
419

Human	Enemy	AI	in	The Last of Us
Travis McIntosh

34

34.1	 Introduction

In the previous chapter, we discussed the overall design philosophy and the AI techniques 
behind the Infected. In this chapter, we will discuss a question that relates to the human 
opponents in The Last of Us. When we started prototyping the human enemy AI, we began 
with this question: How do we make the player believe that their enemies are real enough 
that they feel bad about killing them? Answering that one question drove the entire design 
of the enemy AI.

Answering that question required more than just hiring the best voice actors, the 
best modelers, and the best animators, although it did require all of those things. It also 
required solving an AI problem. Because if we couldn’t make the player believe that these 
roving bands of survivors were thinking and acting together like real people, then no 
amount of perfectly presented mocap was going to prevent the player from being pulled 
out of the game whenever an NPC took cover on the wrong side of a doorway or walked in 
front of his friend’s line of fire.

To begin with, our enemies had to be dangerous. If they acted like cannon fodder, 
the player would treat them like cannon fodder, so the player had to feel like each and 
every human they encountered was a threat. They also needed to coordinate, or at least to 
appear to coordinate. A roving band of survivors needs to work together to survive, just 
as Joel and Ellie must work together, and without some sort of coordination, they would 

34.1	 Introduction
34.2	 Building	Blocks
34.3	 AI	Perception
34.4	 Cover	and	Posts
34.5	 Skills,	States,	and	Behaviors

34.6	 Stealth
34.7	 Lethality
34.8	 Flanking
34.9	 Polish
34.10	Conclusion



420 Character Behavior

appear subhuman. They also needed to care about their own safety. These were not suicide 
bombers. They were survivors. They should be as careful with their own lives as the player 
would be with theirs.

They needed to make good choices about where to go and when to go there, and more 
than that, they needed to be intelligent about how to get there. When they lost the player, 
they needed to communicate that fact to each other in a way that would be obvious to the 
player, and when their friends died, they needed to notice.

The design of The Last of Us also called for completely dynamic gameplay. Rarely were 
we guaranteed the location of the player when combat began, and at any point, the player 
could force the NPCs into a brand new setup from a different location. This meant that 
little of the NPC behavior could be scripted by hand. Instead, the NPCs had to be able to 
understand and analyze the play space, then adapt to the actions of the player.

Putting these concepts together with a number of visual and audio bells and whistles 
produced human enemies that could be enjoyable to play and just believable enough that, 
sometimes, every now and again, the player cared about who they were killing.

34.2	 Building	Blocks

Every AI system builds upon several key low-level systems. The Last of Us uses triangulated 
navmeshes, which are a fairly straightforward approach to navigation. The navmeshes are 
fairly coarse, and so we have a second-pass system that uses a 2D grid centered around 
every character on which are rasterized all static and dynamic blockers. This allows for 
short but very good paths, while the high-level system allows us to plan our overall route 
between distant points.

Pathfinding on navigation meshes is fast, especially utilizing the PS3’s SPUs. We did 
between 20 and 40 pathfinds every frame utilizing approximately 4 ms of SPU time. 
Pathfinding through navigation maps (a fixed sized grid that surrounded each NPC for 
detailed path analysis), by contrast, was expensive enough that we limited the game to one 
per frame, with each NPC needing to wait for their turn.

One system that was new to The Last of Us was the exposure map. Early in the project, 
we found that in order for the AI to make good decisions about which path to take, we 
needed information about what the player could see and what he couldn’t see. Exposure 
maps were our representation of this information.

We initially implemented visibility checks by casting rays toward the player from a num-
ber of different points on the NPC’s current path and then using that information to decide 
whether the path was a good one or not. Unfortunately, this didn’t work very well. Not only 
was it slow, but it didn’t allow us to choose different paths based on the visibility informa-
tion, which is what we really wanted. We then came up with concept of an exposure map, 
as shown in Figure 34.1. An exposure map is simply a 2D bitmap overlaid on the navigation 
mesh. In the exposure map, a one indicates visibility and a zero indicates occlusion.

