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25.1	 Introduction

This chapter is designed to introduce a number of recent algorithms, developed academi-
cally for game AI, primarily in board and card games. However, these algorithms also 
have significant potential in other video game genres, which we also explore here. This 
chapter is an expansion of a talk from the GDC 2014 AI Summit. We will introduce four 
different, but related, algorithms that can be used to create more dynamic and adapt-
able AI for games. With the description of each algorithm, we will provide examples of 
contexts where it would be most useful.

25.2	 Background

To begin, we introduce a number of classifications between algorithms and other similar 
concepts that will be used repeatedly in this chapter.

A first important distinction is whether an approach plays strictly in an online 
manner or it also simulates actions offline (i.e., not player facing) before finally taking 
actions online. An online AI is one that gains experience and knowledge about the world 
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strictly from making actions that are player facing. Most generally, an offline AI either 
ships with a static strategy or performs simulations at runtime that the player cannot see 
to determine the best action. In particular, we want to distinguish algorithms that require 
the ability to take and evaluate actions in an offline world before actually performing them 
in the online world.

The algorithms described in this chapter are bandit algorithms because the decisions 
they make are modeled by n-arm bandits (slot machines). The general n-arm bandit prob-
lem is to find the slot machine (a one-armed bandit) that has the best payoff. This is done 
by trying different bandits and looking at the resulting payoff. So, the assumption is that 
an action can be taken, and it will then be immediately associated by some reward or 
payoff. The primary difficulty in this problem is to balance exploiting the current-best 
slot machine with exploring to make sure that another slot machine doesn’t have a better 
payoff. This problem describes an online slot machine because we pay each time we play 
a machine. In an offline problem, we would be able to simulate the slot machines offline 
without cost to find the best one before taking an action in the real world.

These algorithms also can be described as regret-minimizing algorithms. Loosely speak-
ing, regret-minimizing algorithms guarantee that you will not regret using the algorithms 
instead of selecting and always playing one of the n-arm bandit strategies. Note that the 
quality of this guarantee depends on the strategies that correspond to each of the arms of 
the bandit. If these strategies are all poor, there is no guarantee that these algorithms will 
do any better.

Finally, these algorithms all use the notion of utility for evaluating states of the game. 
We use this instead of something like the chance of winning because the goal of an AI in 
many games is not to win, only to create the perception that it is trying to win. In doing so, 
the goal is usually to create a compelling experience for the human player. If we give high 
utility to the actions that help create a compelling experience, then in maximizing utility, 
the AI will be achieving the desired behavior.

Because it is simple and easy to illustrate, we demonstrate several algorithms using 
rock–paper–scissors (RPS) first before progressing to real-world examples that are more 
suited to each algorithm. To review, RPS is a two-player simultaneous game where each 
player chooses either rock, paper, or scissors. Paper beats rock, scissors beats paper, and 
rock beats scissors. RPS is usually played repeatedly. For our purposes, we assume that we 
get a score of 1 if we win, 0 if we draw, and −1 if we lose.

Given this background, we can now introduce our first algorithm.

25.3	 Algorithm	1:	Online	UCB1

The first algorithm we describe, UCB1 [Auer 02], is a simple online bandit algorithm; 
it is deterministic and easy to implement. A naïve implementation of UCB1 is not per-
fectly suited for RPS, but after introducing this simple approach, we show to modify our 
strategies to improve the approach. Slight modifications to UCB1 have recently been 
proposed to give better regret bounds [Auer 10], but in practice the algorithm is quite 
robust, even when we break theoretical assumptions about how the algorithm should 
be used.

