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Procedural Content Generation
An Overview
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40.1  Introduction

Procedural content generation (PCG) is the process of using an AI system to author 
aspects of a game that a human designer would typically be responsible for creating, 
from textures and natural effects to levels and quests, and even to the game rules them-
selves. Therefore, the creator of a PCG system is responsible for capturing some aspect of 
a designer’s expertise—a challenging task for an AI!

PCG has been used in many games for several different purposes. Two popular motiva-
tions are replayability and adaptability. PCG can provide large amounts of content, so that 
each time the player starts the game, they will have a different experience. In combina-
tion with an AI system that can infer player skill, PCG can be used as a form of dynamic 
difficulty adjustment, shifting the content the player will see in order to adapt to their 
skill level.

One of the first examples of PCG was in the game Elite [Braben 84], where entire galax-
ies were generated by the computer so that there could be an expansive universe for players 
to explore without running afoul of memory requirements. However, unlike most mod-
ern games that incorporate PCG, Elite’s content generation was entirely deterministic, 
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allowing the designers to have complete control over the resulting experience. In other 
words, Elite is really a game where PCG is used as a form of data compression. This tra-
dition is continued in demoscenes, such as .kkrieger [.theprodukkt 04], which have the 
goal of maximizing the complexity of interactive scenes with a minimal code footprint. 
However, this is no longer the major goal for PCG systems.

Regardless of whether creation is deterministic, one of the main tensions when creat-
ing a game with PCG is retaining some amount of control over the final product. It can be 
tempting to use PCG in a game because of a desire to reduce the authoring burden or make 
up for missing expertise—for example, a small indie team wanting to make a game with 
a massive world may choose to use PCG to avoid needing to painstakingly hand-author 
that world. But while it is relatively simple to create a system that can generate highly var-
ied content, the challenge comes in ensuring the content’s quality and ability to meet the 
needs of the game.

There are several major approaches to PCG that offer different means for this con-
trol, as well as supporting different extents to which the control can take place. There are 
also many reasons for why PCG may be used in a game, which can help inform a game 
designer’s and/or developer’s choice about what technique to use when creating the sys-
tem. Civilization [MicroProse 91], Rogue [Toy 80], Minecraft [Persson 11], and Borderlands 
[Gearbox Software 09] are all examples of popular games that use PCG, but with com-
pletely different approaches and purposes.

For the sake of scope, this chapter focuses on creating content that a player somehow 
interacts with as part of gameplay—think levels and quests, rather than textures and trees 
that involve procedural modeling [Ebert 03]. It will also avoid a discussion of procedural 
generation of game rules—that is, research that is really still in its infancy as of this book’s 
publication [Smith, A. 10, Togelius 08]. The focus is on the procedural creation of con-
tent (e.g., what would be created by a level designer) rather than on storytelling and NPC 
behavior, though there are many relationships between these systems. However, while we 
won’t delve into systems that create game rules, for many PCG systems, it is still necessary 
to find ways to formally specify aspects of the game’s rules in order to guarantee that play-
able content will be generated.

This chapter will give an overview of PCG, survey different techniques for creating con-
tent generators, examine how PCG fits into a game’s design, and give some advice for how 
to choose an appropriate method for a game. At the end, there are pointers to literature 
and resources where the reader can find more details on PCG and learn how to stay up to 
date on PCG research.

40.2  Technical Approaches to Content Generation

While there are no off-the-shelf tools or frameworks for creating your own PCG system, 
there are several common approaches and methods for knowledge representation. This 
section will give an overview of these approaches and methods and discuss some trade-
offs between them.

40.2.1  Algorithms and Approaches
One of the primary considerations when choosing an approach to designing a content gen-
erator is the extent and kind of control needed. Approaches to PCG range from purely 
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bottom-up, simulation-based methods that only permit control over the initial state of the 
world and the operators for changing it to top-down, constraint-driven methods that let 
the system meet firm authoring constraints but may be more expensive to create and debug.

40.2.1.1  Simulation Based

Simulation-based approaches to PCG start with an initial world and a set of operators 
that can alter that world and then run a simulation for a predetermined period of time. 
For example, a simulation-based approach to creating terrain might start with a single 
landmass in an ocean, a climate/rainfall model, and an erosion model to create a new ter-
rain with rivers, lakes, cliffs, and beaches. Dwarf Fortress [Bay 12 Games 06, Adams 15] 
is a game that takes this approach to generation, with a full simulation that creates land-
masses, caves, and a history for the world. Simulation-based approaches do not permit 
any control over the final output of the system without using a generate-and-test para-
digm (described further in the section on constructionist systems). While simulation can 
be a slow process with limited control, it has two potential benefits that may make it a 
good choice: (1) it provides you with a content history that can be referred to or replayed, 
and (2) it can be run during gameplay to create a world that reacts to the player’s choices 
and actions.

