
183

Context Steering
Behavior-Driven Steering 
at the Macro Scale

Andrew Fray

18

18.1  Introduction

Steering behaviors are extremely common in the games industry [Reynolds 87, 
Reynolds 99]. Their popularity is with good cause, promising a fast-to-implement core 
with emergent behavior from simple components.

However, steering behaviors are not suited for some types of game. When the player 
can pick out and watch individual entities, collision avoidance and consistent movement 
become very important. Achieving this can cause behavior components to balloon in size 
and become tightly coupled. Entity movement then becomes fragile and hard to tune.

In this chapter, we’ll outline how you can identify the games for which steering behav-
iors aren’t a good fit and describe a new approach for those problems called context 
steering. Context steering behaviors are small and stateless and guarantee any desired 
movement constraint. When used to replace steering behaviors on the game F1 2011, the 
codebase shrunk by 4000 lines, yet the AI were better at avoiding collisions, overtaking, 
and performing other interesting behaviors.

18.1	 Introduction
18.2	 When Steering Behaviors 

Go Bad
18.3	 Toward Why, Not How
18.4	 Context Maps by Example

18.5	 Racing with Context
18.6	 Advanced 

Techniques
18.7	 Conclusion
References



184 Movement and Pathfinding

18.2  When Steering Behaviors Go Bad

A steering behavior system is used to move an entity through a world. The system consists 
of multiple child behaviors. During each update, the child behaviors are asked for a vector 
representing how they would like the entity to move. The vectors are combined to produce 
a final velocity. That’s really it; the simplicity of the system is one of its strengths.

Note that the behavior vectors can be either a desired final velocity or a corrective 
force to the current velocity. This chapter will show behavior output as a final velocity. It 
doesn’t change the arguments either way, but it makes the diagrams easier to arrange and 
understand.

Imagine an entity with free movement on a 2D plane. The entity cares about avoiding 
obstacles and chasing targets. At the instant of time shown in Figure 18.1, there are two 
possible targets in the scene and one obstacle.

What’s the ideal result here? Assuming our only concern on choosing a target is dis-
tance, the entity should move toward target A. However, there’s an obstacle in the way, 
so moving toward target B would be best. Can that decision emerge from small simple 
behaviors?

We start with two simple steering behaviors: chase, for approaching targets, and avoid, 
for not hitting obstacles. Our avoid behavior sees the nearby obstacle and returns a veloc-
ity to avoid it. The chase behavior knows nothing about obstacles and so returns a velocity 
toward the nearest target, target A.

The behavior system combines these behaviors. Let’s assume they’re just averaged for 
now, although you can use more complex combination techniques. The final vector is very 
close to 0, and the entity hardly moves. Players are not going to think this is an intelligent 
entity!

Steering behavior systems have evolved some Band-Aids to deal with this situation over 
the years. Here’s a few ways this stalemate might be solved:

We could add weighting to our behaviors, so avoid heavily outweighs chase when there 
is an obstacle nearby. Now the entity has a strong northward velocity, but at some point, 
it will reach equilibrium again. We’ve only succeeded in moving the problem, at the cost 
of a new weighting parameter. That parameter will invariably need tweaking any time we 
change any of the affected behaviors.

A

B

Chase

Ideal

Avoid

Figure 18.1

Entity layout, ideal path, and first path.



185Context Steering

We could add prioritization, so avoid is the only behavior that runs when near obsta-
cles, but then movement near obstacles is very single minded, and not very expressive.

Finally, we could add some awareness of obstacles to the chase behavior. It could raycast 
to reject targets that don’t have a clear path or pathfind to all targets and select the one 
with the shortest path. Both of these introduce the concept of obstacles into chase, which 
increases coupling. In most game engines, raycasts and pathfinds are going to be either 
expensive or asynchronous, both of which introduce different types of complexity. This 
makes chase neither “small” nor “stateless.”

