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32.1	 Introduction

An AI navigation mesh, or navmesh for short, is a structure that can be used by an AI 
agent for pathfinding through a world. A voxel-based navmesh is one that is generated 
through the use of voxels. A voxel, representing a cube-shaped volume of space in a 3D 
grid, can be combined with other voxels to represent any volume of space. With voxels, 
a navmesh can be generated, which conforms greatly to the physical volume of a world, 
resulting in a navmesh that closely resembles the space in the world where an AI agent 
can physically fit. A voxel-based navmesh exists only where an AI agent can travel without 
colliding with or protruding into any physical body in the world.

A voxel-based navmesh is typically generated using parameters (notably height and 
radius) that describe the AI agent’s dimensions while standing. This results in a navmesh 
that exists only where the AI agent can stand. Any space that is too low or too narrow for 
the AI agent to fit in while standing is excluded from the navmesh.

What follows is an explanation of how a voxel-based navmesh can be generated that 
includes the nonstanding spaces in the world: areas where the AI agent could fit if it were 
to crouch, lie prone, sidestep, swim, or otherwise contort its physical body appropriately. 
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Through appropriate markup, a more complete navmesh can be computed with a higher 
degree of spatial awareness. At a high level, an AI agent will continue to simply request a 
path from the pathfinder and travel along that path. Should that path take the AI agent 
through a small hole in the wall, the AI agent can use information embedded within the 
navmesh to dynamically contort its body to fit through the hole. Annotating navmeshes is 
nothing new; however, when combined with a voxel-based navmesh generator, the result-
ing procedurally built navmesh with extended spatial coverage can be used to give greater 
depth to an AI agent’s ability to navigate through the world.

32.2	 Overview	of	Voxel-Based	Navmesh	Generation

Before exploring this idea further, it’s important to have a good understanding of the 
fundamentals behind a voxel-based navmesh. The goal here is to understand the steps 
involved in the generation process from a high-level perspective. This is important for 
understanding later how the process can be expanded to include other types of spaces 
in the navmesh. There are many articles on navmeshes and navmesh generation tech-
niques (voxel based and otherwise). Greg Snook has done a wonderful job explaining the 
benefits and details of an AI navmesh [Snook 00]. David Hamm takes it one step further 
by discussing the benefits of utilizing an automatic navmesh generator while detailing 
the algorithm involved [Hamm 08]. There also exists a very well-respected voxel-based 
navmesh implementation known as Recast, written by Mikko Mononen, which is fully 
open sourced [Mononen 14]. This is a great resource containing example algorithms and a 
general code structure of a voxel-based navmesh generator.

32.2.1	 Voxel-Based	Navmesh	Goals
Every voxel-based navmesh implementation out there is trying to solve the same problems 
and satisfy the same set of goals:

 1. Maximize the coverage of the AI navmesh in the level.
 2. Minimize the amount of human interaction required when placing the AI 

navmesh in the level.
 3. Reduce the time spent when updating the AI navmesh during level iterations.

To maximize the AI navmesh’s coverage, the navmesh needs to be extended across the 
entire level. The coverage will also need to be constrained by the physical world: ledges 
that are too high to jump over, slopes that are too steep to walk up, and walls that block 
the way forward should be omitted from the final navmesh.

To minimize the setup cost for building this AI navmesh in the level, the process needs 
to be automated as much as possible. The task should be no more difficult than painting 
the area where the AI agent can go in one broad stroke and having some automation fill 
in the blanks. To maximize the AI navmesh’s coverage, this automation must be able to 
break apart the physical world and figure out what areas the AI agent can and cannot fit 
in the physical space (collision detection between the AI agent and physical objects) and 
ensure the navmesh extends only to the areas where the AI agent does physically fit.

To reduce the time spent in maintaining this AI navmesh, this automation process 
ought to continuously run and refresh the AI navmesh whenever the physical space in the 
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level changes. Keeping true with the idea of automation, this process should happen seam-
lessly in the background without any additional interaction needed by the level designer. 
For example, if the designer drops a large object down in the middle of the room, puts up 
a new wall, or changes the degree of the slope in the terrain, then the AI navmesh needs to 
reflect these changes immediately after the action is carried out.

32.2.2	 Enter	Voxelization
Voxels are generated for the purpose of understanding algorithmically the space being 
constrained by the level’s physical world. Figure 32.1 shows a simple in-engine scene. 
Figure 32.2 shows the same scene after voxelization.