40.2.1.2  Constructionist

A constructionist approach is one that pieces together premade building blocks according 
to an algorithm especially constructed for the game. This algorithm has design knowledge 
implicitly baked into it—any intelligence in the process exists only in the choices made by 
this one algorithm, rather than more explicitly stated as an optimization function or as a 
set of design constraints. For example, many Rogue-like level generators [Rogue Basin 12] 
use constructionist approaches that build different rooms and then construct corridors 
between them. Constructionist approaches are typically ad hoc, specialized for one par-
ticular game with little applicability beyond it, and accessible primarily to developers, 
rather than designers and artists.

Constructionist approaches often rely entirely on their knowledge representation (see 
below). Many, though not all, approaches involve taking large, preauthored pieces of con-
tent and placing them next to each other randomly, as in endless runner games like Robot 
Unicorn Attack [[adult swim] games 10] or Canabalt [Saltsman 09]. This kind of construc-
tionist approach is perhaps more accurately named content selection, where there is no 
attempt to make intelligent choices in the process that is followed, but there is very tight 
designer control over the building blocks.

Constructionist systems are difficult to control and difficult to get good variation from; 
it’s easy for all the content to start to feel the same if there’s a limited set of building blocks 
to choose from. Large branching control flow structures can also be difficult to debug, 
especially if the bug lies in a piece of code that is executed very rarely. And you can spend 
a huge amount of time tweaking your algorithm to get content that is just right in one situ-
ation, without realizing that you’re simultaneously breaking the content for some different 
situation.

Designing your own algorithm from the ground up does have some benefits, however. 
From a design perspective, content selection is a lightweight approach that is good enough 
for some games, especially where there aren’t a lot of constraints on what constitutes 
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playability (e.g., a simple platforming game such as Canabalt just needs the platforms to be 
reachable, whereas a lock-and-key puzzle game such as Joris Dormans’s Zelda-like game 
[Dormans 10] has deeper constraints).

40.2.1.3  Grammars

A grammar-based approach starts by specifying the possibility space of content (or gen-
erative space) as a formal grammar. Next, an interpreter for that grammar (which will 
parse and process the rules to create content) is built. This explicit separation of grammar 
rules from content assembly offers more organization than a constructionist approach, 
where the rules are often implicitly defined in the code, and can also be useful to techni-
cal designers who may be able to edit the grammar rules without needing to touch the 
content assembly system. Grammars have been used to create levels for platforming games 
[Smith, G. 11c] and action-adventure games [Dormans 10], as well as in tools for rapidly 
designing buildings [Müller 06]. Shape grammars are also a useful kind of grammar for 
creating visual content [Stiny 80].

When used in a process in which content is tested against requirements and discarded if 
it doesn’t pass the tests, this approach strikes a balance between bottom-up emergence from 
designer-specified rules (in the form of the grammar) and top-down control over content 
(in the form of the acceptance rules for the generated content). It still allows a computer to 
explore the design space and come up with surprising and varied results.

Authoring the rules for a grammar-based system is done by breaking down your 
desired content into increasingly small pieces. The grammar will then specify rules as 
nonterminal and terminal symbols. Nonterminal symbols can be expanded into more 
nonterminals and terminals, specified by a set of rules. Content creation begins with a 
single nonterminal symbol, the start symbol, and then repeatedly replaces nontermi-
nals with new symbols (which may be terminals, nonterminals, or a mix of the two) 
according to a set of expansion rules until only terminal symbols remain. There may 
also be more than one rule per nonterminal symbol, thus allowing nondeterministic 
content to be created. Some rules might be weighted toward being selected more fre-
quently than others, which can provide some additional control over the kind of content 
that will be produced.

The grammar’s interpreter is responsible for selecting the next rule to expand. It can 
be tempting to combine the grammar rules and the interpreter into one big branching 
control flow, and for simple grammars this can suffice. However, the power of grammars 
often lies in the ability to quickly add or change rules and see the impact on content, and 
grammars often change and grow to meet changing design constraints. Thus, it is a good 
idea to keep the interpreter and the grammar separate.

