
283

Rolling	Your	Own	Finite-Domain	
Constraint	Solver
Leif Foged and Ian Horswill

26

26.1	 Introduction

Constraint programming is a kind of declarative programming. Rather than specify-
ing how to solve the problem using some specific algorithm, the programmer provides a 
description of what a solution would look like. Then, a domain-independent search algo-
rithm finds a solution using the description.

For example, suppose you are building a rogue-like or a dungeon crawler and you want 
to decide what items and enemies to put in what rooms. You probably know something 
about what you want in the rooms. You might want the number of enemies to be in a 
certain range and the amount of supplies to be in some other range, so that the level is 
balanced. You may also want to limit the number of goodies in a particular room, restrict 
certain key items to only appear in certain kinds of rooms like choke points, or outlaw 
having enemies in adjacent rooms.

26.1	 Introduction
26.2	 Simple	Example
26.3	 Algorithm	1:	Brute	Force
26.4	 Algorithm	2:	Backward	

Checking
26.5	 Algorithm	3:	Forward	

Checking
26.6	 Detecting	

Inconsistencies

26.7	 Algorithm	4:	Forward	
Checking	with	
Backtracking	and	Undo

26.8	 Gory	Implementation	
Details

26.9	 Extensions	and	
Optimizations

26.10	Conclusion
References



284 Applied Search Techniques

You could probably write an ad hoc algorithm to do that and get it to work eventu-
ally, but it would take a fair amount of your time, time that could be better spent on 
other things. And it could have some very subtle bugs like making unsolvable levels once 
every 700 runs or going into an infinite recursion every 3000 runs. And you might get the 
algorithm debugged just in time for your design lead to tell you there’s some new con-
straint you need to enforce, so you need to do it all over again.

Another example would be character or vehicle creation, either for generating NPCs 
or for use in the UI for the player character. You know a character needs some armor, a 
weapon, some skills, and so on, subject to some compatibility restrictions (e.g., evil mages 
can’t wear the Divine Armor of Archangel Bruce) and some limit on build points. Again, 
you could roll your own algorithm, and it might be more efficient than an off-the-shelf 
algorithm for general constraint satisfaction, but it could be a time-consuming nightmare 
to debug. With the off-the-shelf algorithm, you already know it works. Provided it’s fast 
enough for your needs, you can just code it up and move on to other issues.

This chapter will show you how to implement your own simple constraint solver. We 
will talk about the most common type of constraint satisfaction problem, finite-domain 
problems, and a simple and reasonably fast technique for solving them.

26.2	 Simple	Example

To simplify the presentation, we will use a simpler example than the aforementioned ones. 
Imagine you are generating a level for a tile game. There are 16 blocks and 6 possible colors 
for each block, as shown in Figure 26.1.

Figure	26.1

A	possible	level	for	our	tile-based	game.



285Rolling Your Own Finite-Domain Constraint Solver

And you need to select colors for the initial configuration, subject to some set of restric-
tions. For example, we might want to ensure that all six colors appear somewhere, no color 
appears on more than four tiles, and certain adjacent tiles have to have the same color. 
So we have a set of choices (the color of each individual block) and a set of restrictions 
on those choices. In constraint programming parlance, choices are known as variables 
and restrictions are known as constraints. The set of possible values for a given variable is 
called its domain. In this case, our variables have six different possible values (colors), so 
this is a finite-domain constraint satisfaction problem.

Finite-domain constraint satisfaction problems (CSPs) are the most widely studied and 
best understood constraint problems. In practice, the domains need to be not just finite, but 
small, so they tend to involve things like enums, booleans, or small integers. Finite-domain 
methods aren’t practical for floats, even though there are technically only a finite number of 
32-bit IEEE floats. Finite-domain CSPs are often used for solving configuration problems, 
such as generating puzzles or game levels. More broadly, they are useful for many of the 
things random number generators are used for in games today, but offer the ability to filter 
out classes of obviously bad outputs.

Here are some examples of constraints we can efficiently implement with a finite-
domain constraint solver:

 • Two specific blocks must have the same color.
 • Three specific blocks must each have different colors.
 • Some specific blocks must be blue.
 • Some specific blocks cannot be green.
 • Any two diagonal blocks must have different colors.
 • At most four blocks of the same color.
 • At least three red blocks.

