
443

Realizing	NPCs
Animation and Behavior Control
for Believable Characters

Jeet Shroff

36

36.1	 Introduction

A core goal for game developers is to build nonplayer characters (NPCs) that are believable
to the player. Believability does not necessarily imply realism, but in order to be believ-
able, these characters must move convincingly, bound by their physicality and environ-
ment. They must look, act, and react meaningfully, both individually and in groups. Their
actions and intentions must be clearly understood by the player. NPCs that maintain the
illusion of believability compel the player to interact with them, further sell the fantasy,
and ground the player within the game world. The process of clearly visualizing and com-
municating not only the NPCs’ actions but also their intentions can be referred to as
behavior realization.

Animation plays a central role in bringing NPC behaviors to life. By focusing on real-
izing NPC behaviors with improved animation fidelity, in combination with systems that
help control how behaviors are varied, assigned, and executed by NPCs, we can ensure the
authenticity of our characters.

36.1	 Introduction
36.2	 Character	Movement
36.3	 Interrupting	and	Blending	

Movement

36.4	 Combining	Actions
36.5	 Tracking
36.6	 Behaviors
36.7	 Conclusion

444 Character Behavior

This chapter will discuss a wide range of animation techniques that can be used to pro-
vide improved realization of NPC behaviors while simultaneously addressing the cost of
production and memory budgets. In addition, it will look at ways to control the execution
of behaviors in an effort to provide the player with a consistently positive and believable
experience.

36.2	 Character	Movement

Nearly all NPCs have to be able to move in some way. Believable movement does its best
to respect the laws of motion, factoring in inertia and momentum. In addition, characters
that play animations that convey their intention while moving increase their authenticity
by providing the player an awareness of their mental state and context. In this section, we
will look at a few techniques to help accomplish this while still keeping our memory and
production costs low.

36.2.1	 Movement	Models
Many game engines use a game-driven approach to character movement, where the ani-
mation does not define the motion of the character. Instead, movement is driven by an AI
controller that evaluates the position of the character and requests the physics system to
move the character’s physical representation. The controller also feeds this information
to the animation system, which plays animations that match the movement. For example,
if the AI controller wishes to move the character forward, a forward moving walk or
run animation might be selected by the animation system. Such animations would be
authored as moving on-spot animations. This is a fully game-driven approach to char-
acter movement.

The alternative is to allow the animation to drive the character’s movement. This is
referred to as animation-driven movement and is achieved through the use of a root or
reference node within the character’s skeleton. The root node is a bone that represents the
translation and rotation of the character’s motion during the animation. The animation
contains transform data for this bone for each frame of animation, just like it does for
every other bone. This node is generally placed on the ground, centered directly under the
hips of the character, as shown in Figure 36.1.

Every frame, after updating the animation pose, the position and orientation of the
root node is passed to the physics system, which updates the position and orientation of
the character’s capsule (as shown in Figure 36.2). This is referred to as “extracting motion
from the animation.”

Both these techniques have their advantages. Game-driven movement provides us
with maximum level of flexibility as it drives the character independent of animation.
Animation-driven movement ensures that the character’s overall motion matches that of
the animation, providing the best visual results. In addition, this approach better conveys
a character’s change in momentum along with intention of motion when necessary. For
example, a well-authored transition animation that drives the character fully through ani-
mation can convey the energy and acceleration or deceleration needed for the character

445Realizing NPCs

Figure	36.1

The	arrow	represents	the	root	node	and	where	it	lies	in	the	hierarchy	of	the	rig.

Content

Frames

Sample frames

Delta In game

Figure	36.2

Motion	extraction	of	the	root	node.

446 Character Behavior

during such movement. Effective realization requires both control and fidelity, which we
can achieve through a combination of both of these techniques.

36.2.2	 Decoupling	Extracted	Motion
When combining game- and animation-driven movement, it is important to ensure that
the extracted motion is decoupled from the animation update. In other words, instead of
directly updating physics (and the character’s capsule) with the animation’s motion when
the animation pose is updated, we can separate the animation from the motion update.
This allows us to modify the extracted motion in order to better control the character and
also to increase animation coverage (i.e., to cover a wider range of motion using a given
animation set).

We want to limit our modifications and base them on the original extracted motion.
This avoids visual inconsistencies (such as keeping our characters from significantly slid-
ing when moving) and also preserves specific movement characteristics such as weight
and energy. In other words, it allows us to stay true to the intentions of the animation and
to avoid changes that might be noticed by the player.