We demonstrate UCB1 by using it to play RPS. In our first approach, we assign each 
action (rock, paper, and scissors) to one of the arms of our slot machine, yielding a 
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three-armed bandit. For each arm, UCB1 maintains the average payoff achieved when 
playing that arm, as well as the number of times each arm was played. Each time we are 
asked to make an action, we compute the value of each arm, v i( ), according to the formula 
in the following equation, where x i( ) is the average utility when playing arm i, c(i) is the 
count of how many times we’ve played arm i, and k is a constant for tuning exploration 
and exploitation:

 
v i x i

k t

c i
( ) ( )

( )

( )
= + ln  (25.1)

When asked to make an action, UCB1 plays the arm that has the maximum value of v i( ). 
The value, v i( ), is composed of two parts. The first part is an exploitation component, sug-
gesting that we play the arm with the maximum average payoff. The second component 
is an exploration component. The more an arm is played, increasing c(i), the smaller this 
value will be. The more other arms are played, the large the value will be. When payoffs are 
between 0 and 1, it is suggested that k should have the value 2. In practice, k can be tuned 
to achieve the desired balance between exploration and exploitation. When first starting, 
all arms are played once to get initial experience, although this could be preinitialized 
before ship. These actions are player facing, so it is important to avoid taking bad actions 
too many times.

We illustrate the resulting behavior in Table 25.1 when playing against a player that 
always plays rock for k = 2. For each action, we show the number of times the action was 
played (c(i)), the average utility of that action ( ( )),x i  and the value ( ( ))v i  that UCB1 would 
compute for that action. At time steps 0, 1, and 2, UCB1 has unexplored actions, so it must 
first explore these actions. At time step 3, the value of paper is 1 2 3 1 2 48+ =* ln . ./  Paper 
is played because this is the best value of any action and continues to be until time step 7. 
During this time the value of paper decreases because c i( ) increases, while the value of 
scissors and rock increases because t increases. At time step 7, UCB1 finally stops exploit-
ing paper and explores rock to see if playing rock can achieve a better outcome.

If we use UCB1 as an AI to play RPS, it will play in a relatively predictable manner, 
because there is no randomization. Thus, there are many sequences of actions that will 

Table	25.1	 Using UCB1 to Select the Next Action and Simulate the Resulting 
Situation in Order to Evaluate Which Next Action Is Best

Rock Paper Scissors

Time c(i) x(i) v i( ) c(i) x i( ) v i( ) c(i) x i( ) v i( )

0 0 0 ∞ 0 0 ∞ 0 0 ∞
1 1 0 0.00 0 0 ∞ 0 0 ∞
2 1 0 1.18 1 1 2.18 0 0 ∞
3 1 0 1.48 1 1 2.48 1 −1 0.48
4 1 0 1.67 2 1 2.18 1 −1 0.67
5 1 0 1.79 3 1 2.04 1 −1 0.79
6 1 0 1.89 4 1 1.95 1 −1 0.89
7 1 0 1.97 5 1 1.88 1 −1 0.97
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be able to exploit the AI behavior. In the preceding example, playing the sequence P, S, 
R repeatedly will always win. This, of course, may be a desirable behavior if we want to 
reward the player for figuring this out. Because UCB1 will keep exploring its actions, 
it will never completely rule out playing bad actions. Thus, it may not be wise to assign 
a poor action to an arm of the bandit, as it will be played regularly, albeit with decay-
ing frequency. Finally, note that if the opponent starts playing predictably (such as 
playing the sequence R, P, S repeatedly), this will never be noticed by the AI and never 
exploited.

To combat these shortcomings, we propose a slightly more interesting way of assign-
ing actions to the arms of the bandit. Instead of letting the arms correspond to low-level 
actions in the world, we can have them correspond to strategies that are played, where 
each strategy is well designed and safe to play at any time. For instance, the nonlosing 
strategy (Nash equilibrium) in RPS is to play randomly. So, this should be the first possible 
strategy. If we wish to discourage repeated sequences of play, we can have other arms in 
the bandit correspond to imitation strategies, such as playing the same action the oppo-
nent played in the last round or playing the action that would have lost to the opponent 
in the last round. These strategies will be able to exploit repetitive play by the opponent. 
Taken together, we know that UCB1 will always default to a reasonable strategy (random) 
if its other strategies are losing. But if an opponent is playing in a predictable manner, it 
will be able to exploit that behavior as well.

Sample JavaScript code is included on this book’s website (http://www.gameaipro.
com), and a simplified portion of the code showing the main logic for implementing UCB1 
is shown in Listing 25.1. This code is generic, in that it relies on a separate implementation 
of functions like GetActionForStrategy. Thus, it is simple to change out strategies 
and see how the play changes.