All of these constraints share a common theme: as we narrow the possible values (col-
ors) for one variable (block), we (often) also narrow the possible values of other variables 
involved in the same constraint. For instance, if two blocks are required to have the same 
color, then forcing one block to be red forces the other to be red as well. We will return to 
this idea shortly and discuss how exploiting the specific relationships between variables 
often enables us to dramatically speed up our algorithm.

We will structure the remainder of this article by starting with a simple brute-force 
algorithm and progressively making it faster and more sophisticated. Our primary focus 
is on making the code and explanations intuitive and clear, but we will occasionally shift 
gears to discuss practical performance optimizations.

26.3	 Algorithm	1:	Brute	Force

There are 16 blocks and 6 possible colors for each block. For each block, we will assign a 
variable (v1, v2, etc.) to hold its color, as shown in Listing 26.1.

In the case of our block game, there are 16 possible tiles with 6 choices each, or 
2,821,109,907,456 total possible levels. Even with relatively simple constraints, it may 
take quite a long time to discover an assignment of colors to blocks that satisfies 
them all.



286 Applied Search Techniques

Even worse, it’s easy to find situations that will cause this algorithm to exhibit worst-
case performance. Suppose we always try colors in the same order, say blue, green, yellow, 
etc. So the first color considered for any block is always blue. If we have the constraint that 
the first two blocks have different colors, that is, v1 != v2, then for the first time through 
the two earlier outer loops, we have v1 = v2 = blue, which is already a violation of the 
constraint. But the algorithm won’t notice because it doesn’t check for constraint viola-
tions until it gets all the way into the innermost loop.

Worse, when it does find the constraint violation, it won’t jump back up to the outer 
loops, but rather blindly run all the inner loops to completion. So it will mechanically 
grind through all 78 billion possible color assignments for blocks v3 through v16 before 
considering a different color for v2, which was the actual source of the problem.

26.4	 Algorithm	2:	Backward	Checking

There are some obvious optimizations to the brute-force approach. The simplest is back-
ward checking. Each time we make a choice about a block’s color, we verify that it’s at 
least consistent with the other block colors we’ve chosen so far. If it’s not, we can skip the 
evaluation of any additional nested loops and go directly to the next possible color for the 
current block. This gives us an algorithm like the one shown in Listing 26.2.

This approach is much better. It avoids the problem of exhaustively trying values of 
irrelevant variables when an already inconsistent set of choices has been made.

Listing 26.1. An	iteration	of	all	possible	assignments	of	colors	to	blocks.

foreach color for v1
 foreach color for v2
 foreach color for v3
 …
 foreach color for v16
 if ConstraintsNotViolated()
 return [v1, v2, v3, … v16]

Listing 26.2. An	iteration	of	all	possible	assignments	of	colors	with	backward	checking.

foreach color for v1
 if ConstraintsNotViolated()
 foreach color for v2
 if ConstraintsNotViolated()
 foreach color for v3
 if ConstraintsNotViolated()
 …
 foreach color v16
 if ConstraintsNotViolated()
 return [v1, v2, v3, … v16]



287Rolling Your Own Finite-Domain Constraint Solver

But unfortunately, it only checks that the choice we just made is consistent with the 
choices we’ve already made, not with future choices. Suppose instead of constraining the 
first two blocks to have different colors, we instead constrain the first and last blocks to 
be the same color and then add the constraint that no more than two blocks may be blue. 
Again, on our first pass through the two outer loops, the first two blocks get assigned blue. 
That doesn’t violate any constraints per se. But since the first and last blocks have to have 
the same color, the last block must also be blue and will violate the two-blue-blocks con-
straint when we get around to assigning a color to the last block.

So choosing the first two blocks to be blue really does violate the constraints; the algo-
rithm just won’t detect it until it tries to assign a color to the last block. So once again, we 
end up trying 78 billion combinations before we give up and fix the bad choice we made 
at the beginning.

26.5	 Algorithm	3:	Forward	Checking

To fix this new failure case, we need to detect when a choice we’re making now precludes 
any possible choice for some other variable we have to assign in the future. More gener-
ally, we’d like to be able to reason about how the choices we’ve made so far narrow our 
remaining choices.

We can do this by explicitly representing the set of remaining candidates for a given 
variable rather than just a single value. We start by assuming any variable can have 
any value. When we choose a value for a variable, we’re really just narrowing its set of pos-
sible values to a single value. If there is a constraint between that variable and some other 
variable, then we can usually narrow the set of possibilities for the other variable. This not 
only reduces the number of choices we need to explore but also lets us know when we’ve 
made an impossible set of choices.

