
145

Subgoal Graphs for Fast 
Optimal Pathfinding
Tansel Uras and Sven Koenig

15

15.1  Introduction

Paths for game agents are often found by representing the map that the agents move on 
as a graph and using a search algorithm, such as A*, to search this graph. Pathfinding in 
games needs to be fast, especially if many agents are moving on the map. To speed up path 
planning, maps can often be preprocessed before games are released or when they are 
loaded into memory. The data produced by preprocessing should use a small amount of 
memory, and preprocessing should be fast if it is performed at runtime.

In this chapter, we present subgoal graphs, which are constructed by preprocessing 
maps that are represented as grids. Subgoal graphs use a small amount of memory and 
can be used to find shortest paths fast by ignoring most of the grid cells during search. We 
describe several variants of subgoal graphs, each being a more sophisticated version of the 
previous one and each requiring more preprocessing time in return for faster searches. 
Even though subgoal graphs are specific to grids, the ideas behind them can be general-
ized to any graph representation of a map.

Table 15.1 summarizes the results from the original paper on subgoal graphs [Uras 14] 
on maps from the video games Dragon Age: Origins, StarCraft, Warcraft III, and Baldur’s 

15.1	 Introduction
15.2	 Preliminaries
15.3	 Simple Subgoal Graphs
15.4	 Two-Level Subgoal Graphs

15.5	 N-Level Graphs
15.6	 Conclusion
Acknowledgments
References



146 Movement and Pathfinding

Gate II [Sturtevant 12]. The two-level subgoal graph (TSG) entry was one of the nondomi-
nated entries in the Grid-Based Path Planning Competitions 2012 and 2013. That is, if 
another entry was faster, it either was suboptimal or required more memory.

15.2  Preliminaries

We assume that the map is represented as a uniform-cost eight-neighbor grid with obsta-
cles consisting of contiguous segments of blocked cells. The agent moves from grid center 
to grid center and can move to an unblocked cell in any cardinal or diagonal direction, 
with one exception: we assume that the agent is not a point and, therefore, can move 
diagonally only if both associated cardinal directions are also unblocked. For example, in 
Figure 15.1, the agent cannot move diagonally from B2 to A1 because A2 is blocked. The 
lengths of cardinal and diagonal moves are 1 and 2 , respectively.

A* is a commonly used algorithm for pathfinding. It is an informed search algorithm 
that uses a heuristic to guide the search to find paths faster. The heuristic estimates the 
distance between any two locations on the map and, in order for A* to find shortest paths, 
needs to be admissible, that is, never overestimate the distance between two locations 
[Hart 68].

One common heuristic used when solving pathfinding problems is the Euclidean 
distance, which is the straight-line distance between two locations. For instance, the 
Euclidean distance between s and r in Figure 15.1 is 5 2 5 392 2+ = . . The Euclidean 

Table 15.1  Comparison of Subgoal Graph Variants on Game Maps

Subgoal Graph Variant 
Preprocessing 

Time (s) 
Memory Used 

(MBytes) 

Runtime of A* on 
Subgoal Graphs Rather 

Than Grids Optimal?

Simple subgoal graphs 0.022 1.172 24 times faster Yes
Two-level subgoal graphs 2.031 1.223 71 times faster Yes
N-level subgoal graphs 2.195 1.223 112 times faster Yes

Note:	 The average runtime of A* is 12.69 ms on these maps.

A B

p

C D

s

E F G H

q

r

1

2

3

4

Figure 15.1

Shortest paths from s to some other cells on an eight-neighbor grid and the straight line 
between s and r.



147Subgoal Graphs for Fast Optimal Pathfinding

distance is guaranteed to be admissible on maps with uniform traversal costs since 
the shortest path between two locations cannot be shorter than the straight line 
between them.

On eight-neighbor grids with uniform traversal costs, however, there is a more 
informed heuristic. The octile distance between two cells on the grid is the length of a 
shortest path between (that is, between their centers) assuming there are no obstacles 
on the grid. On a grid with no obstacles, the shortest path between two cells contains 
moves in only two directions. For instance, in Figure 15.1, all shortest paths between s 
and r contain exactly two diagonal moves toward the southeast and three cardinal moves 
toward the east. Therefore, the octile distance between two cells can be computed by 
simply comparing their x and y coordinates to figure out exactly how many diagonal and 
cardinal moves would be on a shortest path between them if the grid had no obstacles. 
For instance, the octile distance between s and r is .3 2 2 5 83+ × = .

The octile distance is guaranteed to be admissible on eight-neighbor grids with uniform 
traversal costs since the shortest path between two cells cannot be shorter than on a grid 
with no obstacles. It is more informed than the Euclidean distance because the octile dis-
tance between two cells cannot be smaller than the Euclidean distance but is sometimes 
larger. Searching with a more informed heuristic means that the search typically performs 
fewer expansions before it finds a path and is then faster.

