
173

Advanced Techniques for 
Robust, Efficient Crowds
Graham Pentheny

17

17.1  Introduction

To date, crowds in games are usually driven by static pathfinding combined with local-
ized steering and collision avoidance. This technique is well understood and works well 
for small or moderate crowd sizes that are sparsely distributed in their environment. As 
crowd density increases and the agents’ goals converge, this approach falls apart. In situ-
ations like this, agents fight the rest of the crowd to follow their ideal path as closely as 
possible, seemingly ignoring all other possible routes.

Congestion maps provide a simple means of modeling aggregate behavior in large 
crowds of tens or hundreds of thousands of agents. Combined with vector flow fields, con-
gestion maps can be used to elegantly handle large variations in path travel times due to 
congestion and crowding from other agents in the scene. Agents controlled by this tech-
nique appear to be more aware of their surroundings, reconsidering their current path 
choice if a less-congested alternative exists.

17.1	 Introduction
17.2	 Pathfinding’s Utopian Worldview
17.3	 Congestion Map Approach
17.4	 Augmenting Path Planning with 

Congestion Maps
17.5	 Path Smoothing
17.6	 Flow Fields with Congestion Maps 

and Theta

17.7	 Current Alternatives
17.8	 Benefits
17.9	 Drawbacks
17.10	Performance Considerations
17.11	Future Work
17.12	Conclusion
References



174 Movement and Pathfinding

17.2  Pathfinding’s Utopian Worldview

Current solutions for pathfinding compute paths in an idealized environment. They 
compute the shortest distance path from the current agent position to its goal through 
a given environment as if no other agents existed. Some variations of common path-
finding approaches such as Partial Refinement A* [Sturtevant 05] repeatedly perform 
partial path calculations to account for changes in the environment. This is ideal for 
rapidly changing environments as much of a full path calculation is likely to never be 
used before it is necessary to repath. Despite adeptly handling changes to the open 
areas in the environment, Partial Refinement variants of A* operate on the principle 
that the only obstacles in the environment are static and binary. Either the agent can 
move through a given location or it can’t. These approaches cannot handle situations 
where certain path directions are obstructed by large groups of other agents, because 
they do not consider other agents in their calculations. This can be thought of as opti-
mizing for total path length, rather than for the actual travel time. In an empty envi-
ronment, the travel time is simply the distance inversely scaled by the agent’s velocity. 
However, in a crowded world, other agents increase the travel time through certain 
points in the environment.

Collision avoidance algorithms attempt to avoid other agents in the local vicinity by 
either restricting or augmenting the agent’s velocity. These techniques are well suited for 
avoiding localized collisions and are often used to complement idealized pathfinding. 
Collision avoidance algorithms, however, fail to account for situations where movement 
is significantly impacted by other agents. Collision avoidance helps avoid other agents 
that may obstruct travel along the ideal, shortest path, but does not deviate the path 
direction. In games using this dual-layered pathing and collision avoidance approach, 
repathing occurs only when the collision avoidance solver pushes the agent far enough 
away from their current, ideal path so that it no longer remains the ideal movement direc-
tion. The implications of this are most easily seen in the following example, illustrated in 
Figure 17.1.

Goal

B

A

Figure 17.1

Two groups of agents attempting to reach a shared goal. The dashed line indicates the 
time-optimal path for agent B.



175Advanced Techniques for Robust, Efficient Crowds

In this scenario, the agents are attempting to reach a common goal. There are a large 
number of agents in group A, and therefore they will take a considerable amount of 
time to move through the lower opening. Because all agents follow their ideal shortest 
path, both groups attempt to move through the lower opening. The agent marked as 
“B” in this example could path through the upper unobstructed opening, resulting in a 
shorter travel time to its goal. This alternative path is indicated as a gray dashed line in 
Figure 17.1. With just path planning and collision avoidance, agent B will consider the 
alternative path only when its collision avoidance moves the agent close to the upper 
opening. Only then, when the agent’s shortest path is through the upper opening, will it 
consider this alternative route.

Both approaches that compute individual paths, and those like flow fields that aggre-
gate pathfinding information across a group, suffer from this lack of contextual awareness. 
These algorithms are designed to minimize the total path distance, as this is a measur-
able and easily optimized metric. Alternatively, full movement-planning approaches 
involve predicting and planning movement for all agents through the scene and solving 
for collisions and congestion over their entire respective paths. These approaches can be 
too resource intensive to compute for large numbers of agents in real time. Additionally, 
motion planning does not account for future environmental or goal changes that may 
affect the computed movement information. As such, motion planning is only seen in 
situations requiring high-quality movement for small numbers of agents.