Let’s walk through an example in detail. To keep things simple, let’s assume that we 
only have 4 blocks, so four variables, v1, v2, v3, and v4. Our constraints will be that

 • Variables v1, v2, and v3 must all have different values from one another
 • Variables v2 and v4 must have the same value

We can represent this with the graph in Figure 26.2. Box nodes represent our variables, 
along with their possible values (R, G, B, C, M, and Y), circle nodes represent the constraints 
between them, and the edges specify which variables participate in which constraints.

As before, we start by picking a value for one of the variables. So, again, we assign v1 the 
first color, blue (B), which means removing all other possible values, shown in Figure 26.3.

At this point, our previous algorithm would blindly pick a color for v2. In fact, it 
would make v2 be blue, which violates the inequality (!=) constraint. But we can do 
better. We can propagate the value of v1 through the graph to restrict the values of the 
other variables in advance. In this case, we know that v1 can only be blue, but v2 and 
v3 have to be different from v1, so we can rule out blue for each of them, as shown in 
Figure 26.4.

But wait—there’s more! Since v2 and v4 are joined by an equality constraint, v4 can’t 
have any value that v2 doesn’t have (or vice versa). So v4 can’t be blue either! This is shown 
in Figure 26.5.



288 Applied Search Techniques

RGBCMY

v4

RGBCMY

v2

RGBCMY

v3

!=

=

RGBCMY

v1

Figure	26.2

A	graphical	representation	of	the	problem’s	variables	and	constraints.

RGBCMY

v4

RGBCMY

v2

RGBCMY

v3

!=

=

RGBCMY

v1

Figure	26.3

Variable	v1	is	assigned	blue	(B),	with	all	other	color	possibilities	removed	from	v1.



289Rolling Your Own Finite-Domain Constraint Solver

RGBCMY

v4

RGBCMY

v2

RGBCMY

v3

!=

=

RGBCMY

v1

Figure	26.4

The	value	of	v1	is	propagated	through	the	graph,	causing	blue	(B)	to	be	removed	from	v2	
and	v3	due	to	the	inequality	constraint.

v4

v2

v3

!=

=

v1

RGBCMY

RGBCMY

RGBCMY

RGBCMY

Figure	26.5

Constraints	 are	 further	 propagated	 to	 remove	 blue	 (B)	 from	 v4,	 due	 to	 the	 equality	
	constraint	between	v2	and	v4.



290 Applied Search Techniques

Now that there are no changes left to propagate through our constraints, we can resume 
our earlier algorithm and select a value for v2. Since we already removed blue (B) from its 
set of possible values, we will try red (R), shown in Figure 26.6.

Once again, we can propagate this choice through our constraints. Since v4 = v2 and 
we just decided v2 was red, we effectively forced v4 to be red. Moreover, since v3 != v2, 
we can remove red from the possible values for v3, shown in Figure 26.7.

At this point, we just have one variable left, v3, and we’ve narrowed it to only four pos-
sibilities. We try one of them, say, green (G), shown in Figure 26.8.

Again, we propagate it through the constraint network. In this case, that means ruling 
out green as a possible color for v1 and v2. But since we’d already ruled out green for each 
of them, we don’t have to take any further action. So we know we have a valid solution.

26.6	 Detecting	Inconsistencies

That worked out very well for us, but here’s an example where it doesn’t work out as well. 
Suppose we’re choosing colors for our four blocks, but we can only use three colors, and 
we have two different inequality constraints, such that every pair of blocks has to have dif-
ferent colors, except for v1 and v4, shown in Figure 26.9.

This problem is perfectly solvable, but it requires choosing the same color for both v1 
and v4. Unfortunately, search algorithms don’t know that. So suppose it chooses blue for 
v1 and propagates (ruling out blue for v2 and v3), shown in Figure 26.10.

v4

RGBCMY

v2

RGBCMY

RGBCMY

RGBCMY

v3

!=

=

v1

Figure	26.6

The	variable	v2	is	assigned	red	(R).



291Rolling Your Own Finite-Domain Constraint Solver

v4

v2

v3

!=

=

v1

RGBCMY RGBCMY

RGBCMY

RGBCMY

Figure	26.7

The	variable	v4	is	now	red	(R)	due	to	the	equality	constraint	between	v2	and	v4.	Further,	
red (R)	can	be	removed	from	v3’s	possibilities	due	to	the	constraint	v3	!=	v2.