In order to make calculating the exposure map fast, we embedded a simple height map 
inside of every navigation mesh. The height map used an 8-bit integer to represent the 
height of the world at every point on every navigation mesh. On the SPUs, we could then do 
very simple raycast out from the origin point in a 360° circle. Because we were working only 
in integer space and on the SPUs, we could parallelize this fairly easily. We then allowed the 
job to take multiple frames to complete. The end result is that we could continually calculate 



421Human Enemy AI in The Last of Us

an exposure map for what the player could see, as well as an exposure map that showed 
everything any NPC could see as a simple bitmap using around 2–3 ms of SPU time.

Because the exposure map was, in fact, a bitmap, we often used it as a cost in our navi-
gation function. The cost of traveling from one node to another was increased by integrat-
ing across this bitmap and multiplying by a scale factor. So, for example, we could use our 
standard pathfinding algorithm to find the best route from an NPC to the player, or we 
could add the exposure map as an additional cost and the path would minimize the NPC’s 
exposure to the player’s line of sight. Our first implementation of flanking was done using 
this exact algorithm, and it produced surprisingly good results in the static case.

34.3	 AI	Perception

One of the fundaments of AI in any game, especially a game focused on stealth, is AI per-
ception. In the Uncharted series, AI used a few simple systems to determine their aware-
ness of the world.

First, their sight we determined by a simple frustum and raycasts to check for occlu-
sion. At the start of The Last of Us, we used this same system, as shown in Figure 34.2.

Problems arose in playtesting, however. Often, players right next to the NPC would be 
unseen, while NPCs too far away were noticed, simply because the cone we used for testing 
was not adequate to represent real vision. The fundamental issue was that, when close, we 
needed a larger angle of view, but at a distance we needed a smaller one. Using a simple 
rule—the angle of view for an NPC is inversely proportional to distance—we reinvented 
our view frustum to be much more effective, as shown in Figure 34.3.

Just because the player could be seen on one frame did not mean the NPCs had instant 
awareness of him. When an NPC saw the player, he would start a timer. Each frame the 

Player

Figure	34.1

The	exposure	map	covers	everything	an	entity	can	see.



422 Character Behavior

player was seen, the timer was incremented. Each frame the player was unseen, the timer 
was decremented. The player did not count as perceived until the timer reached a specified 
value (around 1 or 2 seconds for the typical NPC). When in combat, this threshold was 
much lower, and when the NPC had yet to perceive the player in its lifetime (i.e., the player 
is in stealth), this threshold was much higher.

NPC

Seen player

Unseen player

Figure	34.2

The	simplest	form	of	perception	testing	for	NPCs	had	issues.

Seen player

Unseen player

NPC

Figure	34.3

This	more	complex	form	of	vision	cone	produced	better	results.



423Human Enemy AI in The Last of Us

We tried a number of different approaches to casting rays to check for occlusion. Our 
initial implementation involved rays to nearly every joint on Joel’s body. Each joint was 
weighted, and the weighted average was compared against a threshold (typically 60%). If 
the sum was higher, then the player is counted as visible.

This produced mixed results. Although it was a decent approximation of when Joel 
was visible and eliminated the edge cases of being seen when just your head or finger was 
visible, players found it difficult to anticipate whether a given cover point was safe or not, 
because of the complexity of the casts.

After some experimentation, we found that we could use a single point on Joel’s body 
instead. The location of that point would vary depending on whether we were in combat or 
stealth, as shown in Figure 34.4. If the player was in stealth, then the point is located in the 
center of the player’s chest. If the player has engaged an NPC in combat, the point moved 
to the top of the player’s head. This allows for player favoring perception in stealth while 
maintaining good visibility in combat.

Of note, the NPCs did not cheat with regard to knowing the player’s location in most 
circumstances. When the player was perceived, the NPC would create an entity object 
with location and time stamp and then signal all other NPCs with the player’s new loca-
tion. If the player was not perceived by any NPCs, his location was never updated, instead 
remained in the previous location.

The combat cycle of The Last of Us was then as follows: The player showed himself, 
either visibly or by shooting his gun. The NPCs would surround him as best as they could 
and then began to advance on his position. If they had advanced as close as they could 
and they hadn’t seen the player in a long enough period (10 s or more), a single NPC was 
chosen to approach the player’s position to see if he was still there. If he was not, the NPCs 
then transitioned into the search behavior.

