
225

Dynamic Obstacle 
Navigation in Fuse
Jan Müller

21

21.1  Introduction

Climbing over obstacles like walls, ledges, or ladders plays a supporting role in video 
games: they are not usually central to the experience, but they stand out when done poorly 
or omitted entirely. There are, of course, exceptions to the rule, games like Mirror’s Edge 
[EA 08] or Tomb Raider [CD 14] that make the climbing sections, so called traversal, the 
core gameplay element. Traversal makes the AI navigation more complicated: it requires 
additional markup and programming for the AI to understand how to mount a ladder 
or jump over a wall, not to mention special animation states to control their location as 
they jump, vault, climb, or swim. As a result, video games with very complex or varied AI 
characters tend to avoid climbing altogether. Instead, AI navigation [Snook 00] is usually 
limited to finding paths on a continuous mesh [Mononen 12], where the actors can walk 
or run everywhere they need to go.

Traversal is hard enough if we have consistency between obstacles, that is, if all jumps 
are the same length and all walls the same height, so that there is a single solution to any 
locomotion problem. What if it is more complicated? What if there are hundreds of dif-
ferent volumes placed by either a designer or a content creation tool, each with different 
attributes and the AI has to decide which ones to consider based on the real time context? 
In the game Fuse [IG 13], from Insomniac Games, four hero agents with different abili-
ties fight cooperatively. Of those four actors, up to three can be under AI control at any 

21.1	 Introduction
21.2	 Fuse Traversal Setups
21.3	 Climb Mesh Generation

21.4	 Parsing Climb Paths
21.5	 Conclusion
References



226 Movement and Pathfinding

given time. Furthermore, we had a complex and highly varied environment, making loco-
motion more challenging. In contrast to many games with cooperative NPCs, we wanted 
to make our AI characters follow the same rules as a human player. They aren’t tougher to 
kill, can’t teleport to keep up with the player, and need to be able to follow the same game-
play mechanics with regard to activities like climbing a ladder or manning a turret. It is 
crucial for the game balance that the AI plays as well as a human—not better or worse. The 
rule we ended up with is “50/50,” meaning that half of the total damage is dealt by human 
players and the other half should be dealt by the AI (assuming that at least two of the four 
heroes are AI controlled, of course).

To make things even more challenging for the AI, Fuse features the leap ability, which 
allows human players to switch from their current character to any of the other heroes that 
isn’t already being controlled by another human player. The game does not restrict leaps to 
any specific time or place; you can leap in the middle of combat just as easily as during a 
traversal section. Furthermore, players can drop in or out of the game at any time, and all 
of this has to work in a peer-to-peer online environment.

The result of all of this is that there can be no cheating. Whatever the human player is 
capable of doing, the AI has to be able to do it too. Whatever situation the human player 
is in, he or she can leap to another character (or drop out of the game), leaving the AI to 
deal with it. This circumstance leads to volatile AI characters that must be able to function 
smoothly when they initialize halfway through a nontrivial traversal section. Imagine 
waking up to find yourself hanging one-handed from a ledge 50 ft above the ground, while 
your enemies are firing semiautomatic rifles at you and a teammate is in need of medical 
attention down at the bottom. In such a context, the AI cannot rely on markup alone, but 
needs to evaluate dynamically changing traversal paths at runtime.

21.2  Fuse Traversal Setups

Fuse has numerous, wide-ranging traversal sections. To give players a break between 
fights, the protagonists will often have to climb obstacles like a mountain side or sew-
age pipes below a medieval castle in India. These setups usually have three or four pos-
sible ascents, which intersect at various points. In addition to the complexity of the ascent 
itself, there are often enemy bots or turrets that can shoot at you during the climb. When 
a character is hit, he or she can fall down to the ground and become incapacitated. If that 
happens to the player, the AI has to be able to find a path down to revive him.

On the content-authoring side, these traversal setups are represented as a group of vol-
umes with different markup options. The most common types of such volumes are vertical 
pipes and horizontal ledges, as well as variations of those such as ladders. Depending on 
their attributes and the situation, you can perform different climb animations. For exam-
ple, you might hang from a ledge and traverse with your hands or mount it to stand on 
top of it. Connections between volumes may be explicitly marked in the places where they 
intersect or overlap, or they are implicitly allowed through jump and drop thresholds. To 
determine whether an actor, be it human or AI controlled, can jump from one ledge to the 
next, we match their attributes and then perform distance and collision tests between 
the two points closest to each other. Additionally, we place custom clues that connect 
the navigation mesh between the start and end of the traversal section. These elements 



227Dynamic Obstacle Navigation in Fuse

together provide enough information for the AI to parse the traversal and generate a climb 
path procedurally. For a typical traversal section in Fuse, refer to Figure 21.1. For simplic-
ity’s sake, we exclude vertical elements, like pipes or ladders. However, their connections 
within the climb mesh work the same way as the horizontal elements.