There doesn’t seem to be a good way to fix this.
This may sound like a forced example, but it’s based on a real experience. In F1 

2010, our equivalent of the avoid behavior had to be incredibly robust, which meant it 
often demanded to run frequently and in isolation, dominating how the opponent cars 
moved. To put some expressiveness back into the AI, we extended the avoid behavior 
over and over again to make it avoid in intelligent ways, coupling it to multiple other 
behaviors and making it monolithic. By the end, it had decomposed into an old-school 
sequence of if/else blocks with a thin steering behavior wrapper and was a maintenance 
nightmare.

18.2.1  Flocks versus Groups
If steering behaviors are so broken, why are they so popular? Because not all games expose 
the right conditions to make the problems apparent. Steering behaviors are a statistical 
steering method. Most of the time, they will give you mostly the right direction. How 
often they give you inconsistent or bad results, and how bad that is for the player, is a per-
game decision.

It’s no coincidence that the most famous application of steering behaviors is flocking 
[Reynolds 87]. In flocking, the user is typically an external observer of many entities mov-
ing as a semicohesive group. The group seems to have lifelike properties and unpredictable 
but believable behavior. Really, the “entity” here is the flock, not the individual. The size of 
the flock can hide the odd inconsistent movement or collision of individuals.

In the racing genre, the player is often inside the “flock,” wheel to wheel with AI cars. 
Here, inconsistent movements can be glaring and immersion breaking. They can result in 
missed overtaking opportunities, poor overtake blocking, or at worst collisions with other 
cars. Steering behaviors were not a good fit for F1.

18.2.2  Lack of Context
We now understand what steering behavior failure looks like and what types of games that 
matters for. But we don’t yet know why steering behavior systems have this flaw. Once we 
understand that, we can design a solution.

A single steering behavior component is asked to return a vector representing its 
decision, considering the current state of the world. The framework then tries to merge 
multiple decisions. However, there just isn’t enough information to make merging these 
decisions possible. Adding prioritization or weighting attempts to make merging easier 
by adding more information to the behavior’s result, but it translates to louder shouting 
rather than more nuanced debate. By making chase aware of obstacles, we can make it 
produce more sensible results, yet this is just special casing the merge step. That is not a 
scalable solution.



186 Movement and Pathfinding

Sometimes, the reasons why a behavior didn’t want to go any other way—the context in 
which the decision was made—is just as important as the decision itself. This is a particu-
lar problem for collision avoidance behaviors, because they can only communicate in the 
language of desired velocity, not undesired velocity.

18.3  Toward Why, Not How

Returning a decision, even with some metadata, just isn’t going to work. Instead, what if 
we could ask a behavior for the context in which it would make the decision, but skip the 
actual decision step? If we could then somehow merge all those contexts, some external 
behavior-agnostic processor could produce a final decision, fully aware of everything.

The context of avoid could be, “I feel moderately strongly we shouldn’t go south,” and 
the chase context could be, “it’s a little interesting to go west and quite interesting to go 
south.” It’s a holistic view rather than a resolute decision. The framework then waves a 
magic wand and combines these contexts, revealing that the ideal decision is to go west.

The end result is as if chase was aware of obstacles and disregarded its favorite tar-
get because it was blocked, yet the individual behaviors were focused only on their con-
cerns. The system is emergent and has consistent collision avoidance and small stateless 
behaviors.

18.3.1  Context Maps
The context steering framework deals in the currency of context maps. Imagine everything 
the entity cares about in the world projected onto the circumference of a circle around the 
entity, as shown in Figure 18.2. It’s like a 1D image, and in fact, many of the tricks we’ll 
show you later in the chapter follow from this image metaphor.

Internally, the context map is an array of scalar values, with each slot of the array rep-
resenting a possible heading, and the contents of the slot representing how strongly the 
behavior feels about this heading. How many slots the array has is the “resolution” of the 
context map. (If you’re already wondering if you need huge resolutions to have decent 
movement, then relax. I’ll show you later why you need many less than you think.) By 
using this array format, we can easily correlate and merge different context maps and go 
from slots to headings and vice versa. This is our data structure for arbitrating between 
different behaviors.