36.2.3	 Motion	Correction
Character motion can be represented and updated using three core components: the dis-
placement direction (i.e., the world space direction that the character is moving), the
orientation of the character (i.e., the world space direction that the character is facing),
and the speed at which the character is moving. Each frame, after the motion has been
extracted, the change in displacement direction, orientation, and speed is read and applied
to our character’s physical representation by passing that information to the physics sys-
tem. If no change is made, then the character is being driven fully via animation.

Each of these components can be corrected independently of each other, to match a
specific game situation. This corrected change is then used to update physics and the char-
acter’s motion. The following sections will describe a variety of ways in which we can cor-
rect motion as well as techniques that use a combination of game- and animation-driven
movement to provide greater animation coverage.

36.2.4	 Correcting	Displacement	Direction	and	Orientation
The animations within a movement system can be categorized as either looping, transi-
tion, or one-off (nonlooping) animations. Some examples of looping animations include
forward- and backward-moving (or “backpedal”) cycles. The displacement direction and
orientation for these animations typically remain at the same offset to each other through-
out the course of the animation. For example, the displacement direction and orientation
in a looping backpedal animation point in opposite directions throughout the entire ani-
mation. Looping animations are also created so that the start and end frames are identical,
so that you can play them over and over again to make the character move continuously.

In contrast, transition animations may update the offset of the displacement direction
and orientation throughout the course of the animation to account for the change in the
transition of movement that is needed. For example, a transition animation from standing
to walking might rotate the character to face the displacement direction and also move
and accelerate the character in that direction. Looping, transition, and one-off animations
can all use motion correction to extend their coverage.

447Realizing NPCs

36.2.4.1 Looping Animations

The displacement direction and orientation of looping animations can be corrected to
match a target direction. The target direction is set up by the path following or movement
controller. In the case of following a path facing forward, the character will need to align
their displacement direction and orientation to be along the path, so that they do not veer
off the path or unintentionally strafe sideways.

A wide range of smoothing algorithms can be used to drive the orientation and
displacement direction toward the one needed by the path. The most basic approach
would be to use a simple interpolation. On analyzing the path, every frame, the con-
troller sets up the target directions that are needed. Then new directions are evalu-
ated that smoothly drive the current directions to the targets. These directions are
passed on to physics. Other algorithms that factor in angular acceleration, along with
the curvature of the path, can be used to provide more believable results. For exam-
ple, we can use sets of tunable acceleration curves to control the rate of correction of
the character’s displacement direction and orientation for different circumstances.
The speed of the character must also be modified to account for the radius of the
turn (as shown in Figure 36.3), but speed adjustments will be discussed in a later sec-
tion. Since the animation is updated independently of the corrected motion, we can
add a procedural lean to account for these corrections and visually communicate this
change to the player.

In order to be able to correct the displacement direction and orientation of our anima-
tions, we must impose certain constraints on the way the root node is animated. In the
case of these looping animations, the animations should be animated within one plane
(such as the XZ plane; in our examples we will always assume that Y is up). In addition, we

Slow

Slow

Slow

Figure	36.3

Following	a	path	while	facing	forward	using	motion	correction.

448 Character Behavior

also need to minimize the curvature within the translation for the root node, as shown in
Figure 36.4. Transition animations require a different set of constraints.

36.2.4.2 Transition and One-Off Animations

Transition animations, such as starting to move, planting to turn, and stop animations
help to communicate a character’s change in momentum to the player. Using a naive
approach, we often need a wide range of animations to cover all cases. For example, a
given starting to move animation can only rotate a character by a fixed amount. Blending
animations together may help to alleviate the amount of coverage needed, but persistently
blending motion-based animations can lose the subtle nuances of motion particularly
authored for specific directions. Motion correction can be used in this case to generate a
wider range of coverage while preserving the fidelity of the original content.

Let us continue with the example of starting to move. When starting to move from an
idle, we want the character to be able to move in any direction without getting stuck in the
transition animation for too long. To account for this, we can use motion correction to per-
form an additional rotation after the orientation is calculated from the extracted motion.
This correction adjusts for the difference between rotation in the animation and the rota-
tion required to face the target direction, which is fixed in this case. On each frame, we
add the appropriate portion of this difference as a delta to the animation rotation to ensure
that the character ends up facing the intended direction. When using this approach, it is
important to ensure that the animation is built with a little shuffling or movement in both
feet. This helps to hide the fact that the feet will slide as the character turns. Ensuring that
the difference is spread evenly across every frame of the rotational component of the ani-
mation and imposing a constraint that the root node be rotated at a constant rate during
the animation, we can also help to minimize the sliding that one might notice.