25.3.1	 Applying	to	Games
While the previous example makes sense for a simple game like RPS, what about more 
complicated games? At the highest level, for UCB1 to be applicable, the decisions being 
made must be able to be formulated as bandit problems, with a set of available actions or 
strategies that result in known utility after they are sampled in a game. Given this restric-
tion, here are several examples of how UCB1 can be used in other scenarios.

First, consider a fighting game like Prince of Persia, where enemies have different styles 
of fighting. There may be a general well-designed AI that works well for many players. 
But a small percentage of players are able to quickly defeat this general strategy or might 
learn to do so through the game. Perhaps a second AI is a good counter for these players, 
but isn’t as well tuned for the other players. Instead of shipping a static AI that will fail for 
some percentage of the players, UCB1 could, at each encounter, be used to choose which 
AI the human should face next. The utility of the AI could be related to how long it takes 
the human to dispatch the AI. If the human is always defeating a certain AI quickly, UCB1 
will start sending the alternate AI more often and in this way adapt to the player. If it is 
taking the player too long to defeat the alternate AI, then the first AI would be sent more 
often instead.

UCB1 works well here because neither AI strategy is fundamentally poor, so it can’t 
make really bad decisions. Additionally, there are many small battles in this type of game, 
so UCB1 has many opportunities to learn and adapt. In some sense, UCB1 will work 
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Listing 25.1. An	implementation	of	UCB1	in	javascript.

function GetNextAction()
{
 if (init == false)
 {
 for (var x = 0; x < numActions; x++)
 {
 count[x] = 0;
 score[x] = 0;
 }
 init = true;
 }

 for (var x = 0; x < numActions; x++)
 {
 if (count[x] == 0)
 {
 ourLastStrategy = x;
 myLastAction = GetActionForStrategy(x);
 return myLastAction;
 }
 }

 var best = 0;
 var bestScore = score[best]/count[best];
 bestScore += sqrt(2*log(totalActions)/count[best]);
 for (var x = 1; x < numActions; x++)
 {
 var xScore = score[x]/count[x];
 xScore += sqrt(2*log(totalActions)/count[x]);
 if (xScore > bestScore)
 {
 best = x;
 bestScore = xScore;
 }
 }
 ourLastStrategy = best;
 myLastAction = GetActionForStrategy(best);
 return myLastAction;
}

function TellOpponentAction(opponentAct)
{
 totalActions++;
 var utility = GetUtility(myLastAction, opponentAct);
 score[myLastAction] += utility;
 count[myLastAction]++;
}
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well for any game with these two properties. In a shooter, UCB1 might be used to decide 
whether to deploy a team with bold or cautious AI players. The bold AI would quickly 
be killed by a player holed up with a sniper rifle, while the cautious AI might sneak up 
on such a player. This is a natural situation where using UCB1 to balance the types of AI 
deployed could improve the player experience.

Oftentimes, there is hesitation to apply adaptive algorithms, as players might coerce 
them to adapt one way in order to exploit them in a key moment with a counterstrategy. 
This is less likely to be successful when all arms of the bandit are reasonable strategies. But 
the length of time that the AI plays in a certain way can be limited by only learning over 
a limited window of play or by weighting recent encounters more than earlier ones. Then, 
within a few encounters, the AI will be able to adapt back toward another strategy.

This approach would not work well for something like weapon selection in a role-
playing game (RPG), because the AI would spend a lot of time trying to attack with poor 
weapons. It would also not work well when choosing individual attacks in a fighting 
game, because there are situations where some attacks make no sense or when multiple 
attacks must be balanced randomly to prevent complete predictability. (We note that 
sometimes this is desired, so that players can experience the joy of learning to defeat a 
particular opponent. But it is not always desired of all opponents.) A final shortcoming 
of this approach is that it learns more slowly because it doesn’t consider retrospectively 
what might have happened if it did something different. In some games, like RPS, we can 
evaluate what would have happened if we used a different strategy, and we can use that to 
improve our performance.