0
1

0 1 2

2

Figure 18.2

Mapping headings to context map slots.



187Context Steering

In each frame, the framework will ask every behavior for two different context maps: 
the danger map and the interest map. The danger map is a view of everything the behav-
ior would like to stay away from. As you’d suspect, the interest map is everything the 
behavior would like to move toward.

18.4  Context Maps by Example

What does our previous entity example look like, rewritten to use context maps? We can 
translate it by thinking about the information that informed the old behavior’s decision 
and storing that information in the correct context map.

18.4.1  Chase Behavior
The chase behavior wants the entity to move toward targets, preferring near targets to 
far. However, choosing the best target requires making a decision, and we don’t want to 
do that. So we’re going to write all the targets into the interest map, with farther targets 
represented with lower intensity.

We could take a vector directly toward a target, translate that into a map slot, and write 
only into that slot. That captures that moving toward the target is desirable. However, we 
can also write over a range of slots, centered on the target with configurable falloff to zero. 
This captures that passing the target but just missing it is also an interesting thing to do, 
even if not the best. There’s a lot of power and nuance in how this falloff works, giving you 
a lot of control over how the entity moves.

All this can be done with a quick for-each over all targets, some tuning constants, and 
no state. The resultant interest map is shown in Figure 18.3.

18.4.2  Avoid Behavior
The avoid behavior wants the entity to keep at least a minimum distance away from obsta-
cles. We’re going to render all obstacles into the danger map, in a very similar for-each 
loop to chase. The intensity of an obstacle in the danger map represents the distance to the 
obstacle. If the obstacle is beyond the minimum distance, it can be ignored. Again, falloff 
around the obstacle can be used in an interesting way. Here, it represents the heading 

A

B

A B

Figure 18.3

Chase behavior, writing into interest map.



188 Movement and Pathfinding

required to pass it without reentering the exclusion zone around it. This behavior is also 
stateless and small. The avoid behavior is shown in Figure 18.4.

18.4.3  Combining and Parsing
The output of each behavior can be combined with others by comparing each slot across 
multiple maps and taking a maximum. We could sum or average the slots, but we’re 
not going to avoid a particular obstacle any more just because there’s another obstacle 
behind it. We already must avoid the first obstacle, and that obscures any danger from 
the second. Through combining, we can reduce all output to a single interest and danger 
map pair.

The next step processes the maps, boiling down the entire shared context into a single 
final velocity. How this happens is game specific; the racing game example will have its 
own implementation.

First, we traverse the danger map to find the lowest danger and mask out all slots that 
have higher danger. In our example, there are some empty slots in the danger map, so our 
lowest danger is zero, and therefore, we mask out any slot with nonzero danger, shown in 
Figure 18.5(i). We take that mask and apply it to the interest map, zeroing out any masked 
slots (ii). Finally, we pick the interest map slot with the highest remaining interest (iii) and 
move in that direction (iv). The speed we move is proportional to the strength of interest 
in the slot; a lot of interest means we move quickly.

The final decision here is the correct decision. It is emergent—preserving collision 
avoidance while chasing a sensible target—yet we did it with small, stateless, and decou-
pled behaviors. It is the promise of steering behaviors at the macro scale.

Figure 18.4

Avoid behavior, writing into danger map.

Danger

Interest

ii

x x x
i

iii

iv

Figure 18.5

Processing the final maps.



189Context Steering

18.4.4  Subslot Movement
You might initially think the context map is too limiting a system. The entity will always 
be locked to one of the slot directions, so either you need a bucketful, which sounds expen-
sive, or you are stuck with robotic entities that can only move in very coarse directions.

It turns out we can keep the slot count low, for speed, and yet have movements in a 
continuous range. Once we have our target slot, we can evaluate the gradients of the inter-
est around it and estimate where those gradients would have met. We then back-project 
this virtual slot index into world space, producing a direction to steer toward, as shown 
in Figure 18.6.

18.5  Racing with Context

Context steering doesn’t just work for 2D entities on a plane. In fact, it is easily portable 
to any decision made in 1D or 2D space. Let’s look at how the context steering for F1 was 
implemented and how it differs from the entity example.