Using this approach, we were able to create 360° of coverage using just three start ani-
mations: a 0° direction, a 120° to the right direction, and a 120° to the left direction. This
provided surprisingly good results, even though we might think more coverage would be
necessary. With that said, if the fidelity is not good enough, more coverage can easily be
added by adding just a few more transitions (for instance, 60° to the right and left transi-
tions). This is illustrated in Figure 36.5.

X

ZZ

X

Figure	36.4

Root	node	motion	for	cyclical	movement	animations.

449Realizing NPCs

As each of our three components can be updated independently, it is worth noting
that in this case, the displacement direction can be corrected as described in the previous
section via the controller, the speed can be fully driven by the animation, and the orienta-
tion can be corrected using the aforementioned technique. Within the same animation,
toward the end of the rotational segment, the orientation can be blended to be corrected
by the same smoothing technique used in looping animations to match the requested
direction. In cases where target direction is varying during the course of the animation,
we can use a combined technique of orientation smoothing along with the delta rotational
adjustment per frame. Different combinations of either movement model with motion
correction can be used for many forms of transition animations, such as stop animations
or plant and turn animations, as well as one-off animations such as rotating or reacting
in place animations.

Displacement direction or orientation correction can also be used to add variety to the
trajectory of one-off animations such as a hit reaction or death animations from an explo-
sion. In the case of explosion animations, we can also add a random upward component
to the extracted motion, which changes how high the character’s body flies. As with the
orientation changes described earlier, the upward component should be distributed across
the course of the animation. All of these techniques can create variety and increase cover-
age from a small set of animations.

Finally, motion correction can also be applied to one-off animations where the end
position of the character is set by the game. This can be used for animations like entering
a vehicle or interacting with a specific object. As with the adjustment on the start anima-
tions, we can calculate the difference between the end position of the one-off animation
and the intended target position and then apply an appropriate-sized delta, each frame,
to align the character’s displacement direction and orientation accordingly. Speed adjust-
ments can also be made to match this correction.

Frames

Turn

01
2

3

4

5

6
120R

0

120L
(a) (b)

Figure	36.5

Motion	 correction	 applied	 during	 starting	 to	 move	 animations.	 (a)	 Original	 start	 anima-
tions, 0,	120R,	and	120L.	(b)	Intended	angle	in	white	is	155L.	Select	the	120L	animation,	add	
on	the	difference	of	35	degrees,	and	spread	uniformly	across	the	6	frames	of	rotation	to	end	
up	at	155	degrees	from	the	original	facing	angle	at	the	end	of	the	rotation.

450 Character Behavior

36.2.5	 Correcting	Speed
Looping animations are typically authored to have a fixed speed throughout the anima-
tion. As mentioned earlier, in some cases, we may want to temporarily alter that speed. For
example, when following a path, we might want to slow the character down as he or she
goes around a tight turn. Similarly, we might want to alter the speed of the player charac-
ter to match the position of the thumb stick. We want to do this without creating custom
animations for every possible speed.

One approach, shown in Figure 36.6, is to take two animations that were authored at
different speeds and blend them together in order to achieve the desired result. While
common, this approach can impose restrictions on the authoring of the animations
themselves and typically results in a loss of animation fidelity. In reality, moving at dif-
ferent speeds introduces a wide range of subtleties in body movement and stride (distance
between each step) of a character. In order to ensure that these cycles blend well with
each other, these differences usually have to be heavily dampened or eliminated. In addi-
tion, in most cases, these animations need to be authored with the same number of steps,
which is limiting both from a stylistic and a motion capture perspective. The bottom line
is that the subtleties of motion are lost during the persistent blend of all these animations.
Another approach is to drive the character’s speed through the game, while correcting the
animation’s playback rate to match this speed. This maintains the original posing, weight,
and motion of the character from the source animation. By limiting the correction to the

Speed

3.0
5.51.0

Blend

RunWalk

Figure	36.6

Blending	animations	together	to	create	coverage	for	speed.

451Realizing NPCs

extracted motion and adjusting the playback rate of the animation to match the correc-
tion, we can satisfy both the fidelity and coverage concerns.

During gameplay, the target speed is calculated for the character each frame. If this
speed is faster or slower than the current speed of the character, every frame, the AI
controller calculates a “next” speed that approaches the target speed using smoothing
or an acceleration/deceleration curve (similar to what we did for displacement direction
and orientation). Since the motion is decoupled from the pose, we can pass this speed
on to the physics system to move the character. At the same time, we visually match
the speed of the character by adjusting their animation playback rates. As the character
speeds up or slows down, we will need to transition between animations (e.g., from walk
to run to sprint).