A grammar can produce huge amounts of content often very quickly. Unfortunately, 
grammars are prone to overgeneration, where they may create content that was not 
intended when the grammar rules were designed. If the grammar is too loosely con-
strained, there is no guarantee that everything it can create will be good content. Fixing 
overgeneration in the grammar rules can sometimes restrict the abilities of the grammar 
too much, leading to undergeneration—all the content may now be considered good, but 
it will also feel too similar and predictable. Thus, choosing to overgenerate and then run-
ning a suite of tests on the results can ensure that surprising content is still generated, but 
unacceptable content is discarded.
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In order to achieve this, there must be defined some simple-to-measure acceptance 
criteria (e.g., that a level must have at least 15 features) with which the bad content will be 
culled. These criteria also offer an opportunity to explicitly define criteria that are diffi-
cult, or even impossible, to specify in the grammar rules, and provide some ability to have 
top-down design constraints while still benefiting from the emergent content that comes 
from using bottom-up rules for generation.

The strength of a grammar-based approach lies in the combination of simple, easy-to-
author rules that provide emergent and interesting content with a generate-and-test para-
digm that lets the generator meet soft constraints. Grammar rules are also easy to use to 
express design patterns. Since grammars usually generate content very quickly, generating 
a great deal of content and throwing much of it away are not expensive. As an example, 
Launchpad [Smith, G. 11c] is an unoptimized level generator for Mario-like platforming 
levels. Its grammar-based representation is capable of creating ten thousand candidate 
levels in only a few seconds. The speed of this approach is dependent in large part upon the 
complexity of the grammar rules, but since it is possible to specify recursive rules, speed 
is also dependent upon the allowed recursion depth. The weakness of grammars is their 
difficulty in meeting hard design constraints and in debugging the rule system, which can 
become quite complex.

40.2.1.4  Optimization

An optimization-based generator involves a search process (often unbounded) that seeks 
out the optimal combination of components according to some evaluation function. This 
evaluation function is usually specified as a formula that attempts to calculate the desir-
ability, and the search attempts to maximize this value. Alternately, there can be a human 
in the loop, with a human player or designer selecting their favorite content from among 
the candidates.

Evolutionary algorithms are a popular approach to optimization-based content genera-
tion in academic research. They attempt to mimic natural evolution. An initial population 
is created and then bred and mutated into a new population that can be evaluated by the 
fitness function (or by the human in the loop). The best candidates are bred and mutated 
once again, and their children are evaluated. This cycle continues until there is a piece of 
content that is a good fit to the evaluation function or until a maximum number of candi-
date generations have been created, at which point the candidate with the best evaluation 
score is chosen.

As a simple example of an evolutionary algorithm, consider the problem of procedur-
ally generating a maze. An evolutionary algorithm might start with a population of a 
thousand completely random mazes. It would then calculate the fitness score for each 
maze based on how well that particular candidate meets the evaluation criteria and would 
generate a new population of mazes by breeding highly rated mazes together—perhaps by 
combining the left and right halves of two different mazes into a new one. This process 
would be repeated either until a predetermined amount of time has passed or until a maze 
that meets the acceptance criteria has been generated.

There are a lot of nuances to creating genetic algorithms. Optimization-based 
approaches are also highly sensitive to the knowledge representation used (e.g., represent-
ing a maze as a set of walls with endpoints and lengths or as a grid with open and closed 
cells) [McGuinness 12], as well as to the particular implementation of the algorithm. 
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What should the mutation and breeding operators be? How should the evaluation func-
tion be crafted? How should the percentage of the population that is chosen to breed ver-
sus mutate be selected? Should some of the candidates be saved for the next generation 
without breeding (known as elitism)? There is a survey article on search-based methods 
for PCG that provides a good entry point to the literature [Togelius 11].

All optimization-based approaches to PCG must have an evaluation function—some 
way of quantifying the overall goodness of an arbitrary piece of content. These evaluation 
functions can be fairly simple approximations, such as the distance from the actual dis-
tribution of components in the content to the desired distribution of those components. 
However, it can be difficult to capture everything important about the content in one 
evaluation function. Player experience modeling [Yannakakis 11] is an attempt to treat 
the evaluation function more abstractly by learning a model of individual player prefer-
ences by having them play some of the content and then applying the model as the fitness 
function to create personalized content. A simpler use of player modeling is to use the 
human as the evaluation function. Galactic Arms Race is a game that takes a human-in-
the-loop approach and uses an inferred simple model of player preference (those weapons 
the player uses most often are most desirable) to generate new weapons that are personal-
ized to a particular play style [Hastings 09].

The use of an optimization-based approach relies on a comfort with the notion that 
there is such a thing as an optimal piece or pieces of content and that it is possible to 
express this mathematically. Note that this evaluation function does not necessarily need 
to be reduced to a mathematical definition of fun. It can instead be a set of desired proper-
ties that the system should aim for. If the generator is being designed with a concrete goal 
that can be expressed mathematically, then this approach may be a good one. It can also 
work quite well if there is a way to involve a human in guiding the generation process at 
runtime. Another benefit is that, like the generate-and-test approach used with grammars, 
optimization-based approaches can be useful for soft constraints—properties of content 
that are desirable but not crucial to the function of the game. However, evolutionary algo-
rithms that do not have a human-in-the-loop can be slow, and player experience modeling 
requires the player to be put through training levels, which can be time consuming for the 
player and must be designed into the game.