Using these voxels, it is possible to calculate a set of planar polygons (hereafter referred 
to as only polygons), which cover the surfaces of the physical world and include in their 
areas as much of the navigable space as possible. These polygons are nontriangulated and 
consist of only a set of vertices that form the edges of the shape.

Figure	32.2

Voxels	generated	in	a	single	grid,	slightly	overlapping	the	boundaries.

Figure	32.1

The	world	partitioned	into	grid	for	parallel	voxelization.
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To generate the polygons, it must be determined which voxels form the edge of a 
polygon and how many polygons will be needed to cover the area. The area within these 
polygons will make up the AI navmesh in the level—anything outside these shapes are 
deemed nonnavigable by the AI agent. To find which voxels lay on the edge of a poly-
gon (which subsequently will tell us how many polygons exist in the area), each voxel 
must be asked this single question: If an AI agent were to occupy the same space as this 
voxel, would that AI agent be able to legally move away from that space in any possible 
direction?

One obvious check for answering that question would be physical clipping. If the 
voxel is right up beside a wall and the AI agent stood centered on top of that voxel, then 
chances are the AI agent’s arm or leg may be clipping into the wall. This is probably 
not ideal, and so it will be necessary to ensure that this voxel is left outside of all of 
the polygon shapes. We have another scenario: suppose the voxel is located just above 
the terrain on a slope with a steep gradient. Should the AI agent stand centered on 
top of this new voxel, then there is a strong certainty that the AI agent’s feet may clip 
through the surface once it begins to play the run forward animation cycle. Since this 
is not ideal, it will again be necessary to ensure that this voxel is left outside of all of the 
polygon shapes.

To answer this question for each one of the voxels, a table of agent-driven parameters 
will be used. These parameters, when paired, describe two things:

 1. The physical space that a single AI agent takes up (i.e., no other physical 
items should be within this space to ensure that the AI agent will not collide 
or clip through a nearby physical object while the AI agent plays any possible 
animations)

 2. The maximum tolerance of the restrictions placed on the AI agent by motion-
controlling animation

Listing 32.1 shows an example of what an agent-driven parameter table might look like.
The radius and height parameters are examples of description #1. With just these 

two parameters, it is ensured that the AI navmesh only covers areas where the AI agent 
can physically fit given its physics cylinder. The remaining parameters are examples of 
description #2. They do not describe anything about the physical world, but instead simply 
impose limitations on what would otherwise be legal navigable area. maxStepHeight 
can help in differentiating between a staircase and a large pile of rocks. maxSlopeRad 
can ensure the AI navmesh stays away from mountain slopes and sticks to just the roll-
ing hills. Lastly, minWaterDepth and maxWaterDepth can be used to extend the AI 
navmesh a bit beyond the coastline.

With these parameters in hand, each of the voxels need to be flagged in one of three 
ways: nonwalkable (violates the parameters), walkable (passes the parameters), and 
border (passes the parameters but one of the neighboring voxels violates the parameters). 
Figure 32.3 shows the previous scene’s voxels after they have been flagged. The nonwalk-
able and walkable voxels can safely be thrown away once all the voxels have been flagged. 
The remaining border voxels will be used to draw the outlines of the polygons—the vox-
els that neighbor one another are part of the same polygon. After going through all of 
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these border voxels, one or any number of polygons may be determined, but it is impor-
tant to remember which voxels belong to which polygon. Islands can form, as shown in 
Figure 32.4. These polygons may or may not be convex (some in fact might even have holes 
inside of them). This is perfectly okay, but should be remembered when moving on to the 
next step in the generation process.

Listing 32.1. Sample	agent-driven	parameter	structure.

struct SAgentParameters
{
 //Radius (in meters) of the AI agent’s physics cylinder
 float radius;

 //Height (in meters) of the AI agent’s physics cylinder
 float height;

 //Maximum height (in meters) of a step that the AI agent
 //can climb without breaking feet anchoring.
 float maxStepHeight;

 //Maximum angle (in radians) of a slope that the AI
 //agent can walk across without breaking animation.
 float maxSlopeRad;

 //Minimum height (in meters) from a sea floor where
 //the AI agent can stand and still keep its head above
 //water.
 float minWaterDepth;

 //Maximum height (in meters) from a sea floor where
 //the AI agent can stand and still keep its head above
 //water.
 float maxWaterDepth;
};