17.3  Congestion Map Approach

The solution we propose is a hybrid of static, idealized pathfinding, with a simplification of 
motion planning. The approach computes aggregate crowd density and movement across 
the environment and then compares that to the idealized path direction and movement. 
This information, called a congestion map, is then used to augment pathfinding computa-
tions by discouraging movement through crowded areas. Congestion maps offer signifi-
cant advantages over direction maps (DMs) [Jansen 08], an approach we will compare later 
in this chapter.

This approach is based on the observation that moving against or across a crowd is 
much more difficult than movement aligned with the flow of the crowd. Additionally, the 
more densely crowded an area is, the more time it will cost to move through.

Because information on crowd dynamics is computed for groups of agents as a whole, 
the computational complexity is far less than that of full motion planning. Combined with 
aggregate pathfinding techniques such as flow fields, this approach scales well to large 
numbers of agents, making it ideal for large crowd simulations.

17.4  Augmenting Path Planning with Congestion Maps

The first step in the process is to compute the aggregate crowd density across the 
environment. For each agent in the scene, we record its current velocity and position. 
We then use the agent positions to construct an agent influence map [Champandard 11] 
across the environment space. This is used as an estimation of agent density, where larger 
influence values correspond to a denser crowd at that position. Conversely, lower values 
indicate more sparsely distributed agents.



176 Movement and Pathfinding

Velocity information is plotted and distributed over the environmental space in the 
same manner. In addition, we compute a rolling average of the agent velocity vectors, 
providing a map of the average velocity of the crowd at each point. For clarity, both the 
average velocity and the crowd density information are referred to collectively as a “con-
gestion map.” The congestion map indicates areas that are likely to experience increased 
travel costs due to crowd congestion.

The congestion map information is then used as a means of computing path traversal 
cost in a heuristic pathfinding algorithm, such as A*. Crowd density alone could be inter-
preted as a traversal cost; however, this would cause agents moving together at a uniform 
velocity to unnecessarily avoid each other. Instead, we use the aggregate crowd velocity 
information to ensure that we only add traversal costs when necessary. Using an unmodi-
fied pathfinding algorithm, we begin to compute the ideal path from the agent to the 
goal. In the pathfinding process, we use the congestion map to augment the computed 
traversal cost from one step in the path to the next. This is done by computing the differ-
ence in the aggregate crowd velocity and the agent’s ideal path velocity. The scalar mag-
nitude of this vector difference is then scaled by the crowd density value, resulting in the 
“congestion penalty” for that movement. Pseudocode for computing the traversal cost is 
shown in Listing 17.1. The congestion penalty can then be easily integrated into existing 
calculations as an additional path traversal cost. Furthermore, because the crowd conges-
tion penalty is never negative, it maintains heuristic admissibility in the path planner.

As agents move through the scene, they use the congestion map to augment their path-
finding queries. This ensures that they will favor paths that offer the shortest travel time, 
even if they are not the shortest in distance. Each agent performs a traditional pathfinding 
query, or an aggregate pathfinding pass is performed in the case of using flow fields. The 
normal behavior of the heuristic path planner uses the “congestion map” information to 
choose paths with lower costs and thus minimal travel times. Alternatively, if a congested 
path still remains better than any alternative, the path planner will correctly choose the 
congested path.

Listing 17.1.  Traversal cost computation using the congestion map information.

float congestionPenalty(Vec2 ideal,
	 Vec2 aggregate,
	 float density)
{
	 //Projection of aggregate onto ideal, represented
	 //as a scalar multiple of ideal.
	 float cost = Vec2.dot(ideal, aggregate);
	 cost /= ideal.mag() * ideal.mag();

	 //If cost is > 1, the crowd is moving faster along the
	 //ideal direction than the agent’s ideal velocity.
	 if (cost >= 1) return 0.0f;

	 //Cost is transformed to be positive,
	 //and scaled by crowd density
	 return (1 - cost) * density;
}



177Advanced Techniques for Robust, Efficient Crowds

The final step in the process involves adding in local collision avoidance. While the 
congestion map will help deal with macrolevel collision avoidance, we still rely, albeit far 
less, on collision avoidance algorithms to resolve local agent collisions.