18.5.1  Coordinate System
We could pretend race cars moved with freedom in 2D space, but they don’t. In F1, a 
low-level driver system followed a hand-placed racing line spline, braking for corners and 
accelerating down straights. The behavior system only needed to manage position on the 
track, rather than driving. This was done with a scalar left or right offset from the racing 
line. That’s one of our dimensions. Although the driver will brake for corners for us, the 
behavior system must handle collision avoidance, so it needs to be able to slow down for 
emergencies. How much we want to slow down, if at all, is another scalar making our 
second dimension.

You can visualize the context map as a cross section of the track, with each slot rep-
resenting a specific offset of the racing line, as shown in Figure 18.7. The map scales with 
the width of the track, with the left and right edges of the map lining up with the track 
edges. The racing line doesn’t always map to the same slot; it will sweep from one edge of 
the map to the other as it moves across the track. In this and the following figures, the AI 
car is white.

18.5.2  Racing Line Behavior
The racing line behavior maps interest all across the track, with a peak around the racing 
line. It never quite reaches zero no matter how wide the track is. We only want to create a 

Figure 18.6

Subslot calculations.



190 Movement and Pathfinding

differential from slot to slot, so if the car is trapped at a far edge of the track by traffic, it 
always has an idea of which way is closer to the racing line and can tuck in tightly.

The behavior will write the most interest at the racing line, but never very much. Being 
able to reach the racing line should be good, but we want lots of room to be expressive 
about other interest map behaviors, while still having that important differential across 
the whole map.

18.5.3  Avoid Behavior
For an open-wheel racer, collision avoidance is paramount. Any type of connection (side 
to side or front to back) would be catastrophic. The avoid behavior evaluates all cars in the 
vicinity and writes danger into the map corresponding to the other car’s racing line offset, 
with intensity proportional to the presented danger, as shown in Figure 18.8. Evaluating 
the danger of a car is complex. If a car is in front but at racing speed, then you should 
ignore them—writing danger for them will only make overtaking difficult. However, if 
a car is substantially below racing speed, you may need to take evasive action, so should 
write danger. Cars alongside are always considered dangerous. This is a good benefit of 
using the racing line as a coordinate system: the behavior system can be aware of a station-
ary car around a corner, where a raycasting approach might not see it until after the corner 
has been turned.

We’ve already seen how context steering can guarantee collision avoidance, but it can 
also be used more subtly. F1 wrote high danger into the map over the width of the other 
car, but also a decreasing skirt of danger at the edges. This kept a minimum lateral separa-
tion between cars. The driver personality fed into this, writing wider skirts for drivers that 
were more cautious.

Figure 18.7

Racing line writing into interest map.

Figure 18.8

Avoid behavior written into the danger map.



191Context Steering

18.5.4  Drafting Behavior
These two behaviors are enough for collision avoidance around a track, but it would make 
for quite a dull race. F1 had four or five other behaviors that made the AI more expressive, 
but we’ll just cover the drafting behavior.

Drafting happens when one car follows another closely and at high speeds. The trailing 
car doesn’t need to do so much work to push air out of the way, so it can match the leading 
car’s speed without using as much energy. At the right moment, the spare energy can be 
used to overtake.

F1’s drafting behavior evaluated all the cars in front of the AI and scored each for 
“draftability.” Cars going fast and near to us would score lots of points. Then the behavior 
would write pyramids of interest into the context maps at the corresponding racing line 
offset of each car, with more interest for more draftable cars, as shown in Figure 18.9.

18.5.5  Processing Context Maps
Now we have a pair of complex maps, with danger and interest in different places. How 
do we go from that to an actual movement? There are probably a few ways to do this that 
produce good consistent movement, but this is how F1 did it.

First, we find the slot of the danger map corresponding to the car’s current position on 
the track, shown in Figure 18.10(i). Then we walk left and right along the map, continuing 
as long as the danger in the next slot is less than the current. Once we cannot expand any 

Figure 18.9

Draft behavior writing into interest map.