Figure	32.3

Flagged	voxels.	Lighter	are	walkable.	Darker	are	border	and	nonwalkable.
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32.2.4	 Triangulating	the	Polygons
To facilitate pathfinding through the navmesh, nodes need to be placed within the poly-
gon shape to act as points along the calculated path. Any concave polygons, or polygons 
with holes, must also be handled correctly. No calculated paths should ever cut through 
a hole in a polygon or otherwise exit that polygon’s borders and enter area not included 
in any of the other polygons. In order to use these polygons in the navmesh, they must be 
rendered convex. This can be done through a standard triangulation algorithm. Jonathan 
Richard Shewchuk describes a great triangulating algorithm that can handle both the 
convex, concave, and hole-filled polygons that may have been generated in the previous 
step [Shewchuk 02].

If the polygons shown in Figure 32.4 are triangulated without any additional modifica-
tions, the resulting triangle mesh would include an excessive number of small triangles in 
the parts around the polygon edges, due to the blocky border leftover from the voxeliza-
tion process. See Figure 32.5 for an illustration of this point. This is not ideal, as it will 
result in placing a lot of nodes within a relatively small area, which is wasteful to both 
memory and computation time during pathfinding. What would be preferred is a polygon 
with a sloping side instead of a staircase side.

It is ideal if the polygon’s border is simplified before it is triangulated, turning these 
staircases into slopes. Note that since the outside space is now entirely made up of non-
navigable areas for the AI agent, the polygon border should be simplified by shaving away 
interior space without including any nonnavigable exterior space. We are sacrificing cov-
erage of the navigable area in exchange for an increase in performance. Figure 32.6 shows 
the same polygon border after it has been simplified.

The triangle list calculated through the triangulation algorithm will become the basis 
of the AI navmesh—the centers of each triangle representing a node and each neighboring 
triangle receiving a path connection between the two nodes. Figure 32.7 shows our previ-
ous scene’s grid after triangulating the two polygons. Figure 32.8 shows the completed 
navigation mesh.

Figure	32.4

Two	polygons	generated	from	the	border	voxels.
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Walkable

Nonwalkable

Figure	32.5

Polygon	with	a	staircase	side	before	simplification.

Walkable

Nonwalkable

Figure	32.6

Polygon	with	a	sloping	side	after	simplification.
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32.2.5	 Recap
Here’s a quick recap of the voxel-based AI navmesh generation process.

 1. Segment the world into individual cells using a grid. Overlap each grid on top of 
its neighbors slightly.

 2. Using parallelization, perform the following on each cell:
 a. Voxelize the empty space in the cell (space not occupied by a physical body).
 b. Using the agent-driven parameters, flag all voxels as nonwalkable, walkable, 

or border.
 c. Throw away all nonwalkable and walkable voxels.
 d. Using the remaining border-flagged voxels, generate planar polygon shapes 

using the voxels as the edges.
 e. Simplify the polygon border shapes to prepare for triangulation, removing 

unnecessary vertices without increasing the area of the polygon.
 f. Triangulate the polygon and add the resulting localized triangle list to the 

master triangle list.

Figure	32.7

Simplified	polygons	after	being	triangulated.

Figure	32.8

Completed	triangulated	AI	navigation	mesh.
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 3. Once all cells have been processed, generate pathfinder nodes for all triangles in 
the master triangle list.

 4. Create connections between the nodes that border each other—if they share the 
same triangle parent or if their parent triangles neighbor one another in the mas-
ter triangle list.

This process gives us a workable AI navmesh that conforms to the physical world accu-
rately, given a single static set of parameters based on an AI agent’s physical state and 
motion behavior. As long as the AI agent does not deviate from its parameters, it will 
safely be able to travel anywhere along this navmesh without getting stuck or blocked by 
some physical body—as long as the physical bodies don’t move around either! But if those 
physical bodies do move or change in some way, you could always regenerate the localized 
triangle list for the cells that contain that physical body and stitch the updated triangles 
back into the navmesh.