17.5  Path Smoothing

Because the congestion coefficients are used by the pathfinder as traversal cost val-
ues, unmodified path-smoothing algorithms will not maintain this information. Path 
smoothing relies on line-of-sight collision checks to determine whether a waypoint in a 
path is considered redundant and can be removed. This process creates a final, smoothed 
path containing the minimal number of waypoints necessary to accurately guide the 
agent through the static obstacles in the environment to its goal. Because the heuristic for 
skipping path nodes only considers line of sight, it will not produce smoothed paths that 
respect congestion map information.

Smoothing of paths computed with congestion map information involves compar-
ing the movement cost of smoothed routes. Classic path-smoothing approaches assume 
the movement cost in the world is invariant and thus optimize for the shortest total path 
distance. To incorporate the congestion map information, the path-smoothing algorithm 
must compare the ultimate time cost of moving along both paths. To accurately compare 
two potential smoothed versions of a path, the smoothing algorithm must produce a heu-
ristic that accounts for both the traversal cost and total distance of each. The heuristic 
estimates the total travel cost for a path by computing the line integral along path direction 
over the congestion penalty function. This can be easily computed over a discretized world 
(such as a grid) by computing the sum of each step’s movement distance scaled by its corre-
sponding traversal cost. The result of this summation (more generally of the line integral) 
constitutes the overall traversal cost for a path. The path-smoothing algorithm can use this 
value as a heuristic, allowing it to accurately compare two potential smoothed paths.

17.6  Flow Fields with Congestion Maps and Theta

In dense crowd simulations, many agents will be considering movement in a shared space. 
Additionally, many agents may share a set of goal destinations. As such, pathfinding 
approaches that exploit this uniformity across the agent population are ideal. Flow fields 
provide these benefits, as they unify pathfinding information for all agents with a shared 
goal. Flow fields compute ideal path directions for every discretized point in a given world. 
This provides constant computation and look-up cost for paths for any number of agents 
with a shared set of goals. The increased pathfinding complexity of congestion map aware 
algorithms amplifies the benefits of flow fields for large crowds. When using flow fields 
with congestion maps, the special path-smoothing considerations can be combined into 
the flow vector calculation process.

Flow fields are generated by back-propagating ideal path directions from the goal posi-
tion using an unbounded Dijkstra’s algorithm. While this is efficient and easily imple-
mented for simple applications, it does not offer smoothed paths. Additionally, adding 
smoothing as a postprocess step (as in single-source pathfinding) does not scale well to 
large crowds due to the number of line-of-sight calculations required. These restrictions 
make the Theta* [Nash 07, Nash 15] algorithm ideal for generating flow fields.



178 Movement and Pathfinding

Theta* operates identically to Dijkstra’s algorithm when generating flow fields; how-
ever, it performs path-smoothing calculations as paths are being constructed. As Theta* 
creates a path link between two nodes A and B, it performs a line-of-sight check between 
the new node A and the parent of the previously expanded node B. This line-of-sight check 
then exists through the remainder of all path calculations and can be reused in subse-
quent path-smoothing calculations. The line-of-sight check can also incorporate conges-
tion map information by computing and memoizing the path traversal cost via the process 
defined in the previous section. Theta* combined with these path cost calculations allows 
it to efficiently generate congestion map aware flow fields. Please see the chapter on Theta* 
in this book for more details on Theta* [Nash 15].

17.7  Current Alternatives

Current crowd dynamics solutions generally involve two layers: pathfinding and local col-
lision avoidance. These approaches offer a few noteworthy benefits. They produce high-
quality movement and avoidance on small scales and are well understood and researched 
by the community. There are many open-source and off-the-shelf implementations of 
these techniques, and they integrate well into existing technology. A popular choice for 
many games is the combination of A* with velocity obstacle [van den Berg 08] approaches 
such as ORCA [van den Berg 09] or ClearPath [Guy 09]. These offer an enticing combina-
tion of fast, inexpensive pathfinding with robust, high-quality collision avoidance.

In high-density crowd situations, solely relying on local collision avoidance and ideal-
ized pathfinding will cause agents to pile up at popular, shared path waypoints. Collision 
avoidance algorithms only help avoid local collisions in the pursuit of following the ideal 
path. Often games rely on these algorithms to divert agents to less-congested, less-direct 
routes in high-density situations. In certain situations, collision avoidance can lead to 
this desired behavior, though it is always a side effect of the system and not a deliberate 
consideration.