Danger

Interest

ii
x x x xi

i

iiiiv

Figure 18.10

Processing the maps for a final racing line offset.



192 Movement and Pathfinding

more, we mask all slots we can’t reach (ii). We apply the mask to the interest map (iii) and 
pick the highest remaining slot (iv). The resulting movement picks the car in the far right of 
the figure to draft, avoiding the nearer car because it can’t be reached without a collision.

This approach avoids moving into higher danger, which might represent a physical 
obstacle. It also stops us remaining in high danger because of high interest when there’s 
an obvious escape route. Once we have all valid movements, it picks the most interesting 
of those movements.

To find out if we need to do emergency braking, we look at the highest danger across 
the planned journey from our current slot to the most interesting. If any slot is over some 
threshold of danger, we ask for braking with intensity proportional to the danger strength. 
We use a threshold because some danger can be informative without being a real issue, a 
developing situation to be aware of rather than a problem.

18.6  Advanced Techniques

There are several improvements we can make to the simple implementations outlined. 
These improvements are often easier to implement and maintain than their steering 
behavior counterparts, because they work at the level of the context map, not the indi-
vidual behavior components.

18.6.1  Post-Processing
To avoid sharp spikes or troughs, we can apply a blurring function over the context 
maps after the behaviors have acted. As it’s a global effect, it’s easy to tweak and cheap to 
implement.

The chase behavior from our original steering behaviors example suffers from flip-
flopping if the closest target oscillates back and forth between two choices. We can fix 
this with per-behavior hysteresis, but that adds state and complexity to behaviors. Context 
steering allows us to avoid flip-flopping much more easily. We can take the last update’s 
context map and blend it with the current one, making high values emerge over time 
rather than instantly. This is a kind of global hysteresis that requires no support from the 
behaviors at all.

18.6.2  Optimizations
The overall complexity of the system is dependent on your implementation, but every-
thing we’ve outlined here is linear in memory and CPU in proportion to the context map 
resolution. Doubling the size of the map will require twice as much memory and probably 
be twice as slow.

On the other hand, halving the map will double the speed. Because the system can still 
provide consistent collision avoidance and continuous steering even with a low-resolution 
map, you can construct a very granular level-of-detail controller to manage system load. 
Entities far from the player can be allocated small maps, producing coarser movements 
but requiring less system resources. Entities near the player can have more resolution, 
reacting to very fine details in the map. It’s not very common to find an AI system that can 
be tweaked as subtly as this without compromising integrity.

Since the context maps are essentially 1D images, we can further optimize them 
using techniques from graphics programming. We can use vector intrinsics to write to 



193Context Steering

and process the map in chunks, providing a massive speed up. F1 shipped like that, and 
although it made the guts of the processing harder to read, the payoff was worth it. We did 
that late in the project, when the implementation was nailed down.

Because the behaviors are stateless, and context maps merge easily, we can multithread 
them or put them on a PS3 SPU. You might also consider doing the behaviors and process-
ing in a compute shader. Be sure to profile before and after, because some behaviors may 
be so simple that the setup and teardown costs of this kind of solution would be domi-
nant. Batching behaviors into jobs or structuring the whole system in a data-orientated 
way is also possible. Doing this with more stateful and coupled steering behaviors would 
be difficult.

18.7  Conclusion

Steering behaviors remains extremely useful in many situations. If your game has indi-
vidual entities that will be closely watched by the player and a world with strong physical 
constraints, steering behaviors can break down. For games that can be represented in 
two dimensions, context steering offers strong movement guarantees and simple, stateless, 
decoupled behaviors.

References

[Reynolds 87] Reynolds, C. 1987. Flocks, herds and schools: A distributed behavioral 
model. International Conference and Exhibition on Computer Graphics and Interactive 
Techniques, Anaheim, CA, pp. 25–34.

[Reynolds 99] Reynolds, C. 1999. Steering behaviors for autonomous characters. Game 
Developers Conference, San Francisco, CA.