RGBCMY

v4

RGBCMY

v2

RGBCMY

v3

!=

=

v1

RGBCMY

Figure	26.8

The	variable	v3	is	chosen	as	green	(G).	From	previous	steps,	v1	is	blue	(B),	v2	is	red	(R),	and	
c4	is	red	(R).	This	is	a	valid	solution	since	it	meets	all	constraints.



292 Applied Search Techniques

RGB

v4

RGB

v2

RGB

v3

!=

!=

RGB

v1

Figure	26.9

Only	three	colors	allowed,	with	two	different	inequality	constraints.

RGB

v4

v2

RGB

RGB

v3

!=

!=

RGB

v1

Figure	26.10

The	variable	v1	is	assigned	blue	(B)	and	the	constraint	is	propagated	such	that	blue	(B)	is	
ruled	out	for	v2	and	v3.



293Rolling Your Own Finite-Domain Constraint Solver

So far so good, but now suppose that for whatever reason, the algorithm chooses red for 
v4, as shown in Figure 26.11.

Now we have a problem when we propagate. First, v4 tells v2 and v3 that they can’t 
be red. But that means they’ve both been narrowed down to one choice (green), shown in 
Figure 26.12.

This violates both the inequality constraints, but the algorithm hasn’t noticed this yet. 
Instead, it blindly continues to propagate the constraints. In this case, both v2 and v3 
were just narrowed, so their narrowed values need to get propagated through the network. 
Let’s say it propagates v3 first. Since it’s been narrowed to just green, it removes green 
from the possible values for the other nodes. That’s not a problem for v1 and v4, but for 
v2, green was all that was left, as seen in Figure 26.13.

We’ve narrowed the possible values for v2 to the empty set, meaning there’s no pos-
sible value for v2 that’s compatible with the values we’ve assigned the other variables. That 
means the last choice we made (assigning red to v4) necessarily leads to a constraint viola-
tion given the choices made before it (in this case, assigning blue to v1), and so we need to 
choose a different color for v4.

That’s all well and good, except that in the meantime we’ve gone and changed the 
values of v2 and v3. So when we decide v4 can’t be red, we need to set everything back 
to the way it was just before we chose red for v4. In other words, we need to implement 
undo.

RGB

v4

v2

v3

!=

!=

RGB

v1

RGB

RGB

Figure	26.11

The	algorithm	choose	red	(R)	for	v4.



294 Applied Search Techniques

RGB

v4

v2

RGB

RGB

v3

!=

!=

v1

RGB

Figure	26.12

The	variables	v2	and	v3	have	been	narrowed	down	to	green	(G),	since	they	can’t	be	red (R)	
due	to	v4.

RGB

v4

RGB

v2

RGB

v3

!=

!=

RGB

v1
All possible values

eliminated!

Figure	26.13

The	 variable	 v3	 was	 marked	 as	 green	 (G)	 and	 then	 propagated	 constraints,	 removing	
green	(G)	from	v2.	Now	there	are	no	possible	values	left	for	variable	v2.



295Rolling Your Own Finite-Domain Constraint Solver

26.7	 Algorithm	4:	Forward	Checking	with	Backtracking	and	Undo

Implementing undo for variables is pretty much like implementing undo for a word pro-
cessor. We keep our undo information in a stack. Every time we modify a variable, we add 
an entry to the undo stack with the variable and its old value. When we want to undo a set 
of changes, we pop entries off the stack, setting the specified variables to the specified old 
values, until the stack is back to the depth it had had before we started changing things.

Listing 26.3 shows the basic outline of the algorithm for using constraint propagation: 
instead of just checking the constraints, we propagate updates through the constraints. If 
propagation ever narrows a variable to the empty set, it fails and returns false. We then 
undo any variable modifications we’d done and move on to try another value.
PropagateConstraints is a subroutine that takes a variable as input and propa-

gates any changes through any constraints applied to that variable. Those constraints in 
turn further attempt to narrow other variables they are applied to and propagate those 
changes. So, as expected, this leads to a natural mutually recursive algorithm, shown in 
Listing 26.4.

This propagation algorithm is a variant of Mackworth’s arc consistency algorithm #3 
(AC-3) [Mackworth 77].