40.2.1.5  Constraint Driven

Constraint-driven methods are declarative approaches in which hard design constraints 
are specified, and then a constraint solver is used to find all potential solutions that meet 
those constraints. All of the content is expressed as variables with ranges of potential 
values, with constraints dictating the relationships between these variables. This entirely 
top-down approach allows the specification of knowledge about what the content should 
look like separately from the underlying search algorithm.

Constraint satisfaction has been used for generating room interiors [Tutenel 09] using 
semantic constraints, which introduce knowledge about what objects are and how they 
relate to others (e.g., a table should be surrounded by chairs). Numerical constraint solv-
ing has been used for placement of platforms and other level geometry in platformer levels 
[Smith, G. 11b]. Answer set programming, a method for specifying constraint problems 
in first-order logic, has been used for levels in an educational puzzle game [Smith, A. 12] 
as well as the real-time strategy game Warzone 2100 [Smith, A. 11].
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The challenge in constraint satisfaction for content generation comes from fully speci-
fying all of the constraints. Commonsense constraints, such as the idea that two objects 
cannot occupy the same position at the same time, must be specified along with more 
game-specific constraints. However, constraints are a powerful method for expressing a 
design space, and this approach works well when there are many constraints that must 
be met in order for the content to be acceptable. Runtime performance for constraint 
satisfaction approaches to PCG varies drastically based on the size of the problem, how 
the problem is described, and the number of constraints. Many solvers, such as answer set 
programming, work by reducing the problem to a Boolean satisfiability problem, which is 
an NP-complete problem. However, for small-to-medium-sized domains, such as mazes, 
grid-based puzzle games [Smith, A. 11], and even simple platformers [Smith, G.  11b], 
constraint-based content generation can produce results in a matter of seconds, or a few 
minutes at worst. What’s more, adding constraints can actually improve the runtime per-
formance of some constraint-based systems, as it allows the system to rapidly eliminate 
portions of the search space that don’t contain satisfactory solutions.

40.2.2  Knowledge Representation
Many of the approaches described in the previous section can be further varied by chang-
ing the knowledge representation—that is, the building blocks that the content genera-
tor will piece together. Here, there are four major kinds of building blocks that trade off 
authoring control against risk of the player recognizing common patterns. They are pre-
sented in order from most to least human authoring.

40.2.2.1  Experiential Chunks

An experiential chunk captures a sufficiently large amount of content that, on its own 
and outside the context of the entire piece of content, it could still be experienced by the 
player as its own entity. An example would be the level chunks used in Robot Unicorn 
Attack. One advantage of this representation is that there is a great deal of artistic and 
design control over the appearance of the generated content, but there is a significant 
chance that the player will begin to notice the same chunks repeated again and again. 
Raph Koster notes that game players are pattern recognition machines [Koster 04], and 
this is certainly true for PCG. Unless pattern recognition is desired, experiential chunks 
should be either avoided or tempered by using a mixture of approaches to designing the 
generator (see Section 40.2.3). Experiential chunks are usually used with constructionist 
algorithms, but can also be used with grammars.

40.2.2.2  Templates

Templates are a more generalized form of experiential chunk, where the design team can 
still control the content, but leaves blanks for the AI to fill in automatically. Templates are 
like the Mad Libs of PCG and, unless care is taken to construct the template and the rules 
for what content can fill in the gaps, can have the same quirky consequences as the word 
game. However, templates can strike a nice balance between authorial control and variety 
for high-fidelity games.

Templates are a kind of high-level design pattern, and the design pattern literature can 
be a good place to draw inspiration for templates for a generator. Bjork and Holopainen’s 
book [Bjork 04] is a good collection of general patterns, but there are also patterns specific 
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to genres such as first-person shooters [Hullett 10], role-playing game levels and quests 
[Smith, G. 11a, Onuczko 05], and 2D platformers [Smith, G. 11c], to name a few examples.

40.2.2.3  Components

Like templates, components are patterns that have been designed by a human. However, 
unlike templates and experiential chunks, components cannot stand on their own to be 
experienced as content in their own right. For example, enemies in a first-person shooter 
have general behavior dictated by a human designer, but cannot exist without the broader 
context of the level that they inhabit. Using components reduces the risk that content 
patterns will be seen by the player. However, it also means that the generation algorithm 
needs to play a much stronger role, as it will be almost entirely responsible for the quality 
of the content that is produced. Component patterns can work well with all of the genera-
tion approaches mentioned in this chapter.