Work has been done in incorporating aggregate crowd movement and crowd density 
into pathfinding computations [van Toll 12, Karamouzas 09, Jansen 08]. Approaches that 
augment pathing via crowd density [van Toll 12, Karamouzas 09] do not take into account 
the aggregate movement or direction of movement of the crowd. This leads to overcorrec-
tion of the phenomenon illustrated in Figure 17.1.

Congestion maps are similar in many ways to existing cooperative pathfinding algo-
rithms, such as “DMs” [Jansen 08], but differ in a few key respects. DMs use average crowd 
motion over time to encourage agents to move with the flow of the crowd. Because of this, 
many of the oscillations present in the congestion map approach are smoothly resolved. 
Conversely, this temporal smoothing prevents DMs from quickly and accurately reacting 
to changes in the environment and crowd behavior. Both congestion maps and DMs apply 
the aggregate crowd movement information to the path planning process in much the 
same way; however, congestion maps handle agents of varying size and shape, while DMs 
traditionally assume homogeneity. The final major difference between DMs and conges-
tion maps is that congestion maps weight movement penalties proportional to the density 
of the crowd. Without taking density into account, DMs display overly pessimistic path-
ing behavior, where agents are encouraged to path around sparse groups of agents block-
ing the ideal path.



179Advanced Techniques for Robust, Efficient Crowds

17.8  Benefits

Congestion maps offer an effective way of enhancing crowd behavior at scale. Compared 
to motion planning approaches that predict movement and interactions of all agents in a 
given time interval, congestion maps are an inexpensive addition to established character 
movement systems. Additionally, the simplicity of congestion maps makes them easy to 
implement and optimize.

Congestion maps augment agent pathfinding to work as it should. Instead of optimiz-
ing for minimal path distance, path planners using congestion maps correctly optimize 
for path travel time. This ensures agents will consider less-crowded alternative routes that 
may be slightly longer but ultimately faster than the ideal path.

Though congestion maps can be added to any existing path planning system, flow fields 
are ideal for exploiting the benefits of this approach. Using Theta* to generate flow 
fields results in drastically fewer line-of-sight checks, as their results can be shared across 
path calculations. Theta* minimizes the impact of the increase in path-smoothing compu-
tations with congestion maps, without reducing the technique’s effectiveness.

17.9  Drawbacks

Despite the many benefits congestion maps offer, they are not a replacement for full 
motion planning. Congestion maps are a reactive, macrolevel collision avoidance tech-
nique. Changes to crowd density over time are not taken into account when augment-
ing unit paths. As such, an agent may avoid a congested area along its ideal path that, 
by the time the agent would reach that area, would no longer be congested. This can 
lead to agents appearing to “change their mind” as congestion eases in specific loca-
tions. Conversely, an agent can begin moving toward a location that is not currently 
congested, but that will become so once the agent reaches the area. This will cause the 
agent to change directions toward a longer, less-congested path. Depending on the appli-
cation of the congestion map approach, these behavioral flaws may be acceptable, as they 
mimic the fallibility of human path planning. In other applications, their impact may 
be negligible.

Due to the dynamic nature of crowd density, congestion maps are best suited for highly 
dynamic environments and techniques. As crowd density changes, existing paths become 
less ideal in both distance and traversal time. This necessitates replanning existing paths 
to account for changes in the environment. Hierarchical discretization helps alleviate 
some of the costs of consistent repathing by shrinking the search space, speeding up indi-
vidual pathfinding computations.

Finally, by their nature, congestion maps weaken the heuristic used for search, increas-
ing the cost of path planning. Again, hierarchical methods or weighted A* can be used to 
reduce this overhead [Jansen 08].

17.10  Performance Considerations

Congestion maps compute crowd density and aggregate information across the entire envi-
ronment. This requires discretizing the continuous space at some granularity. As the reso-
lution of the congestion map data increases, the memory required to store the congestion 



180 Movement and Pathfinding

data also increases. Additionally, the cost of computing blended moving averages of 
aggregate crowd movement vectors increases with the resolution of the congestion map.

Despite holding information for every position in the environment, the congestion 
map doesn’t need to correspond directly to the existing world discretization. In fact, the 
congestion map resolution can be much smaller than the world discretization resolution 
and still maintain much of its effectiveness. However, the coarser the congestion map 
resolution, the more likely agents will exhibit strange behavior, such as avoiding areas that 
don’t need to be avoided. The overall macrolevel behavior will be correct and consistent; 
however, individuals may show odd patterns of behavior.