The navigation path in Figure 21.1 connects two disjoint navigation meshes. It creates a 
link between the start and the end point of the traversal. The path is a straight line between 
these two climb clues, since the navigation system has no further information about the 
connecting climb.

21.3  Climb Mesh Generation

The first step of the procedural traversal system is to generate the climb mesh. It collects 
all possible traversal elements from a group of traversal volumes and creates connections 
between them. Each connection can link to multiple other traversal elements, but the most 
common case is that there are no more than one or two connections per node. The sys-
tem first considers touching or overlapping volumes, which explicitly link two elements 
together. If two elements touch each other at their end points, they share one merged node 
in the climb mesh and create explicit connections. For example, if a ledge touches a pipe 
at a cross section, they share a node at their intersection that forms edges to the start and 

Start mesh

Target mesh

Ledge

Nav mesh

Climb clue

Nav path

Figure 21.1

A traversal section with ledge markup and navigation path between two meshes.



228 Movement and Pathfinding

end of the ledge as well as the pipe element. If two ledges intersect at their end points, 
they form an explicit connection between them. Examples of two ledges generating links 
between each other can be seen in Figure 21.2.

Once all explicit connections have been generated, the system searches for implicit 
links like jumps or drops. Players can jump between two elements at any time, as long as 
certain distance and angle thresholds are not exceeded. For simplicity’s sake, the Fuse AI 
considers such transitions in the climb mesh only from the end points and between the 
center points of the volume markup, although other transitions would be possible. Thus, 
for every traversal element, the algorithm tests three nodes for implicit links to nearby 
elements. Alternately, you can generate these links at fixed intervals, for example, one 
per meter, but that has an impact on both the mesh complexity and the parsing resolu-
tion. We discuss those implications in the section on generating a virtual controller 
input (VCI).

The node connections are stored in the climb mesh. Cyclic connections are allowed 
and are resolved in the path generation step by marking already visited nodes. At this 
level of abstraction, the actual animation that moves a character from one climb element 
to the next does not matter. That means a connection between two elements could result 
in a jump animation for one character and in a swing animation for another. Only the 
type and distance of the connection, as well as line of sight tests between its elements, are 
considered. Figure 21.3 illustrates the climb mesh that the example in Figure 21.1 would 
generate, including all of its nodes and connections.

21.3.1  Path Following on Climb Meshes
As mentioned before, the climb meshes are independent from our navigation system, which 
only knows about the existence of the traversal, not its layout. When an actor needs to pass 
through a traversal section, the navigation system returns a path that includes two special 
clue edges that connect the start and end points of the climb. The clue edges are placed 
by the level designer and represent the traversal section within the navigation  system. 

Explicit connection through
overlapping markup

Implicit connection through
jump distance threshold

Implicit connection through
backward jump

Implicit connection through
drop or upward jump

Figure 21.2

Possible connections between two ledge elements in the climb mesh.



229Dynamic Obstacle Navigation in Fuse

It does not store any further information about the climb elements or connections. The 
navigation system only knows the distance between two climb clues and that a climb has 
to happen to move the character from edge A to B and continue the path from there.

Within the climb mesh, the closest point from the climbing actor on the custom clue 
is added as the initial climb node. From there, the traversal system triggers a secondary 
path query that follows the traversal nodes between the start and end clues. Path follow-
ing on climb meshes utilizes a standard A* search. It searches from the initial climb node 
and iterates through the neighboring edges, starting with the least-cost candidate, mean-
ing the closest to the target node. Each step of the pathfinding parses the links from the 
current node to connected nodes in the climb mesh, marking those it already visited as 
closed. When a path to the target node is reached, then all nodes of that path are returned 
as a set of 3D vectors. The result is the shortest path on the climb mesh that connects two 
custom clues on the navigation mesh.