We control this by specifying a set of speed ranges. Each speed range specifies a looping
animation that we have identified as a speed that our character typically moves at (i.e.,
their usual run speed, walk speed, sprint speed). The speeds of these animations become
our reference speeds. The animation is then played back at a lower or higher rate to account
for the difference between the current speed and the reference speed. Since this is sim-
ply a visual match with decoupled motion, the reference speed for an animation can be
adjusted, even if it doesn’t really move at that speed in the animation, to best match the
character’s movement in game. To ensure smooth motion, we allow the speed ranges to
overlap, so that there are transition areas where we change from one animation to another
as the speed smoothly moves up or down to the next reference speed. Each frame, we
check which animation or animations are appropriate given the current speed. If only one
animation is appropriate, then that is what we play. When we are in a transition where two
animations are appropriate, we blend them together. Note that this is the only time when
these scaled animations are blended together. The amount of overlap is defined by the
available coverage. This technique is illustrated in Figure 36.7.

We can minimize the amount of time that the character remains within an overlapping
range by ensuring that the AI controller always tries to set the target speed to be a refer-
ence speed. This avoids the persistent blend and ensures that the character plays the core
looping animation at the reference speed, as it was originally intended as much as possible.
As the overlap between these ranges is fairly small, we rarely notice the difference in the
actual movement and animation sampling.

Transition animations, such as start or stop transitions, can also be speed corrected
to visually match the target speed of motion. In these cases, the speed is not constant
throughout the animation, so specific reference speeds are defined for the varying acceler-
ation and deceleration segments within the animation. Further improvement can be made
by removing the need for the reference animations to have the same number of steps. This
allows for more freedom when capturing and creating data. For example, a walk anima-
tion requires far more steps to look natural than a run, since the walk is at a much slower
pace and begins to look mechanical when looped, while a highly intentional run is far
more forgiving. In order to do this, we need two variants of the animation: the base ver-
sion and a variant that is intended specifically for blending. When in an area of the speed
range that overlaps, we play the blending variant, but as soon as we are out of the overlap
range, we go back to the better-looking base version. We can use an animation technique
known as pose matching (described later) to allow us to smoothly blend between the base
version and the blending variant as needed.

452 Character Behavior

Using speed correction along with speed ranges can yield a higher level of quality while
still allowing for the smooth transitions that we can get by blending the transitions as we
speed up or slow down.

36.3	 Interrupting	and	Blending	Movement

One of the challenges when transitioning between moving animations is that if the time
between footfalls, or the motion of the arms, or some other significant feature in the
two animations is not precisely in sync, the character’s appendages may scissor, freeze,
windmill, or otherwise move implausibly. For example, the time between footfalls when
running is generally longer than the time in between footfalls when walking. Thus, at
one second into a run animation, the right foot may be descending, headed toward a foot
plant. In the walk animation, the right foot may already have planted, and the left foot
may be swinging forward. If you try to blend these two animations simply based off of

Overlapping range
persistent blend

A: Walk animation
B: Run animation

At the reference speed, the animation is played
at 1x. Within the range, the animation’s

playback rate is scaled to visually match the
speed of the character in game.

0.0

Walk reference speed 1.5

A
2.0

B4.0

Run reference speed 4.5

5.0

Figure	36.7

Using	 ranges	 to	 scale	 the	playback	 rate	of	animations	 to	visually	match	 the	character’s	
motion.

453Realizing NPCs

time, you’ll get odd results because the feet are doing different things. This is particularly
common when we must interrupt an animation at any point.

36.3.1	 Pose	Matching
Pose matching is a technique that addresses this problem. Instead of blending animations
based on elapsed time, we blend the two animations based on their pose. In most moving
animations, the pose can be defined by phase. In this case, the phase of an animation is
defined as the time in the swing cycle of each foot, as shown in Figure 36.8, going from 0
to 1. With that said, for any given set of animations, the definition used should depend on
the feature that you are trying to match. Phase information can be generated offline and
stored as metadata, keeping runtime calculations to a minimum.

States can define whether to apply pose matching when they blend in from another
state or only when they blend out to another state. Looping animations, for instance, will
choose to pose match when a character transitions to and from them, since they include
phase information for the entire cycle. Certain transition animations, however, may only
choose to apply pose matching when transitioning out of the state. This is necessary
because pose matching on entry may cause us to skip the most important parts of the
animation.