25.4	 Algorithm	2:	Regret	Matching

Regret matching [Hart 00] is another online algorithm that is just slightly more compli-
cated than UCB1, but it can produce randomized strategies more suited to games where 
players act simultaneously or where the AI needs to act in a more unpredictable manner. 
Regret matching works by asking what would have happened if it had played a differ-
ent action at each time step. Then, the algorithm directly accumulates any regret that 
it has for not playing different actions that were more successful. By accumulating this 
regret over time, the algorithm will converge to strong behavior or, more technically, a 
correlated equilibrium. We won’t cover the theoretical justification for the algorithm here; 
besides the original paper, the interested reader is referred to the Algorithmic Game Theory 
book [Blum 07].

Regret matching works as follows. For each possible action, the algorithm keeps track 
of the regret for that action, that is, the gain in utility that could have been achieved by 
playing that action instead of a different one. Initially, all actions are initialized to have 
no regret. When no actions have positive regret, we play randomly. Otherwise, we select 
an action with a biased random in proportion to the positive regret of each action. Each 
time we take an action, we retrospectively ask what the utility of every alternate action 
would have been if we had taken it during the last time step. Then, we add to the cumula-
tive regret of each action the difference between the payoff we would have received had we 
taken the other action and our actual payoff from the action we did take. Thus, if another 
action would have produced a better payoff, its regret will increase, and we will play it 
more often.
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We illustrate regret matching in RPS, with our bandit arms corresponding to playing 
each of our actions: rock, paper, and scissors. Initially, we have no accumulated regret 
and play randomly. Suppose that we play rock and lose to the opponent playing paper. 
Assuming we get 1 for winning, −1 for losing, and 0 otherwise, our regret for not playing 
scissors (and winning) is increased by (1 − (−1)) = 2. Playing paper would have tied, so 
we accumulate regret (0 − (− 1)) = 1. We have not accumulated any positive or negative 
regret for playing rock. Thus, in the next round, we will play scissors with probability 2/3 
and paper with probability 1/3. Suppose that in the next round we play scissors and draw 
against an opponent playing scissors. Then, our regret for not playing rock will increase 
by 1, since playing rock would have increased our utility by 1. Our regret for playing paper 
is decreased by 1, since we would have lost if we had played paper. Thus, our regrets are 
now 1 for rock, 2 for scissors, and 0 for paper. In the next round, we will play rock with 
probability 1/3 and scissors 2/3. Note that the algorithm can be improved slightly by com-
puting regret using the expected utility of the action that was taken (according to the 
probability distribution that determines play) instead of using just the utility of the action 
that was taken. As with UCB1, regret matching can use strategies instead of actions as the 
bandit arms.

The code included on the book’s website implements regret matching for both actions 
and strategies. You can play against both to observe play, and you can also try to exploit 
the algorithm to get a feel for its behavior. Simplified JavaScript code for regret match-
ing can be found in Listing 25.2. The key property that the algorithm needs to run is 
the ability to introspectively ask what would have happened if other actions were played. 
Additionally, we need to know the utility that would have resulted for those actions. If this 
cannot be computed, then regret matching is not an applicable algorithm.

In practice, there are several changes that might be made to ensure better play. First, 
instead of initializing all regrets to 0, the initial values for the regret can be initialized to 
produce reasonable play and influence the rate of adaptation. If, in RPS, all initial regrets 
are set to 10, the algorithm will start adapting play in only a few rounds. But if all initial 
regrets are set to 1000, it will take significantly longer for the program to adapt. Related to 
this, it may be worthwhile to limit how much negative regret can be accumulated, as this 
will limit how long it takes to unlearn anything that is learned.

Finally, regret matching can be used both as an offline or online algorithm when the 
game has two players and the payoffs for each player sum to zero. Regret matching is 
the core algorithm used recursively for solving large Poker games [Johanson 07]. In this 
context, the game is solved offline and the static strategy is used online, although slight 
modifications are needed for this to work correctly.

25.4.1	 Applying	to	Games
Once again it is natural to ask the question of how this approach can apply to more com-
plicated video games, instead of a simple game like RPS. We provide two examples where 
the algorithm would work well and one example where it cannot be applied.