21.3.2  Caveats of the Climb Path Generation
The traversal system in Fuse does not consider different costs per traversal element and 
does not store how long specific animations take to play back. The edge costs are generally 
normalized within the climb mesh and increased only if other bots use the same climb ele-
ments on their path. This means that the shortest path does not necessarily take the least 
amount of time. However, since there are usually only a few routes to choose from in Fuse, 
avoiding other characters is of higher importance than finding the shortest-time path.

At one point during development, there was a plan to support combat during climbing. 
This involved shooting from climb elements as well as being incapacitated by hits. If this 

Ledge

Climb edge

Climb clue

Climb node

Figure 21.3

The fully generated climb mesh with all possible transition edges.



230 Movement and Pathfinding

were to happen to the player while he or she was hanging from a ledge, the character would 
hang on for dear life until another teammate came to the rescue. In order to allow this, 
the AI characters had to be able to parse partial climb paths to and from any location on 
the mesh. While the feature was cut and didn’t make it into the final game, it enabled us to 
add other useful behaviors such as dynamic obstacle avoidance. If a player turns around 
on a traversal section and blocks the path, the AI can simply reparse the climb mesh and 
find another way to reach its goal. Without it, AI actors try to avoid each other during 
path generation by increasing the costs of the used climb edges. But the system is not 
updating dynamically based on the player’s behavior, which can lead to traffic jams along 
blocked paths.

21.4  Parsing Climb Paths

The second part of the procedural traversal system is the climb parser. The hero AI in 
Fuse shares about half of its implementation with the player controlled characters. This is 
possible by splitting hero character states into drivers and processors: drivers are respon-
sible for the state input and transition logic. For human players, this means interpreting 
controller inputs and context into animation parameters. For AI actors, these transitions 
are controlled by their behaviors and VCI. While drivers are fundamentally different 
between human and AI characters, the state processors can be shared. The state processor 
interprets driver updates and communicates with the animation tree of the character. The 
reuse of hero state processors means that the hero AI automatically inherits all traversal 
animations from the player characters.

The climb parser generates the VCI for AI-controlled characters. The state transition 
logic then compares the input data against animation thresholds to determine when, for 
example, a ledge climb animation can transition into a jump to a nearby pipe. Once the 
first traversal state has been initialized, the AI behavior strictly follows the VCI and the 
current state’s transition logic. Thus, during the traversal, there is no decision making in 
place beyond following the VCI, adhering to the state transitions thresholds (including 
terminating states like the death of the character), and checking against collision with 
geometry and other characters.

21.4.1  Generating Virtual Controller Input
To generate VCI, the climb parser first resolves the climb path as a Bézier spline curve 
[DeBoor 78, Farin 97]. Curves in Bézier form are defined as a set of four control points 
that span a curve between each other. A Bézier spline is a continuous set of such curves 
that form a smooth, higher-order shape. Such splines can be straight lines, only spanning 
between two points, but also complex curves with dozens or hundreds of control points. 
Using the path points as input data for a Bézier curve automatically interpolates the path 
and creates better results than the raw input data with 90° turns. The reason for this is that 
the additional curve points add angular momentum to the path. A simple example is a 
180° turn around 2 corners: in its raw form, the path is only as long as the total length of 
its three sides and incorporates two sharp, 90° turns. A spline following the same control 
points however will extrude the curve to avoid sharp angles, which adds length and cur-
vature to the path.



231Dynamic Obstacle Navigation in Fuse

This is important because the system projects the VCI target on that curve at a fixed 
distance of 2.8 m ahead of the AI actor from its current position on the spline curve. A 
traversal move resolution of 2 m gave the best results for the climb animations in Fuse but 
might differ in other games. Many transitional animations move the character by roughly 
this distance and need to trigger ahead of a directional change to look smooth. The pro-
jection distance is the length of the diagonal of a 2 × 2 m2 square, which is roughly 2.8 m. 
That also means that the climb parser is not accurate if there are multiple intersections 
within a 2 m radius (plus a certain margin for error) and generally speaking chooses the 
closest one. For example, if there were two vertical pipes intersecting a ledge 1 m apart, the 
parser would pick the closest one (based on the approach direction). This occurs because 
the Bézier curve doesn’t follow the raw path data precisely, so when two elements are 
close together, the algorithm can’t tell which one was originally on the A*-generated path. 
Regardless, this doesn’t necessarily impact the result. When this happens in Fuse, it always 
appears correct if the parser chooses the closest element.