36.3.2	 Pose-Only	and	Per-Bone	Blending
Interrupting movement to come to a stop also poses a unique set of challenges. Stop
animations are transitions that are used to convey the shift in momentum and decel-
eration needed when a character comes to a stop. Often, our games require that the
characters come to a stop on a dime, especially when dealing with the player releas-
ing game pad input. Stopping in an instant is an animator’s nightmare. Coming to a
complete stop immediately is both physically impossible and visually unnatural. This
problem is exacerbated by the fact that if you’re using motion capture, the data will

1Frames

Downswing

Upswing

Planted

2

0 1 0 1

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure	36.8

Phase	match	information,	going	from	0.0	to	1.0	with	respective	frames.

454 Character Behavior

always have some motion in it. A simple animation technique that helps to improve the
quality of this is pose-only blending.

When we transition from a movement animation to our stop animation, we can blend
the pose and the root node separately. In the case of an instant stop, we do not include any
of the root node translation, which ensures that the character will stop instantly, but we still
blend in the pose from the movement animation, which helps to create the illusion of decel-
eration and alleviates the visual harshness of the sudden transition. In order to work, this
requires that the root node for the stop animations be authored without any translation.

This idea can be further extended not just to blend the root node without any blend-
ing but also to blend different sets of bones at different rates. This is known as per-bone
blending. Using this technique, we can create the illusion of momentum or motion lag, for
example, by blending in the upper- and lower-body parts differently.

36.4	 Combining	Actions

NPCs often need to do more than one thing at the same time. For instance, they might
need to carry and aim their weapons while running or talk on a cell phone while rid-
ing a bicycle. In the case of carrying or aiming weapons, having to create content for
each different weapon type is also cumbersome and expensive. Memory limitations make
this approach further challenging. In this section, we will discuss techniques for realizing
these features using specific combat-based examples.

36.4.1	 Animation	Masking
Sharing animation data among features is a great way to save on animation memory.
Animation masking is one way to do this. We can use bone masks to split animations into
combinations of masked animations that can be recombined as needed. This allows us to
ensure that there is never any duplication of animation data. Data that can be shared is
exported out as a mask only once. This mask is then reused as needed. Masks should be
generated offline. We can think of our final animation pose as being built at runtime from
a combination of these bone masks.

Figure 36.9 demonstrates this idea using the example of an idle animation. The original
idle animation can be thought of as using no mask, including all bones shown at the very
top. However, as we build content to hold a two-handed weapon such as a rifle, we realize
the upper-body portion of the animation needs to be different, but the lower-body portion
of both of these animations is the same. So we mask the original animation into two: a
lower-body mask (A) and an upper-body mask (B). We then share the lower-body mask
for both animations and need only a rifle holding upper-body mask (C) to create the rifle
holding idle. When a significantly different weapon type is introduced, such as an RPG,
we only need to change the arms of the upper-body two-handed rifle mask (C). And so we
further mask that to separate the arms into their respective masks (E) and (F), along with
the armless upper-body animation (D) to account for the two different weapons. This
allows us to minimize our use of animation memory.

We can further optimize this by masking out bones that do not require key frame data
for every frame of the animation. These often include the face and finger bones. They can
be exported as simple poses, so that we only include data for those animations that require
their bones to move.

455Realizing NPCs

36.4.2	 Animation	Mirroring
In order to save additional memory, we can make use of animation mirroring. Mirrored
animations are animations that can be played symmetrically on either side of a plane,
for example, animations that can be played either to the right or left, requiring the same
movements in either direction (looping animations where the character is aiming either to
the left or right side or one-off animations such as entering or exiting a vehicle from either
side). Content is built only for one side and mirrored during runtime to get the coverage
for the other side.

36.4.3	 Animation	Layering
Animation layering is a technique that can be used to play secondary actions that do not
need to be synchronized with the base action. Animation layers can be thought of as tracks
that can play an animation. You can think of the main layer as being the base animation
that is played on the character. Once the base animation has been selected as either a no
mask or combined with a set of masked animations, additional layers of animation that do
not need to be synchronized with the base animation can be sequentially blended together
with this pose to create the final pose of the character. When a layer’s blend weight is 1.0,
it means that the animation that is being played on that layer is completely overriding the
animation on the layer beneath it. This is exactly what is needed when we want to play
an animation that can cover and override multiple base animations. This saves us addi-
tional authoring time and memory.

A

AA A

B

B ED D F

A C

Figure	36.9

Masking	animations	for	an	idle	with	weapons.