Our first example is due to David Sirlin in situations he calls “Yomi” [Sirlin 08]. 
Consider a two-player fighting game where one player has just been knocked down. This 
player can either get up normally or get up with a rising attack. The other player can either 
attack the player as they get up or block the anticipated rising attack. This situation looks 
a lot like RPS, in that both players must make simultaneous decisions that will then result 
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Listing 25.2. An	implementation	of	regret	matching	in	javascript.

function GetNextAction()
{
 if (init == false)
 {
 for (var x = 0; x < numActions; x++)
 regret[x] = 0;
 init = true;
 }
 for (var x = 0; x < numActions; x++)
 {
 lastAction[x] = GetActionForStrategy(x);
 }

 var sum = 0;
 for (var x = 0; x < numActions; x++)
 sum += (regret[x]>0)?regret[x]:0;
 if (sum <= 0)
 {
 ourLastAction = floor(random()*numActions);
 return ourLastAction;
 }

 for (var x = 0; x < numActions; x++)
 {
 //add up the positive regret
 if (regret[x] > 0)
 chance[x] = regret[x];
 else
 chance[x] = 0;

 //build the cumulative distribution
 if (x > 0)
 chance[x] += chance[x-1];
 }

 var p = random();
 for (var x = 0; x < numActions; x++)
 {
 if (p < chance[x])
 {
 ourLastStrategy = x;
 ourLastAction = lastAction[x];
 return ourLastAction;
 }
 }
 return numActions-1;
}
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in immediate payoff (damage). Here, regret matching would be applied independently in 
each relevant context, such as after a knockdown, to determine how to play at that point. 
During play, the AI will appropriately balance its behavior for each of these situations to 
maximize its own payoff.

In these situations, the AI has the potential to balance attacks far better than a human 
player and, as a result, might be almost unbeatable. (Conversely, identifying the current 
situation properly might be too error prone to result in good play.) AI players using regret 
matching for their strategies can be given more personality or a preferred playing style by 
biasing their utility. If we want a player that likes to punch, we simply give more utility for 
performing punches, even if they are unsuccessful. This fools the AI into performing more 
punch actions, because it will maximize utility by doing so.

In this context, regret matching can also be used offline prior to shipping the game to 
build a single strong player via self-play. This player would not adapt at runtime but would 
still randomize its behavior at runtime, resulting in play that cannot be exploited.

For our second example, we go from very low-level character control to high-level stra-
tegic decision making. Suppose that we are playing multiple rounds of a game like Starcraft 
against an opponent and we must decide what sort of build tree to use at the beginning 
of the game—optimizing for rushing or some other play styles. We can use regret match-
ing for this purpose if we are able to introspectively evaluate whether we chose the best 
strategy. This is done by looking to see, after the match was complete, whether another 
strategy would have been better. For instance, we might evaluate the building selection 
and resource distribution of our opponent after 3 min of play (before either team has a 
chance to see the other team and adapt their resulting play). If we see that we might have 
immediately defeated the opponent had we chosen to follow a rush strategy, we then accu-
mulate regret for not rushing.

To give an example where regret matching will not work well, consider again a fighting 
game like Prince of Persia, where we might be choosing what sort of AI to send out against 
the human player. Once the AI acts in a way that influences the human behavior, we can 
no longer ask what would have happened if we had sent different AI types. Thus, we will 
not be able to use an algorithm like regret matching in this context.

25.5	 Algorithm	3:	Offline	UCB1

The algorithms introduced thus far primarily act in an online manner, without consider-
ing the implications of their actions beyond the feedback collected after every action is 
taken. This means that they are best used when the strategies or actions taken will always 

function TellOpponentAction(opponentAct)
{
 lastOpponentAction = opponentAct;
 for (var x = 0; x < numActions; x++)
 {
 regret[x] += GetUtility(lastAction[x], opponentAct);
 regret[x] -= GetUtility(ourLastAction, opponentAct);
 }
}
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be reasonable, and the main question is how to balance these actions in order to provide 
a compelling gameplay experience. But this isn’t always possible or desirable. In many 
situations, we need an algorithm that will reason to rule out bad actions and never take 
them. To do this, we perform offline simulations of actions in the world before deciding 
on a final action to take.