The 3D vector between the current actor position on the spline curve and the projected 
VCI target is the VCI vector as depicted in Figure 21.4. The parser generates input strength 
values for all three axes relative to the character. Those input values are then tested against 
thresholds for different transitions. A transition in this sense does not necessarily mean 
jumping or climbing to another element but also transitioning from an idle animation 
to a climb animation on the existing one. Each climb state has individual thresholds in 
its transition functions that define the points where characters can switch from one state 

Climb path

Hero character

VCI target

VCI vector

Figure 21.4

The VCI generates a 3D vector between the current actor position and the immediate, 
projected target position.



232 Movement and Pathfinding

to another. For example, if the input vector mostly points to the relative right of the char-
acter while he or she is hanging from a ledge, he or she will start climbing to the right. If 
the character gets into the proximity of a pipe element and the input vector points to the 
right and top, he or she will transition to the vertical climb animation, attach to the pipe, 
and start climbing upward. This sequence of traversal animations ends when a terminat-
ing state is reached. Examples for such states are mounting the top of a wall or dropping 
from a ledge back onto the navigation mesh. The system also supports depth transitions 
such as jumping backward between two parallel ledges on opposing walls or flipping over 
the top of a flat wall.

There are a limited number of entry states for traversal sections, such as mounting a 
ladder or jumping up to a ledge above the initial climb node. This makes the transition 
from walking or running to climbing relatively predictable. The most common case has 
the VCI vector pointing up or down at the traversal start. In that case, the climb could 
start by attaching to a ladder or jumping up or down to a ledge. Once the traversal state 
has been initialized, the VCI target is projected forward on the climb path as described. 
The state treats the VCI data the same way it would interpret human controller input and 
matches the values against transition thresholds. In the example in Figure 21.4, the initial 
jump-up state would transition to a ledge hang state, which would be followed by another 
jump, since the VCI mostly points upward. Once the character reaches the second ledge, 
the VCI would point to the relative right side of the character, which leads to a ledge move 
animation. The character would follow the climb path until eventually reaching the final 
ledge and playing a mount animation at the top of the traversal section. That state would 
terminate the climb so that we can return the AI to the navigation mesh.

21.5  Conclusion

This chapter introduced an approach to generating traversal climb meshes from markup 
and to following the resulting climb paths at runtime. The procedural traversal system is 
independent of the underlying animation states and is robust against changes in the loco-
motion sets of the actors. In addition, the chapter demonstrated how VCI can be utilized 
to parse climb paths along a Bézier spline curve. Using climb paths in combination with 
VCI allows AI characters to handle traversal setups in much the same way as they would 
normal navigation meshes. It also allows the AI to share the same traversal markup and 
transition logic that human-controlled characters use.

There are a number of worthwhile extensions that could be applied to this approach: 
as mentioned previously, the algorithm can be modified so that climb paths can be gen-
erated between any two locations within the climb mesh. This allows dynamic obstacle 
avoidance and path replanning. Games with mid-climb combat elements would especially 
benefit from those features.

Furthermore, using Euclidean distance as the edge cost worked well for Fuse, but might 
not be accurate enough for more complex climbing setups. If this approach is implemented 
for a game with very long or complex traversal segments, then the climb path generation 
should consider animation playback times to accurately detect the shortest path.



233Dynamic Obstacle Navigation in Fuse

References

[CD 14] Crystal Dynamics. 2014. Tomb Raider [PC, Xbox 360, PS3]. Redwood City, CA.
[DeBoor 78] de Boor, C. 1978. A Practical Guide to Splines. Springer Verlag, New York.
[EA 08] Electronic Arts DICE. 2008. Mirror’s Edge [Xbox 360]. Stockholm, Sweden.
[Farin 97], Farin, G. 1997. Curves and Surfaces for Computer Aided Geometric Design, 4th 

edn. Academic Press, San Diego, CA.
[IG 13] Insomniac Games. 2013. Fuse [Xbox 360, PS3]. Burbank, CA.
[Mononen 12], Mononen, M. 2012. Recast and Detour, a navigation mesh construction 

toolset for games. http://code.google.com/p/recastnavigation/ (accessed July 21, 2014).
[Snook 00] Snook, G. 2000. Simplified 3D movement and pathfinding using navigation 

meshes. In Game Programming Gems, pp. 288–304. Charles River Media, Newton, MA.