26.8	 Gory	Implementation	Details

So, how can we take this conceptual idea of narrowing possible choices to variables and 
propagating constraints and implement it a programming language like Java or C#? A 
complete solver implementation is included on the book’s website (http://www.gameaipro.
com), and it’s also hosted at https://github.com/leifaffles/constraintthingy. For the sake of 
brevity, we have tried to capture the main implementation strategies in the text, but the 
source code is much more liberal with comments and explanatory text.

An unfortunate side effect of our previous implementation is that creating new con-
straints involves modifying the solver’s main propagation subroutine (in Narrow). 
Additionally, we’d like to make it possible to use the solver without having to remember 
to modify the undo stack and propagate constraints as we iterate through possible choices 
for blocks.

Listing 26.3. An	iteration	of	possible	colors	with	forward	checking	and	backtracking.

foreach possible color for v1
 mark1 = undoStack.depth
 narrow v1 to just the selected color
 if PropagateConstraints(v1)
 foreach remaining color v2
 mark2 = undoStack.depth
 narrow v2 to just the selected color
 if PropagateConstraints(v2)
 foreach remaining color v3
 …
 RollbackTo(mark2)
 RollbackTo(mark1)



296 Applied Search Techniques

The most intuitive approach is to simply have a class for variables and a class for con-
straints. In the variable class, we will implement the main loop over the variables’ possible 
values as an iterator over the finite domain in a method named Colors. Additionally, 
we will use a special method SetValues to narrow a variable’s possible values, which 
will automatically save the old values on the undo stack and automatically propagate con-
straints. We demonstrate this in Listing 26.5.

Constraints will also be modeled as a class, as shown in Listing 26.6. They have an 
abstract method, Narrow, which each individual type of constraint will override to pro-
vide its own constraint-specific implementation of narrowing.

The simplest example of a constraint is equality. In practice, equality constraints are 
usually implemented by aliasing the two variables together, as is typically done in the 
unification algorithm. Then a change to one variable automatically changes the other. 
However, we write it here as a propagated constraint because it makes for a clear example.

As expected, implementing an equality constraint involves providing an implementa-
tion of Narrow. If there is a value that is in one variable’s set of possible values and not 
in the other, it can never satisfy the constraint. So, any values that aren’t in the intersec-
tion of the two variable’s possible values shouldn’t be considered. We implement this in 
Narrow in Listing 26.7 by computing the set intersection and calling SetValues on each 
value with this set (which, in turn, propagates these new values through more constraints).

A somewhat more complicated example is an inequality constraint. Like many con-
straints, inequality isn’t able to narrow anything until one of the variables is narrowed 
to a unique value. But once one of the variables is constrained to a single value, we can 
definitively rule that value out for the other variable, shown in Listing 26.8.

One last example of a common constraint is a cardinality constraint. These constraints 
state that within some set of variables, at most (at least) a certain number of variables can 
(must) have a particular value. For example, in one of the preceding examples, we said that 
at most two blocks could be blue. We can implement such a constraint in a manner simi-
lar to the inequality constraint: we scan through the variables affected by the constraint, 

Listing 26.4. The	mutually	recursive	constraint	propagation	algorithm.

bool PropagateConstraints(variable v)
 foreach constraint c applied to v
 if !Narrow(c)
 return false
 return true

bool Narrow(constraint c)
 if c is an equality constraint:
 …
 else if c is an inequality constraint:
 …
 …

 foreach changed variable v:
 if !PropagateConstraints(v)
 return false
 return true



297Rolling Your Own Finite-Domain Constraint Solver

Listing 26.5. Declaration	of	the	variable	class.

class Variable {
 public FiniteDomain Values {get; private set;}

 public bool SetValues(FiniteDomain values) {
 if (values.Empty) {
 return false;
 }else if (Values != values) {
 UndoStack.SaveValues(this, _values);
 Values = values;
 if (!PropagateConstraints(this))
 return false;
 }
 return true;
 }

 IEnumerable<Color> Colors() {
 int mark = UndoStack.Depth;
 foreach (var color in Values) {
 if (SetValues(color)) {
 yield color;
 }
 UndoStack.RollbackTo(mark);
 }
 }
 …
}

Listing 26.6. Declaration	of	the	constraint	class.

abstract class Constraint {
 public abstract bool Narrow();
 …
}

Listing 26.7. Implementation	of	an	equality	constraint.

class EqualityConstraint {
 Variable a;
 Variable b;

 public override bool Narrow() {
 var intersection = Intersect(a.Values, b.Values);
 return a.SetValues(intersection) &&
 b.SetValues(intersection);
 }
}



298 Applied Search Techniques

counting the number that has been constrained to just the specified value. If it’s less than 
the maximum allowed, we don’t need to do anything. If it’s more than the maximum, we 
fail. But if it’s exactly the maximum, then we remove the value from the candidates for any 
remaining variables, as shown in Listing 26.9.