32.3	 Extending	the	Navmesh’s	Spatial	Coverage

Suppose an AI agent were to deviate from its physical parameters for a moment. Most action 
games support having an AI agent that can crouch down low, reducing its physical height. 
Suppose now the AI agent were to begin moving around while in this crouched state. As 
long as the new physical space that the AI agent occupies is less than the space used to 
generate the navmesh, there won’t be any issues. Small objects can always fit in large spaces; 
therefore, the AI agent will still be able to safely travel everywhere along the navmesh. From 
that AI agent’s perspective, the world has seemingly become much larger. Now, the space 
under a table looks easily passable. The AI agent could now fit through the air-conditioning 
duct opening. Even the holes blown out of the walls look passable from this state. But the 
navmesh was generated in a way that only considers where the AI agent could fit while 
standing. These new hiding places and shortcuts were passed over during the generation 
process. The voxels that filled these spaces were flagged as nonwalkable and were discarded.

32.3.1	 Reintroducing	the	Discarded	Space
It would be great if all of this discarded nonwalkable-flagged space could be reintroduced 
into the navmesh. But before that is done, it is important to flag this space with appropri-
ate annotations. Without any additional metadata associated with the space, there is no 
way for the AI agent to determine if the space can be navigated while standing upright. 
Therefore, two rules must be satisfied:

 1. The crouch-only triangles must be clearly separated from the stand-only triangles. 
Stand-only triangles should only exist in spaces where the AI agent can legally 
stand. Crouch-only triangles should only exist in spaces where the AI agent can 
legally crouch.

 2. The crouch-only triangles must be flagged in some way, so that it is possible to later 
delineate what area is stand only and what area is crouch only on the navmesh.

The first rule is easily satisfied. The navmesh will be generated using the voxel-based gen-
eration process described earlier as usual; however, instead of discarding the nonwalkable 
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voxels, these voxels will simply be set aside and sorted into a separate container for later 
revisiting. Once the generation process has finished constructing the localized triangle list 
for a cell, step #2 can be repeated in its entirety using the nonwalkable voxels that were set 
aside as a result of the previous pass’ step #2a. That is, instead of voxelizing the cell space 
again, the nonwalkable voxels will be used as the starting pool of voxels, with all of their 
flags discarded. These voxels are then processed once again like before, but with a different 
set of agent-driven parameters—parameters that describe the AI agent’s physical state and 
motion behavior from a crouching perspective. This will result in a new localized triangle 
list that spans across the remaining space in the cell where the AI agent can physically fit 
so long as it is crouched. And since the space in the cell where the AI agent could physi-
cally fit while standing is not being considered again (as those voxels were not included in 
the crouch-only pool of voxels), the edges of the newly calculated crouch-only triangles 
will exactly border the edges of the previously calculated stand-only triangles. Figure 32.9 
illustrates this point.

Table 32.1 shows a side-by-side comparison of what the agent-driven parameters could 
look like for standing and crouching.

Notice how the height has decreased while the radius has stayed the same. While 
the AI agent is crouched down, the height of its collision cylinder has naturally lowered to 
match the difference in displacement from the floor to its head. The maxWaterDepth has 
also decreased proportionally. While crouched, the AI agent’s motion behavior has been 
altered as well. The AI agent can no longer climb steep slopes like it used to and it cannot 

Table	32.1	 Standing and Crouching Agent-Driven Parameters

Parameter Standing Crouching

radius 0.4 m 0.4 m
height 2.0 m 1.2 m
maxStepHeight 0.5 m 0.25 m
maxSlopeRad 0.5 rad 0.35 rad
minWaterDepth 0.0 m 0.0 m
maxWaterDepth 1.5 m 0.7 m

Figure	32.9

Crouch-only	triangles	(light)	bordering	stand-only	triangles	(dark).
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raise its legs high enough to pass over certain steps. As a result, the maxStepHeight and 
maxSlopeRad values were decreased to better match its movement restrictions while 
crouched.

When these crouch parameters are used to flag the remaining voxel pool (remember the 
voxels in the pool were the ones that were flagged as nonwalkable by a standing AI agent), 
the voxels will then reflect if they are nonwalkable, walkable, or border for a crouching 
AI agent. For example, the voxels that were placed just above the floor but below the table 
were nonwalkable by a 2 m tall AI agent but are now clearly walkable by a 1.2 m tall AI 
agent. Voxels that are being found are now walkable, some of which are forming borders 
due to the absence of neighboring voxels that did not carry over from the previous pass. 
These newly flagged border voxels can generate new polygons, which once simplified and 
triangulated will fill a new localized triangle list full of crouch-only triangles.