40.2.2.4  Subcomponents

A subcomponent representation uses the smallest possible assets. Subcomponents do not 
have embedded semantic information about what the content is or how it should be used. 
They can be imagined as the same kind of building block that humans use to construct 
their levels, such as art assets from a tileset. Very few generators use this approach to con-
tent generation because it is difficult for the generator to understand how to piece things 
together without some amount of semantic information about the content, and thus it’s 
more common for generators to use a component representation. For example, it is helpful 
for a generator to understand the concept of a room or a chest and how they are allowed 
to fit together. However, Galactic Arms Race [Hastings 09], an experimental game that 
creates particle system weapons, is one example of a game that uses this representation.

40.2.3  Mixing and Matching
These approaches and knowledge representation techniques can be combined to pro-
duce more sophisticated systems and to meet the demands of the game’s design. For 
example, using content selection to create levels at runtime that use pregenerated pieces 
of content (i.e., experiential chunks) provides the reduced authoring burden and high 
variety of PCG while still allowing for a lightweight generation algorithm; furthermore, 
the use of pregenerated content pieces can provide more varieties among the chunks 
than would be easy for human designers to create. Polymorph [Jennings-Teats 10] is an 
experimental adaptive level generator that uses this approach to create levels that are 
customized to a player’s abilities. Each pregenerated chunk is tagged with a difficulty 
score, and as the player progresses through the level, chunks with an appropriate dif-
ficulty score (based on an estimate of player skill level via observing their failures) are 
placed in front of the player.

Using different content generation techniques at different layers of abstraction can 
help balance out human authoring with algorithm complexity. For example, a construc-
tionist, template-based approach to create a dungeon crawler level could be combined 
with a constraint solver to place items into the rooms in the slots that are left unfilled. 
This would allow for tight control over the room’s overall appearance and ensure that 
gameplay requirements are met, but still provide a high level of variety in the room’s 
contents. This hypothetical generator is similar to the generation approach taken in the 
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Tanagra level design assistant [Smith, G. 11b], where reactive planning is used in conjunc-
tion with a numerical constraint solver to create platformer levels in collaboration with a 
human designer.

Mixing-and-matching paradigms can be very powerful, but it does have one major 
drawback: in general, different layers of the generator will not be able to easily commu-
nicate with each other. In our dungeon crawler example given, if the constraint solver is 
unable to place items into the room to meet all design constraints, the generator must go 
back and choose another set of room templates, then ask the constraint solver to try again. 
This is because the constraint solver does not have the power to alter room layout, and the 
room layout algorithm does not have any knowledge of the kind of constraints that the 
solver cares about. In a purely constraint-based system, the room layout would potentially 
be able to shift to meet constraints on the level components.

40.3  Understanding PCG’s Relationship to a Game

Now that we have an understanding of the different ways to build a PCG system, let’s 
look at how to understand the role that PCG will be taking in the game. This is largely a 
set of design decisions, but it has a lot of impact on the way that the AI system should be 
constructed.

40.3.1  PCG’s Mechanical Role
There are several important aspects of PCG’s mechanical role within the game, including 
how it is integrated in to the overall game, if and how the player will interact with it, and 
how well it can be controlled by designers and players.

40.3.1.1  Game Stage

Does content generation need to happen online, while the player is playing? Or can it occur 
offline, while the level is loading or even while the game is being developed? If the genera-
tor must run online and frequently, then performance is one of the largest concerns, and 
it may be necessary to compromise quality to some extent. On the other hand, a genera-
tor that runs offline can be slower, but it needs to be able to create content that is flexible 
enough to support the variety that is inherent in player behavior (i.e., content can’t be 
crafted as a response to the player’s actions), and it also has to store and load generated 
content efficiently.

40.3.1.2  Interaction with the Generator

In games where the player does interact with the generator (as opposed to just with the 
generated content), there are three main types of interaction the player may have: param-
eterized, preference, and direct manipulation.

Parameterized control lets the player set some parameters that influence the generator 
before they interact with content. For example, the Civilization V level generator allows 
the player to set parameters such as world age, temperature, and landmass type.

Preference control means that the player can (directly or indirectly) specify preferences 
for what content they will see next while they are in the game. For example, Galactic Arms 
Race infers player preferences based on their behavior, allowing them to provide indirect 
control over the kind of weapons that they will see next.
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Direct manipulation lets the player directly interact with the content while the gen-
erator runs in the background to assist the player. This kind of control appears in Spore’s 
creature creator, where the player builds a model of a creature while the content generator 
supports the player’s choices and augments them by supplying textures and animations.