To discuss possible options concretely, move away from RPS and use the same exam-
ple found in the introductory chapter to this section of the book—a simple role-playing 
game (RPG) battle. In that chapter, we discussed how a one-step search combined with 
a strong evaluation function would produce reasonable play. (The evaluation function 
should return the utility for the AI in that state.) The drawback of that approach is that 
we must write the evaluation function and tune it for high-quality play. The first new idea 
here is that it is much easier to write an evaluation function for the end of the game than 
for the middle of the game. So, if we play out a game to the end using some strategy (even 
random), we can often get a better evaluation than we would by trying to write an evalua-
tion function after a 1-ply search. We demonstrate this using an RPG battle, where the AI 
is controlling a nonplayer character (NPC) spellcaster that has a fighter companion. The 
spellcaster will primarily use ranged attacks from a magical staff but can occasionally cast 
either a healing spell or an area attack such as a fireball.

Previously, we discussed how bandit algorithms can use both low-level actions and 
high-level strategies as the arms for the bandit. Here, we will combine these ideas together. 
We will use the primitive actions as the arms for our bandit using UCB1. But instead 
of actually taking actions online in the world, we simulate the actions internally. Then, 
instead of just applying a utility function to evaluate the best action, we continue by using 
a high-level strategy to simulate actions through the end of the current battle.

This is illustrated in Figure 25.1. The NPC must act using one of these three actions: 
healing, attacking with a staff, or casting a fireball. UCB1 selects an action to play and 
then simulates the rest of the battle using some default strategy. When the battle is over, 
we must compute the utility of the resulting state, for instance, returning the total health 
in our party after the battle finishes (perhaps adding some bonus for every party mem-
ber that is still alive). This evaluation resembles what would be used in a 1-ply search, 
but the evaluation is much easier than before because we don’t have to evaluate every 
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situation possible in the battle; we are restricted to only evaluating states where one team 
is defeated. Instead of trying to predict the outcome of the battle, we just need to evaluate 
if our party survived and compute the utility how many resources we have left. Suppose 
that casting a fireball would use all available manna and allow no other spells to be cast 
through the remainder of the battle. In the short term, this might seem good, but in the 
long term, the inability to cast healing may cause us to lose the battle. Being able to simu-
late the battle to its end will reveal this expected outcome.

Now, we might do this once per action and then select the best action, but there is 
often significant uncertainty in a battle, including randomness or other choices like the 
selection of what enemies to target. Thus, instead of just simulating each move once, it is 
valuable to simulate moves multiple times to get better estimates of the final outcome. If 
we sample every top-level action uniformly, we waste resources simulating bad strategies 
and lose out on gaining more information about strategies that have similar payoffs. This 
is where UCB1 shines; it will balance playing the best action with exploring actions that 
look worse in order to ensure that we don’t miss out on another action that works well in 
practice. It should be noted that if we are going to simulate to the end of the battle, our 
default strategy also must provide actions not only for the AI player but also for all other 
players in the battle.

We show high-level pseudocode for using UCB1 in this manner in Listing 25.3. This code 
just provides the high-level control of UCB1 using the definition of GetNextAction() 
defined previously in Listing 25.1. In the previous example, this function was called each 
time an action was needed for play. Now, this is called as many times as possible while 
time remains.

After generalizing this approach to the UCT algorithm in the next section, we will dis-
cuss further the situations where this algorithm could be used in practice.

Listing 25.3. Pseudocode	 for	using	UCB1	 to	control	 simulations	 for	 finding	 the	next	
best	move.	This	code	uses	the	GetNextAction()	method	from	Listing	25.1	for	playing	
actions.

function SimulateUCB()
{
 while (time remains)
 {
 act = GetNextAction();
 ApplyAction(act);
 utility = PlayDefaultStrategy();
 UndoAction(act);
 TellUtility(act, utility);
 }
 return GetBestAction();
}

function TellUtility(act, utility)
{
 totalActions++;
 score[act] += utility;
 count[act]++;
}
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25.6	 Algorithm	4:	UCT

UCB1 as described in the last section is a 1-ply search algorithm in that it only explicitly 
considers the first action before reverting to some default policy for play. In practice there 
can be value in considering several actions together. For instance, there may be two spells 
that, when cast together, are far more powerful than when used alone. But if they must be 
cast from weakest to strongest to be effective, a 1-ply algorithm may not be able to find and 
exploit this combination of spells. By considering the influence of longer chains of actions, 
we give our AI the ability to discover these combinations automatically. The generaliza-
tion of UCB1 to trees is called UCT [Kocsis 06]; this is the final algorithm we present in 
this chapter. UCT is the most popular specific algorithm that falls into the general class of 
Monte Carlo tree search (MCTS) algorithms.