In our original focus tests, this combat cycle took far too long—nearly 2 min on aver-
age. Quite often, the player would have moved on long ago and would feel like the NPCs 
were not responsive. Our solution to this problem was to cheat. If the player moved further 
than 5 m from where the NPCs thought he was, he was considered to have snuck away, 
and we forced an NPC to approach his position immediately, so that they could enter 
search more quickly. This reduced the combat cycle to about 30 s and worked very well for 
pacing purposes.

Player

NPC

In stealth

Player

NPC

In combat

Figure	34.4

The	 left	 image	shows	that	 in	stealth,	 the	raycast	point	 is	placed	on	the	player’s	chest,	 in	
order	to	favor	the	player.	The	right	image	shows	that	once	combat	has	been	initiated,	the	
raycast	point	is	placed	much	higher	onto	the	top	of	the	head.



424 Character Behavior

34.4	 Cover	and	Posts

Where to stand/take cover is one of the most fundamental decisions AIs need to make, 
and it is also one of the hardest. In order to properly rate and evaluate the best cover and 
open locations, you first need to gather a set of potential locations. We called these posts.

We had two distinct types of posts. The firsts were cover posts. These were gathered for 
each NPC in a radius around the NPC’s location. Candidates were any cover spot facing 
away from the threat (all possible cover spots were precalculated by a tool analyzing the 
collision mesh). After we gathered the closest 20 cover spots for each NPC, we submitted 
them as a single job. Each frame, we would cast up to 160 rays to these different spots, each 
cover spot requiring 4 rays to determine whether the NPC could shoot and hit their target. 
When all of the rays for a given set of cover were complete, those covers where every ray 
was blocked were rejected, as shown in Figure 34.5.

We called the second type of post as an open post. Open posts were points in the world 
around the player. Primarily, these were used to find a good location for the NPCs to check 
the player’s last known location when they were sent forward to begin a search. We again 
cast rays from these locations to the last known player position and rejected any whose 
raycast failed. In addition, we did a pathfind, limited to 20 per frame, from every NPC to 
every viable post for use in our post selectors.

Once we had a valid set of posts, we could then do analysis to select the location the 
NPC should use. Since every NPC behavior is significantly different, this used different 
criteria depending on what the NPC was doing at the time. We called these post selectors. 
Post selectors were defined in our LISP-based scripting language, with an example shown 
in Listing 34.1. We had 17 different post selectors when we shipped The Last of Us.

Each post selector defined what type of post it was interested in (in this case, cover and 
a number of different criteria). The criteria were different for each different selector and 
could easily be iterated on at runtime by reloading the script.

Of particular interest is the criterion ai-criterion-static-pathfind-not-near-player. 
Many times, during focus tests, players would complain that NPCs would rush forward to 
take cover. With some debugging, we determined that the issue was that a particular cover 

Player

NPC

Figure	34.5

Any	cover	post	whose	raycast	is	blocked	is	rejected.



425Human Enemy AI in The Last of Us

was the best cover choice, but in order to pathfind there, the NPC would need to move 
toward the player, so that they could then move away again, as shown in Figure 34.6.

The solution was to write a criterion that used the pathfind information we had for 
every NPC to every viable cover. These paths were calculated in a round robin fashion 
and took about a 1/2 s to refresh, gathered at the same time as the cover-to-player raycasts. 
We would then analyze the path the NPC would take to each cover point, and if that 
path involved running toward the player for an extended period, then we would reject 
that cover.

There were, in fact, two major systems operating in parallel. The first system gathered 
pathfinding information, raycasts, etc. The second simply processed these data using the 
post selectors. Since the source data were all gathered on previous frames, these post selec-
tors could be evaluated for very low cost on the SPUs. Each criterion would produce a float 
value normalized between zero and one; all of the criteria for a given post selector and a 

Listing 34.1. This	script	defines	a	post	selector	which	locates	a	good	place	to	hide.

(panic
 :post-type (ai-post-type cover)
 :criteria (ai-criteria
	 (ai-criterion-path-valid)
	 (ai-criterion-within-close-in-dist)
	 (ai-criterion-available)
	 (ai-criterion-static-pathfind-not-near-player)
	 (ai-criterion-not-behind-the-player)
	 (ai-criterion-distance
 :curve (new-ai-point-curve
	 ([distance 3.0] [value 0.0])
	 ([distance 5.0] [value 1.0])
	 )
	 )
	 )
)

Player

NPC

Ideal cover

Figure	34.6

Sometimes	the	best	cover	could	not	be	determined	without	a	path.	If	the	path	to	the	cover	
required	running	toward	the	player	for	too	long,	as	in	this	example,	then	the	cover	would	
be	rejected.