40.3.1.3  Control over Player Experience

While it is possible to build a content generator that simply stitches together preauthored 
chunks of content (i.e., a constructionist approach), it is often desirable to have tight 
design control over particular aspects of the player’s experience. This control can come in 
two forms: compositional and experiential.

Compositional control means that the generator can make design guarantees about the 
presence of particular components in the final product, for example, a platformer level 
generator that can guarantee that 50% of the challenges in a level will be due to gaps or 
a quest generator that can guarantee the quest will involve the player finding two angry 
shopkeepers.

Experiential control means that the generator has an understanding of some aspect of 
the player’s in-game experience beyond just component placement, for example, a plat-
former generator that can guarantee level pacing independently from what components 
are present or a quest generator that can guarantee that a quest will have a particular dif-
ficulty associated with it.

40.3.2  Player Interaction with PCG
The dynamics of PCG (borrowed from Hunicke et al.’s mechanics, dynamics, and aesthet-
ics framework for analyzing games [Hunicke 04]) are the styles of play that arise from the 
player’s interactions with the generated content. Understanding these patterns can help in 
selecting which techniques to use and the range of content to create.

40.3.2.1  PCG Relationship to Other Mechanics

We can first consider the role of PCG in the game relative to the other game mechanics. 
Will the player’s experience revolve around the generated content, or are we creating 
decorative, incidental content that only augments the player’s experience? Some games 
use PCG to frame player experience: Civilization V is a game where procedurally gener-
ated maps give the player something surprising to explore in the early phase of the game, 
but most of the player’s strategies revolve around other aspects of the game (e.g., build 
order and military strategy)—and indeed, many scenarios with fixed, designer-generated 
maps exist. Endless runner games such as Canabalt, on the other hand, have generators 
that the player’s experience is entirely dependent upon. These games have no mechanic 
other than to interact with the generated content. Understanding the extent to which 
your generator will influence the player’s experience can help you decide how to focus 
your efforts, how important design guarantees are, and how to ensure that there is suf-
ficient variety for players.

40.3.2.2  Reacting

PCG is often used to create surprising or unexpected content, forcing the player to react to 
unforeseen circumstances rather than allowing them to regurgitate memorized actions. 
This reaction may be related to exploration, as in Spelunky [Yu 09], or it may be a test of 
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reaction time, as in Robot Unicorn Attack. Reaction comes from the random elements of 
PCG, but you may wish to be able to control this somewhat. If the game would benefit 
from the player being able to practice some aspects, but still be a test of reaction in others, 
then using experiential chunks may be a good choice for your knowledge representation.

40.3.2.3  Strategizing

The use of a content generator that runs online and can be controlled (either directly or 
indirectly) by the player leads to situations where the player forms strategies about how to 
interact with the generator. If this style of play is desirable, then consider what these strate-
gies should be when designing the generator. For example, if the player should be able to 
strategize around the composition of challenges in levels, as in Endless Web [Smith, G. 12], 
then the generator must be designed such that this can be explicitly controlled.

40.3.2.4  Searching

Players can do two kinds of searching as a result of PCG. The first is when the content 
being generated is a world: players will search through it and explore it, looking for sur-
prises and interesting moments, as in Minecraft. The second is when the content is smaller 
and can be found in the environment, when players may search for interesting or unique 
content, as in Borderlands. The lesson to be learned from this dynamic is the same no 
matter the kind of searching: the generator should produce content that can be surprising 
and exciting for the player to find. A generator may be able to produce millions of unique 
pieces of content, but the quantity is meaningless if those million pieces all feel the same to 
the player. Introducing surprise and variety can be difficult. It may come from incorporat-
ing small, hand-authored pieces of content into the generator for the player to find or from 
careful construction of grammar rules and weights.

40.3.2.5  Practicing

Many games use PCG to allow the player to practice game strategies. Civilization V 
(and other strategy games with generated maps) is a particularly good example of this 
dynamic—the other mechanics of the game provide multiple strategies for success, 
and the procedural placement of land and resources means that the player can prac-
tice selecting from among those strategies and adapting them to many different, but 
controlled, environments. In such games, especially multiplayer games, the ability for 
the generator to make design guarantees about resource availability, playability, and bal-
ance may be of high importance. Constraint-based generators, or generators that use 
generate-and-test to approach design requirements, are good techniques for games that 
need such guarantees.