UCT extends the use of UCB1 in the previous section by building a dynamic tree in 
memory, using the UCB1 algorithm to direct the growth of the tree. UCT builds a nonuni-
form tree that is biased toward the more interesting part of the state space. The longer the 
search, the larger the tree, and the stronger the resulting play.

Over time, researchers have converged on describing UCT and MCTS algorithms via 
four stages of behavior. The first stage is selection, where the best moves from the root to 
the leaves of the in-memory tree are selected according to the UCB1 rule at each node. The 
second stage is expansion, where new nodes are added to the UCT tree. The third stage 
is simulation, where some default policy is used to simulate the game. The final stage is 
propagation, where the value at the end of the simulation is propagated through the path 
in the UCT tree, updating the values in the tree.

We walk through an example to make these ideas concrete. In our example, a spell-
casting AI is allowed to cast two spells back to back, after which the normal battle will 
continue. We assume that a gas cloud can be ignited by a fireball to do additional damage. 
Figure 25.2 shows the root of a UCT tree for this situation with three children, one child 
for each spell that can be cast. The nodes in black (nodes 1, 2, and 3) are in the tree prior 
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to starting our example. The selection phase starts at the root and uses the UCB1 rule to 
select the next child to explore according to the current payoffs and number of samples 
thus far. This is repeated until a leaf node is reached. In this case we select the third spell 
and reach the leaf of the tree. Each time we reach the leaf of the tree, we expand that node, 
adding its children into the tree. Since we haven’t seen these new nodes before, we select 
the first possible action and then continue to the simulation phase.

In Figure 25.3 we show the simulation phase. Starting after the fireball action, we use 
some policy to play out the game until the current battle is over. Note that in this simula-
tion we will simulate actions for all players in the battle, whether or not they are on our 
team. When we reach the end of the battle, we score the resulting state. Then, we modify 
the UCB1 values at the root, state 3, and state 4, updating the number of simulations and 
average utility to take into account the result of this simulation. If there are two players 
in the game, nodes that belong to the opposing player get different utilities than those 
belonging to the AI. Following what is done in the minimax algorithm, this is usually just 
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the negation of the score of the AI player. If there are multiple competing players, different 
utilities should be backed up for each player [Sturtevant 07].

This entire process should be repeated many times. The more it is repeated, the better 
the resulting strategy. In practice, what would usually happen in an example like this one 
is that initially the fireball would be preferred, as it immediately causes significant dam-
age. But as more simulations are performed and the tree grows, the strategy of a gas cloud 
followed by a fireball emerges, as this combination is much more effective than a fireball 
followed by a gas cloud.

Pseudocode for a recursive implementation of UCT is shown in Listing 25.4. The top-
level code just repeatedly calls the selection rule until the time allotment runs out. The 
tree selection code uses the UCB1 rule to step down the tree. Upon reaching the end, it 
expands the tree and then simulates the rest of the game. Finally, the counts and utilities 
for all nodes along the path are updated.

Listing 25.4. Pseudocode	for	UCT.

function SimulateUCT()
{
 while (time remains)
 {
 TreeSelectionAndUpdate(root, false);
 }
 return GetBestAction();
}

function TreeSelectionAndUpdate(currNode, simulateNow)
{
 if (GameOver(currNode))
 return GetUtility(currNode);
 if (simulateNow)
 {
 //Simulate the rest of the game and get the utility
 value = DoPlayout(currNode);
 }
 else if (IsLeaf(currNode))
 {
 AddChildrenToTree(currNode);
 value = TreeSelectionAndUpdate(currNode, true);
 }
 else {
 child = GetNextState();//using UCB1 rule (in tree)
 value = TreeSelectionAndUpdate(child, false);
 }

 //If we have 2 players, we would negate this value if
 //the second player is moving at this node
 currNode.value += value;
 currNode.count++;
 return value;
}
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25.6.1	 Important	Implementation	Details
Those who have worked with UCT and other MCTS algorithms have shared significant 
implementation details that are important for improving the performance of UCT in 
practice.