An “at least” constraint is implemented similarly, but rather than monitoring how 
many variables can only have the specified value, it monitors how many haven’t yet ruled 
it out. If that number goes below a threshold, then we fail, and if it reaches exactly the 
threshold, we force all remaining variables that can have the value to be exactly the value, 
shown in Listing 26.10.

Listing 26.8. Implementation	of	an	inequality	constraint.

class InequalityConstraint {
 Variable a;
 Variable b;

 public override bool Narrow() {
 if (a.IsUnique && !b.SetValues(SetSubtract(b.Values,
 a.Values)))
 return false;
 if (b.IsUnique)
 return (a.SetValues(SetSubtract(a.Values,
 b.Values)));
 }
}

Listing 26.9. Implementation	of	an	“at	most”	constraint.

class AtMostConstraint {
 Variable[] variables;
 FiniteDomain constrainedValue;
 int limit;

 public override bool Narrow() {
 int valueCount;
 foreach (var v in variables)
 if (v.Value == constrainedValue)
 valueCount++;
 if (valueCount > limit)
 return false;
 else if (valueCount = limit)
 foreach (var v in variables)
 if (v.Value != constrainedValue
 && v.SetValue(SetSubtract(v.Values,
 constrainedValue))
 return false;
 return true;
 }
}



299Rolling Your Own Finite-Domain Constraint Solver

26.9	 Extensions	and	Optimizations

Surprisingly, this covers the basics of every part of the solver. You could load this code up 
and it would work. This section focuses on simple optimizations to the algorithm.

26.9.1	 Finite-Domain	Representation
We were pretty vague about how finite domains actually get implemented in the solver. 
These can be implemented any way you like subject to the restriction that operations 
on them have value semantics. While using a standard hash set data type such as C#’s 
HashSet<T> may seem appealing, it is ultimately impractical because such structures 
are expensive to copy (which must be done every time its value is modified since the undo 
stack must be able to restore a variable to a previous value at any point in time).

We strongly recommend implementing finite domains as fixed-size bit sets. For 
instance, for many problems, these can be implemented entirely with 32- or 64-bit inte-
gers (e.g., using a bit for each color.) This makes key operations like intersection extremely 
efficient to implement with bit-wise operations, as shown in Listing 26.11.

We have many of these operations implemented in the source code of our solver (in the 
FiniteDomain type). A great reference for bit hacks is the Hacker’s Delight [Warren 12].

Listing 26.10. Implementation	of	an	“at	most”	constraint.

class AtLeastConstraint {
 Variable[] variables;
 FiniteDomain constrainedValue;
 int limit;

 public override bool Narrow() {
 int valueCount;
 foreach (var v in variables)
 if (v.Value.Includes(constrainedValue))
 valueCount++;
 if (valueCount < limit)
 return false;
 else if (valueCount = limit)
 foreach (var v in variables)
 if (v.Value.Includes(constrainedValue)
 && v.SetValue(constrainedValue)
 return false;
 return true;
 }
}

Listing 26.11. Implementation	of	set	operations	as	bit-wise	operations.

int Intersect(int a, int b) {return a & b;}
int SetSubtract(int a, int b) {return a & ~b;}
bool IsUnique(int a) {return a != 0 && (a & (a−1)) == 0;}



300 Applied Search Techniques

Listing 26.12. Implementation	of	queued	narrowing	operations	(“constraint	arcs”).

class ConstraintArc {
 public Constraint Constraint;
 public Variable Variable;
 public bool Queued;
}

Queue<ConstraintArc> WorkList;

bool ProcessWorkList() {
 while(WorkList.Count > 0) {
 ConstraintArc arc = WorkList.Dequeue();
 arc.Queued = false;
 if(!arc.Constraint.Narrow(arc.Variable))
 return false;
 }
 return true;
}

class Variable {
 public bool SetValues(FiniteDomain values) {
 if (values.Empty) {
 return false;
 } else if (Values != values) {
 UndoStack.SaveValues(this, _values);
 Values = values;
 QueueConstraints();
 }
 return true;
 }