If this localized triangle list were to be combined with the localized triangle list from 
the previous pass and merged into the master triangle list “as is,” only the first rule will 
have been satisfied. The triangles from both passes will be clearly separated with no over-
lapping occurring. But the crouch-only triangles will have no distinguishing annotations 
associated with them that separate them from the stand-only triangles. An AI agent will 
still think it can traverse over these triangles while standing. These crouch-only triangles 
must be annotated in some way before being combined with the stand-only triangles, so 
that it is possible to distinguish between the two triangle types at path-planning time.

To satisfy the second rule, metadata are incorporated into the triangle data type. These 
metadata inform an AI agent of how it must alter its physical state or motion behavior in 
order to successfully travel over the triangle.

32.3.2	 Using	the	Metadata
The last key of the puzzle involves getting the AI agent to make use of the metadata. When 
an AI agent requests a path of the pathfinder, triangle nodes in the navmesh become the 
vertices of the path. In the end, the AI agent is simply walking from one triangle node to 
another until the AI agent reaches the node from the last triangle (the one that contains 
the destination point within its area). The AI agent can always figure out which triangle it’s 
currently standing over and which it’s moving toward next, just by looking at the nodes in 
the path that it is following.

By including the metadata associated with the triangle in the path vertex, it then becomes 
possible for the AI agent to refer to the metadata while following its path. As an example, 
Listing 32.2 shows a simple structure describing a path vertex. The vertex is constructed 
from a triangle node. The metadata from that triangle node is included in the path vertex.

With the inclusion of the metadata in the path vertices, it is now just a matter of using 
the data at the right time. While the AI agent is following its path, it can look at the next 
path vertex and determine if it should be crouching or not. If the next path vertex has a 
true value for bCrouch, then the AI agent needs to set its stance to be crouching. If there 
is a false value for bCrouch, then the AI agent needs to set its stance to be standing. See 
Figure 32.10 as an example. A path can now be generated through standing-only space 
and crouch-only space interchangeably. The AI agent will set its stance correctly based on 
which area it is about to enter next.

Notice how the previous triangle node is passed in to the SPathVertex constructor 
if available. Figure 32.10 illustrates why this is needed. Six triangles are shown, forming 
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the navmesh. A movement path is passing through all six triangles (the nodes originat-
ing from the midpoints of the triangle segments), with the AI agent being located at the 
start of the path (point I). Note that triangle B is stand only, while triangle C is crouch 
only. When the AI agent has reached the path vertex from triangle B and begins to move 
toward the path vertex from triangle C (point II), the AI agent will begin to crouch. This is 
the correct behavior, as it gives the AI agent time to crouch before leaving the stand-only 
space of triangle B and entering the crouch-only space of triangle C. Now look at triangles 
D and E. Triangle D is crouch only, while triangle E is stand only. When the AI agent has 
reached the path vertex from triangle D and begins to move toward the path vertex from 

Listing 32.2. Path	vertex	structure	which	records	if	it	came	from	a	crouch-only	triangle.

struct SPathVertex
{
 //Position of the path vertex
 Vec3 vPosition;

 //True if AI agent should crouch while navigating
 //to this vertex
 bool bCrouch;

 explicit SPathVertex(const STriangleNode &node,
 const STriangleNode *prevNode = 0)
 {
 vPosition = node.vPosition;
 bCrouch = node.bCrouchOnly;

 if (prevNode)
 {
 //Stay crouching if the previous triangle
 //was crouch-only
 bCrouch |= prevNode->bCrouchOnly;
 }
 }
};

Stand-only
triangles

Stand-only
triangles

Crouch-only
triangles

A C E

B D F

AI agent

I II III
Movement 

path

Figure	32.10

An	 AI	 agent’s	 movement	 path	 on	 top	 of	 the	 navmesh.	 Six	 triangles	 are	 shown	 from	 the	
navmesh	(A	through	F),	with	the	middle	two	(C	and	D)	being	flagged	as	crouch	only.	Three	
points	of	interests	are	shown	as	circles	labeled	with	the	numerals	I	through	III.
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triangle E (point III), the AI agent will have begun to stand. This is because triangle E has 
a false value for bCrouch, and since the path vertex made using triangle E is the next 
path vertex, the AI agent ought to set its stance to be standing. But the AI agent is still 
within the crouch-only space of triangle D. The AI agent needs to exit this space before 
it can stand up. The safest way to know if the AI agent has cleared the crouch-only space 
of triangle D is to wait until the AI agent has reached triangle E and has moved on to the 
next path vertex from triangle F. To keep the AI agent crouching while navigating toward 
triangle E, we set its bCrouch value to be true, not because triangle E’s metadata say so 
but because the previous node (triangle D) is crouch only.