456 Character Behavior

For example, we could have an animation that uses a single arm to detonate an explo-
sive or both arms to reload a weapon. This technique also works very well for things like
facial animation and conversational gestures. These animations can generally be used
across several base animation states. Animation data per layer are applied sequentially
in the local space of the character. To ensure that these animations work well, we must
enforce the bone masks to be flexible enough to be applied independently of the base ani-
mation state. We can do this by limiting the masks to head or arm-only animations, thus
preserving the base pose as best as possible.

These techniques are not limited to weapons or combat alone. The important takeaway
here is that when it comes to dealing with large feature sets, it is important to think of ways
to reuse animation content as widely as possible.

36.5	 Tracking

NPCs often need to be able to track another object—for instance, by looking at another
wandering NPC or aligning a weapon to aim at a specific target. Furthermore, we often
need our NPCs to be able to track an object in all directions. Tracking an object while
aiming a weapon without breaking the original pose or sticking the weapon through any
part of the character’s body is a difficult problem to get right. In this section, using aiming
as an example, we can look at some techniques to solve this problem.

36.5.1	 Additive	Aiming	Poses
Additive animations are animations that are applied as additional offsets to an existing
animation. These animations are created by taking the difference between two anima-
tions to generate offsets per frame. We can apply these offsets onto the base animation
to generate a different pose. Many games use additives to provide extra runtime ani-
mation noise. This adds variety and communicates a character’s context to the player,
for instance, additional breathing when a character is tired or leaning when making a
hard turn.

There are two different ways we can generate and apply additive offsets: either as addi-
tive pose offsets (as a single frame) or as additive animation offsets (animations that are
synced with the original animation). In either case, these additive offsets are created
offline.

When using additive pose offsets, we must specify the animation pose and a reference
pose that we can use to generate the offsets for that pose. For example, in the case of a
leaning pose additive, we would provide the maximum leaning pose as the animation
pose and the straight pose as the reference pose. When we generate the additive pose offset
for this, we would get the additive offsets necessary to add to the straight pose to create
the maximum leaning pose. We should ensure that the additive animation pose is built
directly from the reference pose. This ensures a controlled and high-fidelity final pose
when applying the offsets at runtime.

Coming back to the example of aiming, animators can create aiming poses for the
maximum angles needed for aiming. We then use a reference pose of the base animation
to generate the offsets for each maximum angle. Finally, a persistent blend of these pose
offsets is used at runtime to create the final pose with the weapon aimed correctly. We
should make sure this blended additive is applied last within the animation blend tree.

457Realizing NPCs

This minimizes the adulteration of the pose. If further precision or fidelity is required, we
can add more pose offsets at specific angles until we get the quality results that we need.

It is often a good idea to use this solution only for vertical aiming, that is, upward and
downward, and instead to use inverse kinematics (IK) for our horizontal aiming. This
dual aiming system will be discussed in greater detail later.

Additive pose offsets work exceptionally well for looping animations where the overall
pose does not change significantly throughout the course of the base animation. Using
additives for aiming provides the animator more control and allows the character to still
hit key-authored poses, resulting in higher quality. In addition, using additive poses is a
great way to minimize the amount of memory and time needed to create fully synced aim-
ing animations for every base animation that would need to support aiming.

36.5.2	 Additive	Aiming	Animations
The pose-based additive aiming solution does have a limitation. Additive pose offsets
don’t quite work when the pose itself changes significantly during the course of the base
animation. An example of such an animation would be a hard landing animation from a
long fall. Since there is a significant squash component during the beginning of the ani-
mation, followed by a stretch component after which the hips and head stabilize, we would
require different offsets along the course of the animation to ensure that we maintain the
intended aiming direction. To solve this problem, we can use synced additive animations
that are authored at the required maximum aiming angles. We then can generate offsets
frame by frame for the whole animation. As before, we then blend in a weighted offset to
create the angles we need. This solution should only be used for animations that require
it, because it requires significantly more memory. When it is required, we can decrease
the memory requirements by only creating an additive pose for every X frames of the base
animation (where X is typically something like 10) and apply the offsets accordingly. This
still provides the animators enough control to create high-quality aiming offsets, while
dramatically reducing the size of the additive animations.

36.5.3	 Inverse	Kinematics
Although we could use additives for both vertical and horizontal aiming, doing so would
require a lot more poses to ensure coverage of every possible aim angle. In addition, it can
limit the animators to altering only very specific sets of bones in each directional offset
to ensure that they don’t conflict with each other. Finally, if you need additive animations
(rather than just poses), authoring the animations to meet these constraints can be pain-
fully time-consuming.