40.3.2.6  Community

Finally, PCG can be used to vary the player’s experience so as to make it impossible to 
write a walkthrough for your game. This leads to players having different experiences 
from each other. When crafting a PCG system, it is common to think of a single player’s 
experience with the generated content, but for some games, it is also important to think 
about the community’s experience with that content. Fans of games such as Dwarf Fortress 
engage in long, drawn-out discussions and debates based on the results the generator pro-
vides, telling stories of their own experiences in their own unique world.
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40.4  Choosing an Approach

This section discusses how to get started with PCG and how to choose an approach, as well 
as the kinds of design considerations that need to be taken into account.

40.4.1  Getting Started
There are two ways to start building a PCG system: from the bottom up or from the top 
down. Doing both of these at the same time may be helpful, as one method may inspire 
decisions you make in the other.

A top-down approach starts by mapping out the kinds of content you want to be able 
to create and developing specific examples of what the generator should be capable of. It 
can be particularly helpful to start by designing examples of content that represents the 
extremes of what the generator could produce: What are the easiest and hardest levels, or 
the quirkiest weapons, or the ugliest and prettiest flowers? If there are parameters that the 
player should have control over (e.g., the size of the map or the shape of the robot), these 
are useful starting points for building examples of what the generated content should look 
like. From these examples, start distilling patterns: these will be the building blocks in 
the generator.

A bottom-up approach works up from the tools. For example, if you think a grammar 
approach is an interesting choice, start writing some production rules and see what kind 
of content you can get out of it. Keep adding rules, and tweaking the ones that you already 
have, until it starts to feel like you are getting what you want. If a constraint system inter-
ests you, start writing simple playability constraints, look at how they can go wrong, and 
then iterate on them, adding more or changing the ones you have until you get the sort of 
content that you want to see.

For both approaches, remember that the algorithms you use and building blocks you 
are piecing together define a large probability space, where each point in that space is an 
individual piece of content. The space may have some strange twists and turns—there 
may be kinds of content that you can never produce without changing your knowledge 
representation or your algorithm, and there may be kinds that you overproduce until you 
rein in the generator. Rather than thinking about how to create a single perfect piece of 
content, think about the space of potential content that can come out of your generator.

40.4.2  Game Design Constraints
One of the difficulties that comes with PCG is the need to relinquish some amount of 
authorial control. The ability for the human designer to control the content that the player 
will see is limited by the need to allow it to be generated dynamically. With this in mind, 
when selecting PCG techniques, you should consider (1) what kind of design control is 
needed and (2) if there is a need for tight design guarantees or if it is sufficient to come 
close. For example, a level generator probably has a need to absolutely guarantee that lev-
els are playable, but it may be sufficient for the levels to just come close to meeting diffi-
culty or pacing requirements. For that matter, even the playability guarantee might not be 
required if the player is given tools to morph the environment or if the playability issues 
occur infrequently. These constraints may be dealt with in a different way depending on 
how important they are. For example, the Launchpad level generator [Smith, G. 11c] guar-
antees level playability by baking it in to the generation algorithm, allowing only legal 
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placement of level geometry, but it does not guarantee that the desired frequency of dif-
ferent level components will be perfectly met due to its use of generate-and-test for that 
design constraint.

Other potential game design constraints arise when there is a need to obey rules 
imposed by some other aspects of the design. For instance, if there is an overarching game 
narrative that all generated levels must fit into, then there must be a way to express the 
important aspects of narrative as a constraint or rule for the generator.

40.4.3  Relationship with Art
Assuming that some or all of the content that a PCG system produces is visual in nature, 
the PCG system must be designed in concert with artists. Unless all of the content, includ-
ing textures, will be generated by the computer (a difficult challenge), artists must create 
modular assets for the generator to use.

Art is one of the main motivations behind the different kinds of building blocks being 
chosen: experiential chunks are good when the art direction mandates a rich and detailed 
world and the artists want tight control over its appearance. Each chunk needs to be 
designed so that it can fit with others, but otherwise they can stand alone. At the other 
extreme, a subcomponent representation is useful for a game that uses a tile-based repre-
sentation, such as a 2D sidescroller, so each subcomponent has a single tile art asset that 
can be associated with it.

It may still be important for the generator to incorporate some sense of art direction, 
so that the structure of generated content is suitable to be skinned by human-created art 
assets. For instance, in a Mario-like game, a long, flat platform punctuated by only coins 
and gaps may be playable and even provide an enjoyable challenge, but will likely not be 
visually interesting.

40.4.4  Engineering Constraints
Finally, there are important engineering constraints to consider when building a genera-
tor. Algorithm speed and efficiency are a big concern. While none of the approaches pre-
sented here are unusable for content generation, some are certainly better than others for 
specific domains. Simulation-based and evolutionary approaches tend to be fairly slow 
unless they are running alongside the player in real time. Constraint-based approaches 
are more difficult to predict. Depending on the number of variables and the kind of con-
straints that are expressed, constraint systems can actually solve some content generation 
problems quite quickly. Grammars usually generate content very quickly, but may need 
slightly more expensive generate-and-test loops to cull undesirable content.