426 Character Behavior

given post would then be multiplied together, and the resulting value would be that par-
ticular post’s rating for that particular post selector. Next, all the posts would be sorted by 
rating, and the ideal post determined, simply by being the post with the highest rating, as 
shown in Figure 34.7.

Ratings would be different for each post per post selector and unique NPC. A post that 
was rejected for panic might be the ideal for advance. Note that all of the criteria for all of 
the posts and post selectors were evaluated continuously, so there was no delay when the 
NPC switched states—the ideal post for any given post selector was always available.

34.5	 Skills,	States,	and	Behaviors

The NPC’s top-level states, which we called skills, were part of an FSM. Skills were pri-
oritized, and each skill queried every frame whether it wished to run. The skill with the 
highest priority won. Examples of skills include panic, advance, melee, gun combat, hide, 
investigate, scripted, and flank.

Each skill included its own state machine. So, for example, gun combat could be in the 
advance or the back away state. Note that these were high-level states and didn’t typically 
directly interface with the animation or pathfinding systems. Instead, a separate object 
known as a behavior would be pushed onto a behavior stack. Behaviors were on much lower 
level and were much simpler than the top-level states. Examples include MoveToLocation, 
StandAndShoot, and TakeCover.

34.6	 Stealth

Stealth was handled by two separate skills. The investigate skill understood how to respond 
to a distraction sound and had a custom post selector. If the NPCs were in their standard 
scripted states—fully controlled by designer-created scripts that would tell them where to 
move, when to move, and even what audio dialog to play—then when an audio gameplay 

Player

NPC

0.61

0.95

0.15

0.85
Ideal post

Figure	34.7

Every	post	is	rated	and	the	one	with	the	highest	number	wins.



427Human Enemy AI in The Last of Us

event signaled a distraction, NPCs would request the role of an Investigator. Whichever 
NPC got that role would then walk to the ideal post as specific by the custom post selector 
and play an animation. If they found nothing, they would return to their previous location 
and pick up their script where it left off.

This was the case if the player had not been located yet. If the NPCs were already aware 
of the player, they entered the search state. Search involved procedurally partitioning the 
map and sending the NPCs to search it. Where to search was solved by the search map. 
The search map was a series of grid cells. If the player’s location was known, all cells would 
be empty except the player’s current location. Once the player’s location was lost, however, 
the active cells would then bleed into their neighbors over time, and the potential location 
of the player would spread out to cover the map, as shown in Figure 34.8. Using the expo-
sure map, any cells currently visible to an NPC would be cleared each frame. The result 
was a grid of cells that represented, roughly, the potential locations of the player from the 
NPC’s perspective, who could then search in a relatively intelligent fashion.

34.7	 Lethality

Games can create threatening enemies in a few ways. Enemies can take a lot of damage—
in The Last of Us this broke immersion since you were supposed to be fighting humans. 
The number of enemies could be high—this directly contradicts our goal of making the 
player care about each and every kill. The enemies could deal a lot of damage—a possibil-
ity. The enemies could be very good at being hard to hit—another possibility.

We began by focusing on a concept we called lethality. Lethality meant that if a single 
enemy could kill the player, then every shot was frightening. One of the simplest and most 
successful things we did was make every shot the player received play a full body hit reac-
tion. This meant that getting shot would not only deal significant damage but also take 
away control while the animation played out. In fact, it was the loss of control that most 
affected players. Those few moments of helplessness meant that every shot became a punc-
tuation mark, a pause in the flow of the action that didn’t let them forget their mistake.

Another way we made enemies lethal was by making sure to provide a threat whenever 
possible. This meant whenever an NPC had the ability to shoot the player, they would 

Player

NPC

Figure	34.8

Search	map	locations	spread	out	until	within	an	NPC’s	line	of	sight.



428 Character Behavior

always choose to do that. With that said, it was only necessary for one NPC to be shoot-
ing the player at any given time; all other NPCs could spend their time taking cover, 
flanking, etc.