As an alternative, IK works relatively well for horizontal aiming because the core rota-
tion for aiming horizontally can be limited to a smaller set of bones. To make this work
well, the locomotion system should select its movement animations based on the hori-
zontal aiming range. Within a range, the horizontal aiming coverage needed is reason-
ably small and thus easily achievable through the use of IK. We can also choose to use
a cheaper version of this for horizontal tracking when pointing or looking at an object.
This rule generalizes that when using IK, it is important to select the right animations and
bones to apply the IK to.

In addition to horizontal tracking, we use IK in other situations such as a postprocess-
ing for foot or hand placement and for adding procedural variation to the pose.

458 Character Behavior

36.6	 Behaviors

The animation techniques described previously increase the fidelity of character realiza-
tion of each individual NPC. However, maintaining the believability of our world requires
us to think beyond that, looking at how often a character executes a specific behavior, how
varied it is, and how it is distributed across multiple NPCs.

36.6.1	 Creating	Variety
Too often in games, we see an NPC play the same animations or behavior over and over
again. One solution is to have a lot of animation and behaviors to pick from, but this can
be expensive from both an authoring and memory standpoint. The ideas presented in this
section can help to create the illusion of variation without requiring prohibitively large
amounts of content.

36.6.1.1 Contextual One-Off Animations

Games generally make use of a large number of looping animations to communicate fun-
damental NPC actions such as idling or moving. While it’s important to include varia-
tions of these animations, they tend to be longer in length compared to other animations
in the game. If we were to create a lot of variation for each of these cycles, we would quickly
run out of both development time and memory. Consider walking, for example. People
within a similar context (the same height, age, and mental state) walk in a similar fashion.
Either changes to this cycle will not be very noticeable or they will look unnatural. It is the
smaller nonlooping actions and movements, such as changes in stride, shifts in weight, or
looking around, that differentiate how one walks from another.

Contextual one-off animations add variety and help to break up looping animations.
By matching the context of the looping animation, they further communicate a char-
acter’s behavior to the player. These animations do not interrupt the underlying behav-
ior, but instead desynchronize and vary them. Continuing with the example of walking,
examples of some contextual one-offs might include stopping to scratch your leg, shifting
your weight from side to side, and an animation to smoke (played as a mask on a different
layer to save memory). These one-offs can be motion corrected to match both the current
speed and the trajectory of the motion. For full-body one-offs, we use phase matching
to transition seamlessly in and out of the one-off animation and back to the underlying
looping animation. Most importantly, the contextual one-offs contain only the change we
want to make to the base animation, so they are much smaller and can be reused across
different contexts, which significantly increases the amount of variation we can create
given a particular animation budget.

36.6.1.2 Micro Behaviors

Just as we can break up looping animations with smaller one-offs to create the illusion of vari-
ation within them, we can also extend this idea to vary behaviors themselves through the use
of micro behaviors. Micro behaviors can be thought of as smaller subbehaviors that can run
their logic in parallel with a core behavior, simply to provide variation. These behaviors can
also temporarily interrupt a core behavior to perform a specific action, returning back to the
core behavior after completion. Similar to animation one-offs, we can make use of a wide vari-
ety of micro behaviors to support the core behavior and break up behavior synchronization.

459Realizing NPCs

For example, imagine a combat situation with two NPCs that are executing a cover
behavior. While in cover, they are peeking and shooting, evaluating for better cover, etc.
One of the NPCs decides to reposition, and before the character performs this action, it
shares this information with all other NPCs that are part of that scene. The cover behavior
(i.e., being executed by all NPCs in cover) can include a micro behavior that reads this
and plays a one-off animation to order an NPC to reposition. This doesn’t need to be syn-
chronized and runs independently on each NPC. The behavior logic chooses how often to
select these micro behaviors. What’s more, like contextual one-offs, micro behaviors can
often be reused across multiple behaviors.

Another advantage to micro behaviors is that, in addition to creating variety, they can
be used to clearly communicate the NPC’s intent, making the reasoning behind the core
behaviors apparent to the player. This is a crucial part of behavior variation. We often
focus on tweaking values or adjusting utility formulae to make the NPC execute a behav-
ior slightly differently. While this form of variation in behavior is important, if we don’t
clearly support this, it may be barely noticed by the player. Making the reasoning behind
the behaviors obvious to the player allows the player to interact with them in meaningful
ways. If the player doesn’t understand what’s happening, it might as well not be happening
at all.