There is also the concern of how long it will take to create the system and, importantly, 
test and debug it. Content generators are massively emergent, so bugs can be hard to find, 
even when following debugging practices such as generating from known random seeds. 
Constraint-based systems reduce concerns about whether the system will accidentally cre-
ate unplayable content, but can be more difficult to author and debug. Most current con-
straint solving methods cannot tell you which combination of constraints is causing an 
unsatisfactory answer, though it is possible to build in debugging methods. On the other 
end of the spectrum, approaches that build content from relatively simple rules, such as 
simulations and grammars, do not make it so easy to make design guarantees but can be 
easier to author.
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40.5  Tuning and Debugging a Content Generator

Because of their emergent nature, debugging PCG systems usually requires more than 
simply spot-checking different pieces of content that are produced. Standard practices for 
debugging systems that use a lot of randomness apply, for example, keeping track of ran-
dom seeds so that bugs can be reproduced more easily and logging decisions made during 
generation (if possible, given the method used) to get an explanation from the system of 
what it’s doing. For complex PCG systems, however, this alone is not enough to get a sense 
for what the system is doing and how changes made to the generator influence the content 
being produced.

Expressive range refers to the shape of the space of content that a PCG system can 
produce, as well as how easily that space can be controlled [Smith, G. 10]. A good 
method for understanding expressive range is to define important, measurable quali-
ties (metrics) of the content being generated and produce a graph or other visualiza-
tion of those metrics to see what kind of content is being created. By generating a 
large amount of content and evaluating each piece using those metrics, it is possible 
to get a view of the generator’s performance. A first step is to look just at the minima, 
maxima, and medians for each metric—this will show examples of content that are at 
the extremes of the generator’s abilities. For example, this is a quick way to see what 
the easiest and hardest levels are (for some approximation of difficulty), as well as the 
level at average difficulty. The metrics can be simple approximations, such as assign-
ing scores to different level components based on their difficulty and averaging them 
together. More sophisticated metrics, including automated playtesting techniques 
[Salge 08], are also possible.

We can also use expressive range analysis to see if the generator seems biased to mak-
ing any particular kinds of content by looking at the data in a histogram. Are there some 
bins that have more content in them than others? The generator may be biased toward 
creating that content over other kinds. A heatmap visualization can be applied to a 2D 
histogram to visualize hot spots in the generator and quickly see changes in the expressive 
range from different versions of the generator.

By investing in creating a system like this up front, it is possible to see how small 
changes to the generator lead to changes in the qualities of the content, be rerunning the 
metrics and seeing new expressive range charts. Expressive range can also be used to com-
pare different generators [Horn 14].

40.6  Conclusion

This chapter has given an overview of techniques for content generation and discussed 
their trade-offs, described the many roles that PCG can have in a game and how to use 
those roles to guide decisions about which technique is best, and given some advice for 
getting started and for debugging your PCG system. This is only an overview of the 
field of PCG, and there are many more resources available for learning specific tech-
niques or finding how other games have implemented their own content generators. 
Consequently, this chapter will close with a list of resources to point you toward more 
information.
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40.6.1  Tools and Frameworks
While most off-the-shelf tools are not appropriate for use in large game projects, these 
tools and frameworks can be used as a prototype for your generator, to experiment and 
see what is possible:

•• Context Free Art [Context Free Art 2014] and its cousin StructureSynth 
[Christensen 10] are accessible and well-documented tools for using shape gram-
mars. They are intended for use by digital artists, but can be used to mock-up 
game content generators.

•• Choco is a free and open source Java-based numerical constraint solver [Choco 
Team 2008].

•• The Potassco suite of tools, particularly clingo, is a good tool for getting started 
with answer set programming [Gebser 2011].

40.6.2  Reading and Community
•• Procedural Content Generation in Games: A Textbook and an Overview of Current 

Research is a book with chapters written by prominent researchers in the PCG 
community [Shaker 14].

•• The PCG wiki is a community effort to create a central repository for articles and 
algorithms [PCG Wiki 14].

•• The PCG Google group is an active community of developers and academics who 
share an interest in PCG [PCG Group 14].

•• There is a great deal of academic research into PCG. Common venues for PCG 
research are the Foundations of Digital Games (FDG) conference, the Procedural 
Content Generation (PCG) workshop, and the Artificial Intelligence in Interactive 
Digital Entertainment (AIIDE) conference. Papers from AIIDE are available 
for free online through AAAI’s digital library. Many FDG and PCG papers are 
archived in the ACM digital library.
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