What this meant was that we needed a way for NPCs to coordinate with one another. 
We created a system we called the Combat Coordinator. The Combat Coordinator was sim-
ply a global object that managed each NPC’s role. The roles include Flanker, Approacher, 
Investigator, StayUpAndAimer, and OpportunisticShooter.

Whenever a particular NPC desired a given role, they called the RequestRole() 
function on the Combat Coordinator. If that role was available, the function returned 
success, the NPC called AcknowledgeRole(), and no other NPC could take that role 
until they released it.

The purpose of the OpportunisticShooter role was to make sure there was at least one 
NPC focusing on shooting the player at any given time. If any NPC was able to see and 
shoot the player from their current location, they requested this role. Once they had the 
role, they instantly began shooting the player. This greatly increased the lethality of the 
NPCs. Note that when an NPC had this role, they would instantly stop whatever they were 
doing—even mid animation—and blend to standing and shooting at the player. In earlier 
playtests, they were noticeably slow in transitioning to shooting, with the result that often-
times the player would be almost completely untouched when rushing.

34.8	 Flanking

The role of the Combat Coordinator was not simply to be a gatekeeper to a few conceptual 
roles. In some cases, the coordinator would only allow a single, ideal NPC to take a given 
role. The best example of this is the Flanker role. Each NPC would run a pathfind in every 
frame to determine their best flank route. Each flank route would then be rated based on 
cost, and the coordinator would choose an ideal Flanker for the frame. If any NPC requested 
to flank the player but wasn’t the ideal Flanker, their request would be rejected. Sometimes, 
as in the case of the OpportunisticShooter, we simply wished for the role to be taken as 
quickly as possible, so we would simply assign the role on a first come, first serve basis.

Although we originally used the exposure map to determine flanking, in practice this 
produced a number of issues. Because the exposure map changed as the player moved, 
often the flank routes could vary wildly from one frame to the next, and a corridor the 
algorithm identified as unexposed last frame could become exposed very quickly if the 
player was just around the corner.

The solution was to use a cost function based on the current combat vector. The combat 
vector was simply the current direction of combat from the player’s perspective, calculated 
by averaging the NPC positions weighted by any shots that had been fired recently. Given 
the current combat vector, the cost function for flanking a given NPC was a fixed shape in 
the direction of that vector, as shown in Figure 34.9.

The closer to the center line (the line directly in the path of the combat vector), the 
higher the cost for pathfinding. The result of using this cost function was that flanking 
paths immediately attempted to move a large distance to the side and come around from 
behind, which was precisely what the player expected. In addition, the obstacles in the way 
were immaterial to how the cost function was created, and we instead let the pathfinding 
handle finding the path.



429Human Enemy AI in The Last of Us

34.9	 Polish

Once the AI decision making was in place, dialog could be layered in, animations could 
be polished, and setups could be scripted. Dialog in particular allowed the AI to com-
municate the decisions they make to the player, so that the NPCs could appear to be as 
intelligent as they sometimes were.

Then came focus testing, and more focus testing. Indeed, half of our implementation 
decisions were made in response to videos of players playing the game. In general, spatial 
analysis of the play space was perhaps the biggest win for us in terms of improving the 
AI’s decision making. Combining that with the Combat Coordinator produced NPCs that 
made coordinated, informed decisions in a dynamic play space and appeared to be work-
ing together as a group.

34.10	 Conclusion

In the end, we achieved our goal. The enemies had personality and had some sort of life, 
and most importantly, killing the enemies in The Last of Us was hard—not in the sense of 
difficulty but in a more emotional, more visceral sense. Because every enemy was a threat, 
every enemy felt more real and more alive, and because they felt alive, the player was able 
to build a small connection with them. The violence in The Last of Us was disturbing, not 
merely because of its graphic nature but because the player cared about the people they 
were attacking. The NPCs worked together, like real people. The NPCs fled and hid when 
threatened, like real people. The NPCs made good choices about where to go and how to 
get there, and most of the time they didn’t destroy the illusion the player had immersed 
themselves in.

What we ended up with was not perfect by any means, but it answered the question of 
whether players cared about the people they were killing. They did.

Player Combat vector

Cost shape

Figure	34.9

The	combat	shape	rotates	with	the	direction	of	the	combat	vector.