32.4	 Identifying	Other	Spaces

Crouch navigation is just one example of how the recycling process can be applied to a 
voxel-based navmesh generator. The following is an assortment of other possibilities that 
can be explored. Each one of these possibilities involves just adding another recycling pass 
of the leftover nonwalkable voxels using a different tweak to the agent-driven parameters 
and another entry in the triangle metadata.

32.4.1	 Prone	Navigation
Just like with crouch navigation, prone navigation works off the height parameter—just 
with a much lower value. For prone navigation, the agent-driven parameters might con-
tain the values in Table 32.2.

The radius parameter has doubled that of the standing height. This is because, while 
in the prone position, the AI agent will be lying flat down on its stomach, and so from its 
pivot point located near its pelvis joint, the maximum radius of a circle that fully encloses 
the AI agent is half its standing height, or 1 m. The height parameter and the various 
motion behavior parameters are lowered and adjusted to fit the new height of the AI agent.

32.4.2	 Swim	Navigation
Swim navigation works off of the minWaterDepth and maxWaterDepth parameters. 
By using a minWaterDepth equal to the standing maxWaterDepth and a much larger 
value for the new maxWaterDepth, a navigation mesh can be generated along the sea 
floor of a very deep lake or even an ocean. The agent-driven parameters might contain the 
values in Table 32.3.

The radius and height parameters match those used in the proning param-
eters, as the AI agent will be swimming, which involves lying flat on its stomach. 

Table	32.2	 Proning Agent-Driven Parameters

Parameter Standing Proning 

radius 0.4 m 1.0 m
height 2.0 m 0.5 m
maxStepHeight 0.5 m 0.1 m
maxSlopeRad 0.5 rad 0.15 rad
minWaterDepth 0.0 m 0.0 m
maxWaterDepth 1.5 m 0.35 m
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The minWaterDepth matches the maxWaterDepth used in the standing parameters. 
This ensures only surfaces below sea level that are lower than the standing height of the 
agent up to its neck are considered. The maxWaterDepth parameter uses a value of 
50 m, but this value can be however low or high as is necessary for the world. It will just 
cap how far out into the water the AI agent can swim, given how deep the water is at that 
point. The maxSlopeRad parameter is set to 360°. Since the AI agent will be swimming 
along the surface of the water, the slope of the ground or objects underneath the water 
surface is irrelevant, and using a value of 360° ensures any legal calculated slope will 
always pass.

The maxStepHeight parameter is a bit more interesting here and was calculated as

 max max minStepHeight WaterDepth WaterDepth= −  (32.1)

Imagine a large cube resting on the sea floor 50 m below the water surface. If the height 
of that cube is less than 48.5 m, the AI agent can float on the water surface and not touch 
the top of the cube. If the height of the cube is greater than or equal to 48.5 m, then the AI 
agent could stand on the surface of the cube and be nearly or fully out of the water, mean-
ing the height difference from the water surface to the top of the cube is too small for the 
AI agent to swim through.

Keep in mind that the AI navmesh is being generated along the sea floor and not the 
water surface. When constructing the path vertices along this section of the navmesh, 
the height of the vertex should be adjusted to match the height of the water surface, so that 
the AI agent does not attempt to follow a path underwater.

32.4.3	 Sidestep	Navigation
Sidestepping navigation involves moving one’s body without extending one’s legs forward. 
If one is moving to their left, then to sidestep, they would extend their left leg out to the 
left of their body and then retract their right leg so that it comes to rest beside their left leg 
again. This style of motion allows one to move through very tight spaces, as long as they 
can suck their gut in enough! For an AI agent, sidestepping translates into a navigation 
method that works with a much smaller radius. The agent-driven parameters might 
look something like Table 32.4.

These parameters are identical to the standing parameters, with the exception of 
radius, which has been halved to a mere 20 cm. If these parameters are used to gener-
ate sidestep-only triangles after a stand-only pass, the navmesh would be extended in 
tighter-fitting areas where the AI agent could still stand. An example of such an area 

Table	32.3	 Swimming Agent-Driven Parameters

Parameter Standing Swimming

radius 0.4 m 1.0 m
height 2.0 m 0.5 m
maxStepHeight 0.5 m 48.5 m
maxSlopeRad 0.5 rad 2π rad
minWaterDepth 0.0 m 1.5 m
maxWaterDepth 1.5 m 50.0 m
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might be a narrow ledge along the parameter of a building or a room packed with boxes 
making a maze of walkways.