First, it is very important to look at the constant that balances exploration and exploita-
tion when tuning UCT. If this constant is set wrong, UCT will either explore all options 
uniformly or not sufficiently explore alternate options. We always look at the distribution 
of simulations across actions at the first ply of the UCT tree to see if they are balanced 
properly in relation to the payoffs.

As memory allocation can be expensive, it is worthwhile to preallocate nodes for the 
UCT tree. A simple array of data UCT nodes is sufficient for this purpose. Although many 
implementations of UCT add new nodes to the tree after every simulation, the process 
of adding new nodes can be delayed by requiring a node to be visited some minimum 
number of times before it is expanded. This usually saves memory without significantly 
degrading performance.

After simulation, a final action must be selected for execution. This action shouldn’t 
be selected using the UCB1 rule, as there is a chance it will sample a bad move instead of 
taking the best one possible. Two common approaches are to choose the action that was 
sampled the most or to choose the action that has the highest payoff. In some domains, 
these alternate strategies can have a large influence on performance, but in others, both 
are equally good, so this should be tested in your domain.

UCT works best in games or scenarios that are converging. That is, the games are likely 
to end even under a fixed strategy or under random play. If a game isn’t converging, the 
game simulations may be too expensive or too long to return meaning information about 
the game. Thus, it is common to do things like disable backward moves during simula-
tions; in an RPG, it might be worth disabling healing spells if both parties have them 
available. The quality of the simulations can have a significant impact on the quality of 
play, so it is important to understanding their influence.

25.6.2	 UCT	Enhancements	and	Variations
There is a large body of academic researcher’s work looking at modifications and enhance-
ments to UCT and MCTS algorithms. While we can’t discuss all of these in detail, we 
highlight a few key ideas that have been used widely.

 • In games like Go, the same action appears in many different parts of the game 
tree. This information can be shared across the game tree to improve performance 
[Gelly 07].

 • In some games the simulations are too long and expensive to be effective. But 
cutting off simulations at a shallower depth can still be more effective than not 
running simulations at all [Lorentz 08].

 • There are many ways to parallelize the UCT algorithm [Barriga 14], improving 
performance.

At the writing of this chapter, a recent journal paper [Browne 12] catalogs many more of 
these improvements, but there has also been significant new work since this publication.



280 Applied Search Techniques

25.6.3	 Applying	to	Games
UCT and MCTS approaches are best suited for games with discrete actions and a strong 
strategic component. This would include most games that are adaptations of board games 
and games that simulate battles, including tabletop-style games and RPGs. The last 
10 years of research has shown, however, that these approaches work surprisingly well in 
many domains that would, on the surface, not seem to be amenable to these techniques. 
Within a decade or two, it would not be surprising to find that minimax-based approaches 
have largely disappeared in favor of UCT; chess is currently one of the few games where 
minimax is significantly stronger than UCT approaches. In fact, MCTS techniques have 
already found their way into commercial video games such as Total War: Rome II, as 
described in the 2014 Game/AI Conference. We believe that they could be very effective 
for companion AI in RPGs.

The main barrier to applying UCT and MCTS approaches in a game is the computa-
tional requirements. While they can run on limited time and memory budgets, they are 
still more expensive than a static evaluation. Thus, if simulation is very expensive or if 
the number of available actions is very large, these approaches may not work. But, even 
in these scenarios, it is often possible to abstract the world or limit the number of possible 
actions to make this approach feasible.

25.7	 Conclusion

In this chapter, we have presented four algorithms that can be used in a variety of game 
situations to build more interesting and more adaptive AI behavior. With each algorithm, 
we have presented examples of possible use, but we suspect that there are many more 
opportunities to use these algorithms that we have considered. Most of these algorithms 
are based in some way on UCB1, a simple and robust bandit algorithm.

We hope that this work will challenge the commercial AI community to explore new 
approaches for authoring strong AI behaviors. If nothing else, we add four more tech-
niques to the toolbox of AI programmers for building game AI.
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