17.11  Future Work

Hysteresis can be added to the system to prevent agents from oscillating between 
potential paths quickly due to rapid changes in congestion information. With hyster-
esis, an agent will remain on its current path until the congestion values have surpassed 
a certain value for a certain amount of time. Likewise, the agent will not consider a 
shorter path until that path has been uncongested for a certain amount of time. These 
time intervals and congestion thresholds are user defined, offering high-level control 
over the behavior of the agents in the scene. Additional realism is obtained by author-
ing congestion coefficient levels and time delays as random distributions over specific 
value ranges.

Because the congestion map only offers a snapshot of the current crowd density and 
aggregate velocity, it is not perfectly accurate to the realities of the agents’ theoretically 
ideal behavior. This inaccuracy is introduced as a means of improving runtime perfor-
mance and simplifying implementation details. Computing the full crowd density over 
time would allow the path planner to more accurately compute traversal cost. With this 
method, the path planner can base the traversal cost on the crowd state at the time when 
the agent would be at the considered position in its path. This is similar to motion plan-
ning approaches, in that each agent must know the expected behavior of the other agents 
in the scene to compute an ideal path. Because they only require computing aggregate 
agent behavior, congestion maps evaluated over time intervals may also prove to be less 
computationally expensive than full motion planning.

17.12  Conclusion

A combination of static, idealized pathfinding and localized collision avoidance algo-
rithms are often used to simulate crowds in games. While effective for small numbers of 
sparse agents, these approaches lack consideration of the effects of crowd dynamics on 
agents’ path planning calculations.

Congestion maps introduce context awareness to the path planning system and allow 
individual agents to react to the agents around them on a large scale. Together with Theta*, 
congestion maps can generate ideal pathing information for an entire environment in the 
form of a vector flow field. By maximally reusing shared path computations, flow fields 
help reduce the cost of smoothing individually computed paths.

Adding congestion maps to a path planning system allows agents, in situations of high 
crowd density, to find alternative, longer paths that will ultimately take less time to follow. 



181Advanced Techniques for Robust, Efficient Crowds

This is a behavior not previously possible without expensive motion planning approaches, 
which provides opportunities for games to create more compelling, realistic, and interest-
ing crowds.

References

[Champandard 11] Champandard, A. 2011. The mechanics of influence mapping: 
Representation, algorithm and parameters. http://aigamedev.com/open/tutorial/
influence-map-mechanics/ (accessed June 1, 2014).

[Guy 09] Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P. 2009. 
ClearPath: Highly parallel collision avoidance for multi-agent simulation. Proceedings 
of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2009), 
pp. 177–187.

[Jansen 08] Jansen, M. and Sturtevant, N. 2008. Direction maps for cooperative pathfind-
ing. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital 
Entertainment.

[Karamouzas 09] Karamouzas, I., Bakker, J., and Overmars, M. 2009. Density constraints for 
crowd simulation. Proceedings of the ICE Games Innovations Conference, pp. 160–168.

[Nash 07] Nash, A., Daniel, K., Koenig, S., and Felner, A. 2007. Theta*: Any-angle path 
planning on grids. Proceedings of the AAAI Conference on Artificial Intelligence, 
pp. 1177–1183.

[Nash 15] Nash, A. and Koenig, S. 2015. Theta* for Any-Angle Pathfinding. In Game AI 
Pro2: Collected Wisdom of Game AI Professionals, ed. S. Rabin. A K Peters/CRC Press, 
Boca Raton, FL.

[Sturtevant 05] Sturtevant, N. and Buro, M. 2005. Partial pathfinding using map abstraction 
and refinement. Proceedings of the National Conference on Artificial Intelligence, July 
2005, Vol. 5, pp. 1392–1397.

[van den Berg 08] van den Berg, J., Lin, M., and Manocha, D. 2008. Reciprocal velocity 
obstacles for real-time multi-agent navigation. IEEE International Conference on 
Robotics and Automation, 1928–1935.

[van den Berg 09] van den Berg, J., Guy, S., Lin, M., and Manocha, D. 2009. Reciprocal 
n-body collision avoidance. Proceedings of the International Symposium on Robotics 
Research.

[van Toll 12] van Toll, W., Cook IV, A., and Geraerts, R. 2012. Real-time density-based 
crowd simulation. Computer Animation and Virtual Worlds, 23, 59–69.


