Wander skill, Infected characters, 412–413,
 416–417
Warcraft II, 145
Warzone 2100, 506
Weighted behavior selection techniques, 489
Wiki, PCG, 515
Working maps, 349, 352–353
Work queue, 301
World of Warcraft, 6, 487

Z
Zeus, 50
Zoo Tycoon 2, 25–26