36.6.1.3 Using Additives with Idles

Idle animations suffer from the same issues described previously. They are cyclical and
long. Additionally, they require a lot of variation to be compelling enough to notice. To
deal with this problem, we can use a set of noise-based additive animations on a large
number of idle poses (single-frame animations). These additive animations are played on
a different animation layer and are unsynchronized with the base idle pose to add extra
variation. This can create a large amount of variation from single-frame idle animations,
which can save a great deal of animation memory and production time.

36.6.2	 Behavior	Distribution
One often overlooked aspect of NPC behaviors is how behaviors are distributed among a
group of NPCs. NPCs whose behaviors are synchronized to happen at just the same time
easily break the player’s suspension of disbelief. In this section, we will look at ways to
assign and distribute NPC behaviors.

36.6.2.1 Action Tokens

We often need to control how often a specific action occurs. For example, while a group
of NPCs are executing their cover behavior, we might need to control how often an NPC
throws a grenade. We can use the concept of action tokens to help with this. Each action
that can be executed by multiple NPCs is assigned a particular number of tokens, and
before an NPC can execute an action, they must acquire one of these tokens. For example,
characters that want to shoot at the player when moving all can share a set of “move and
shoot tokens.” These tokens are used to limit the number of characters that can be moving
and shooting at the same time.

The token system should support designer-specified parameters for each type of action.
For example, the designers might want to specify the minimum amount of time that an
NPC must wait after releasing a token before acquiring it again and whether the number

460 Character Behavior

of tokens should scale based on the number of characters in the scene. Using these sorts of
parameters, we can control not only how often an action occurs but also how it is distrib-
uted across multiple characters.

36.6.2.2 Blackboards

In order to facilitate communication between logic that is spread across different behav-
iors for an individual character as well as among multiple characters, we can make use of
data blackboards. These data blackboards can be defined at a global, group, or local level.
All characters have access to the global blackboard, characters that are part of a specific
context, have access to that context’s group blackboard (e.g., all of the passengers in a
vehicle might share a group blackboard), and finally each individual character always has
access to its own local blackboard. Through the blackboards, we can communicate and
manage actions and behaviors for the NPCs within a specific scene, while still keeping the
logic independent of each other.

36.6.2.3 Action Ranking

In addition to action tokens, we can evaluate and assign a unique rank to each character
within a specific situation. For example, all NPCs that are currently engaged in combat
can be given a combat action rank. We can then assign specific actions or behaviors to
characters with different ranks or rank categories.

These action ranks can be used to ensure that the NPCs that are most relevant to the
player are the ones that execute the most interesting behavior. We can use a simple utility-
based formula to determine the ranks. Factors such as the distance to the player, whether
the character is visible to the player, whether the player is aiming at the character, and
event-based values such as hearing gunfire or receiving damage from a bullet can be used
to calculate the action rank. The event-based stimuli can be limited to influence the action
rank for a set period of time (which should be specified by the designer).

Some behaviors can be scripted to execute unique rank-specific micro behaviors to
further add variation within the scene. For example, a character holding a high action
rank may be allowed to taunt the player. In addition, we can use ranks to specify unique
behaviors for particular characters before allowing their systemic AI to run. For example,
we can require high-action-ranked NPCs to stand and shoot the player for a few seconds,
when the player first initiates combat with a particular group of NPCs. This gives the
player a few targets to engage with first, while the others scatter for cover, rather than just
allowing everyone to rush for cover.

36.6.2.4 On-Screen Realization

In order to make our behaviors more player centric, we can distribute behaviors based
on what the player is actually seeing. For example, we can use on-screen realization
as part of our utility ranking to ensure that NPCs that are on-screen receive a higher
action ranking than those offscreen. We can also use on-screen realization to influence
behavior execution. For example, we can ensure that NPCs that are on-screen choose
cover or goal positions that do not cause them to run offscreen (which is often annoying
to the player).

461Realizing NPCs

36.7	 Conclusion

AI character development must include a strong focus on the synergy between animation
and behavior. Having the right mindset and focus on realizing characters ensures that our
NPCs make appropriate and intended decisions while still maintaining a strong sense of
believability. This effort contributes significantly to the overall player experience.

Using animation techniques that focus on creating coverage while preserving the orig-
inal authored animations, using a minimal amount of content, and reusing animation
content, we can strive to maintain a high level of overall fidelity while keeping our mem-
ory budget in check. When it comes to motion, our emphasis is on displaying behavioral
intent, variation, and preservation of momentum.

Finally, it is important to focus on solutions that explicitly manage variety and that
distribute behaviors between characters. This level of realization control, centered on the
player, guarantees a consistently positive experience.