 IEnumerable<Color> Colors() {
 int mark = UndoStack.Depth;
 foreach (var color in Value) {
 if (SetValues(color) && ProcessWorkList()) {
 yield color;
 }
 UndoStack.RollbackTo(mark);
 }
 }
}

class EqualityConstraint {
 Variable a;
 Variable b;
 public EqualityConstraint(Variable a, Variable b) {
 this.a = a;
 this.b = b;
 }

 public override bool Narrow(Variable v) {
 FiniteDomain intersection =
 Intersect(a.Values, b.Values);



301Rolling Your Own Finite-Domain Constraint Solver

26.9.2	 Constraint	Arcs	and	the	Work	Queue
Another practical optimization is avoiding unnecessarily narrowing the same constraints 
and variables twice.

We create a global queue that we will use to queue up narrowing operations for con-
straints and variables. These queued operations are called constraint arcs because they 
represent the outgoing edges from constraints to the variables they touch. Representing 
these explicitly enables us to keep a bit on each constraint arc that we can test to see if the 
arc is already queued and avoid requeueing it. Listing 26.12 shows what this all looks like 
in code.

Further optimizations can be made by passing more information along in the queue. 
One possibility is to pass Narrow both the variable that changed and also its previous 
value. This can allow constraints like AtMost to determine when the change made to the 
variable is irrelevant to the constraint, since AtMost only cares when the specific value 
it’s tracking is removed from the variable.

26.9.3	 Randomized	Solutions
Often games would like to be able to run the solver repeatedly and get different answers. 
So far, our algorithm has been completely deterministic. With a very small tweak and 
without compromising the ability of the solver to enumerate all solutions, we update our 
algorithm to iterate over the possible values of a variable in a random order:

foreach (var color in shuffle(Values)) {
 …
}

26.9.4	 Variable	Ordering
For more constrained problems, it’s not uncommon to narrow a variable to the empty set 
(resulting in a failure) deep into the solver algorithm with a large undo stack. Unfortunately, 
if the responsible choice point was one of the first choices the algorithm made, it will take 
a long time before it gets around to reconsidering those initial choices because the initial 
assumption is that it was the last choice that was responsible.

This means that the order that we visit variables in can greatly affect performance. One 
option is to visit the most constrained variables before the least constrained variables. The 
intuition here is that more constrained variables are more likely to be narrowed to the 
empty set of values, and so we should figure that out up front instead of in a deep inner 
loop of the solver.

 if (v == a) {
 return a.SetValues(intersection);
 } else {
 return b.SetValues(intersection);
 }
 }
}



302 Applied Search Techniques

26.10	 Conclusion

Constraint solvers are appealing for certain kinds of common tasks in procedural content 
generation (PCG) and game programming more generally. They let the programmer solve 
the problem with a minimum of fuss, and changes can be made to the constraints without 
having to modify and redebug some piece of custom code. That said, it must be stressed 
that constraint solvers ultimately rely on search algorithms and so can take exponential 
time in the worst case.

Simple constraint solvers such as the one described here are appropriate for use in game 
on “easy” problems, where the solver is being used to introduce variety by generating dif-
ferent random solutions each time the game is played. Easy problems have a lot of solu-
tions, so the solver doesn’t have to work very hard to find one. This usually means having 
relatively few constraints per variable. As the number of constraints per variable increases, 
the set of possible solutions usually decreases and the solver has to do a lot more work.

For “difficult” constraint satisfaction problems, that is, problems with large numbers of 
variables (large search spaces) but very few solutions, a more sophisticated solver, such as 
an answer-set solver [Smith 11], is more appropriate. However, these solvers, while capable 
of solving much more sophisticated problems, are generally designed for offline use. So 
they would be more appropriate for use in a design tool or in the build pipeline.
Happy hacking!

References

[Mackworth 77] Mackworth, A.K. 1977. Consistency in networks of relations. Artificial 
Intelligence, 8:99–118.

[Smith 11] Smith, A.M. 2011. Answer-set programming for procedural content generation: 
A design-space approach. IEEE Transactions of Computational Intelligence and AI in 
Computer Games, 1:3.

[Warren 12] Warren, H. 2012. Hacker’s Delight. Addison-Wesley Professional, Boston, MA.