To navigate this space requires a more stylized approach for an AI agent. A unique set 
of locomotion animations that drive the AI agent’s character to move forward by sidestep-
ping is required. The collision cylinder around the AI agent might also need to be tem-
porarily adjusted, so that the radius of the cylinder matches the maximum 20 cm space.

32.4.4	 Multiple	Generation	Parameter	Passes	and	Hierarchy
Due to the recursive nature of the multiple generation passes when using different param-
eters, the order in which the parameters are parsed is critical in determining the resulting 
navmesh. As each pass only considers those voxels that have previously been flagged as 
nonwalkable, the next set of parameters can only add (and consequently mark up) space 
that has not yet been included in the navmesh.

For example, consider generating the navmesh with standing, crouching, and pron-
ing parameters. If the hierarchy is standing, then proning, then crouching, the resulting 
navmesh will mostly consist of only standing- and proning-marked space. Since it is pos-
sible to prone anywhere where one can crouch (with the slight exception of the slightly 
wider radius for prone vs. crouch), all of the nonwalkable voxels from the stand-only 
pass will be consumed during the prone-only pass. The crouch-only pass will have very 
few nonwalkable voxels left for it to consider. Should the hierarchy be modified to con-
sider crouching before proning, a better mixture of crouch-only and prone-only space 
will be distributed throughout the navmesh. Sometimes one method may be preferred 
over the other, and so there is no right or wrong answer for the order of hierarchy. This 
leaves the door open for many interesting combinations and resulting navmeshes to 
experiment with!

32.5	 Playing	with	the	Heuristic

Here is one additional footnote for consideration: it might be the case that having an AI 
agent that avoids crouching, proning, swimming, or whatever nonstanding navigation is 
preferable, if it is possible. Consider a table in the middle of the room. If the AI agent were 
to walk from one end of the room to the other, is it better for that AI agent to walk up to 
that table in the center, crouch down, crawl through the space underneath, emerge at the 
other end, and continue on? Or should that AI agent simply walk around the table?

Level of effort comes into play here. It requires far less energy to take the few extra 
steps and navigate around the table than it does to contort one’s body to fit through the 

Table	32.4	 Sidestepping Agent-Driven Parameters

Parameter Standing Sidestepping

radius 0.4 m 0.2 m
height 2.0 m 2.0 m
maxStepHeight 0.5 m 0.5 m
maxSlopeRad 0.5 rad 0.5 rad
minWaterDepth 0.0 m 0.0 m
maxWaterDepth 1.5 m 1.5 m
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space underneath the table. Unless the point beneath the table top is the destination, there 
most likely isn’t a logical reason for the AI agent to spend that extra energy to pass under 
it. This level of effort can be described through your pathfinding heuristic. By artificially 
scaling the pathfinding cost to move into a crouch-only triangle, an AI agent can usually 
be convinced that the pathway around the table is a far cheaper alternative than the direct 
path under the table.

32.6	 Conclusion

Voxel-based navmeshes, when generated using the recycling strategy here described, can 
greatly enhance an AI agent’s spatial awareness through its navigation. The examples that 
were covered (crouching, proning, swimming, and sidestepping) are just the tip of the ice-
berg of possibilities. Any tweak that is made to the agent-driven parameters to cover previ-
ously discarded areas can be merged into the navmesh, and with the addition of another 
aggregate in the triangle metadata, an AI agent can discern the information needed to 
contort their bodies to fit these newly covered spaces.

We have some parting food for thought: your triangle metadata can be used for much 
more than what has been stated thus far. Consider including other spatial information 
in your triangle metadata. For example, the triangles of your navmesh that lay under a 
forested area could include metadata flagging the area as forested. This information could 
then be read by an AI agent as it paths through the forest and used to modify its behavior, 
perhaps guiding it to take more advantage of the abundance of cover provided by trees as 
good hiding spots to seek or investigate. The navmesh will almost certainly be under an 
AI agent’s feet at all times, so use it to your advantage! Store whatever information you can 
in the navmesh to help your AI agents understand the space they’re in, and opportunity 
will surely come knocking.
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