15.3  Simple Subgoal Graphs

Simple subgoal graphs (SSGs) are an adaptation of visibility graphs to grids. Visibility 
graphs abstract continuous environments with polygonal obstacles. The vertices of a 
visibility graph are the convex corners of obstacles, and the edges connect vertices that 
are visible from each other. The length of an edge is equal to the Euclidean distance 
between the vertices it connects. To find a shortest path between given start and goal 
locations in a continuous environment, one simply adds the vertices for them to the 
visibility graph, connects them to all vertices visible from them, and searches the result-
ing graph for a shortest path from the start vertex (which corresponds to the start loca-
tion) to the goal vertex (which corresponds to the goal location). Figure 15.2 shows an 
example of a visibility graph and a path found by searching this graph. If an optimal 
search algorithm is used to search this graph (such as a suitable version of A* with the 

Start

Goal

Figure 15.2

A visibility graph and the shortest path between the start and goal vertices.



148 Movement and Pathfinding

Euclidean distance as heuristic), the resulting path is also a shortest path from the start 
location to the goal location in the continuous environment.

SSGs, on the other hand, abstract grids. The vertices of an SSG are called subgoals and 
are placed at the convex corners of obstacles on the grid. The edges connect subgoals that 
satisfy a certain connection strategy that we describe later. The length of an edge is equal 
to the octile distance between the vertices it connects. To find a shortest path between 
given start and goal cells on a grid, one can use the following steps: First, vertices are 
added to the SSG for the start and goal cells. Then, edges are added to connect them to the 
other vertices using the given connection strategy. Finally, the resulting graph is searched 
with A* with the octile distance as heuristic. The resulting high-level path is a series of 
subgoals connecting the start and goal vertices. One can then connect the subgoals on this 
high-level path on the grid to obtain a shortest low-level path on the grid.

Visibility graphs have strengths that SSGs aim to preserve. For instance, they can be 
used to find shortest paths and can be precomputed and stored. Visibility graphs also have 
some weaknesses that SSGs aim to fix. For instance, they can result in search trees with 
high branching factors, which is bad for both memory consumption and search time. The 
construction of visibility graphs can also be time consuming since one needs to perform 
visibility checks between all pairs of vertices. Even if preprocessing time is not an issue, 
visibility checks need to be performed when connecting the start and goal vertices to 
the visibility graph at runtime, namely, from the start and goal vertices to all other vertices 
of the visibility graph.

15.3.1  Constructing Simple Subgoal Graphs
Similar to visibility graphs, SSGs place subgoals at the corners of obstacles. Formally, we 
say that a cell s is a subgoal if and only if s is unblocked, s has a blocked diagonal neigh-
bor t, and the two cells that are neighbors of both s and t are unblocked. For instance, in 
Figure 15.1, B1 is a subgoal because A2 is blocked and both A1 and B2 are unblocked. The 
idea is the same as for visibility graphs, namely, that one can use the convex corners of 
obstacles to navigate around them optimally.

We now introduce the concept of h-reachability. We say that two vertices of a graph 
are h-reachable if and only if there is a shortest path between them whose length is equal 
to the heuristic between them. H-reachability is a generalization of the concept of vis-
ibility in visibility graphs. Since visibility graphs abstract continuous environments, the 
heuristic used is the Euclidean distance. Thus, two vertices in a continuous environment 
are h-reachable if and only if they are visible from each other. Therefore, edges in visibility 
graphs connect exactly the h-reachable vertices.

Now, we discuss how h-reachable subgoals are connected. Since SSGs abstract grids, we 
use the octile distance as heuristic, and the length of an edge is equal to the octile distance 
between the subgoals it connects. Figure 15.3 shows an SSG constructed by connecting all 
h-reachable subgoals.

We now explain three properties that a connection strategy should possess and check 
whether the strategy of connecting h-reachable subgoals satisfies them:

	 1.	 Edges are easy to follow on the grid: If two cells on the grid are h-reachable, we can 
navigate from one cell to the other by moving in only two directions, as discussed in 
the preliminaries. This certainly makes it easier to follow h-reachable edges (edges that 



149Subgoal Graphs for Fast Optimal Pathfinding

connect two h-reachable cells) compared to doing an A* search on the grid between 
the two subgoals they connect since we know how many cardinal and diagonal moves 
to make in which directions. All we have to figure out is the order of the moves.

	 2.	 Searches find shortest paths: Adding edges between all h-reachable subgoals (plus 
the start and goal cells) also allows us to find shortest paths on the grid. The proof 
follows from the observation that, if two cells are not h-reachable, then there must 
be an obstacle that makes the path between the two cells longer than the octile 
distance between them. This obstacle introduces a subgoal that can be used to 
optimally circumnavigate it [Uras 13].

	 3.	 Search trees have low branching factors: Unfortunately, with this connection strat-
egy, SSGs can have many more edges than the corresponding visibility graphs. 
For instance, in Figure 15.3, D3 and H5 are not visible from each other, but they 
are h-reachable.

The branching factors are a deal breaker for us, so we need to modify our connection 
strategy. H-reachability is still a valuable concept that will be used later when we generate 
two-level subgoal graphs from SSGs.

Fortunately, it is easy to address this issue. Consider the edge between D3 and H5 in 
Figure 15.3. This edge corresponds to the grid path D3-E4-F5-G5-H5. But there is already a 
subgoal at F5, and there are edges in the SSG between D3 and F5 and between F5 and H7. The 
sum of the lengths of these two edges is equal to the length of the edge between D3 and H5. 
Therefore, the edge between D3 and H5 is redundant and can be removed from the SSG with-
out affecting the optimality of the resulting paths. When we remove all such redundant edges 
from the SSG in Figure 15.3, we end up with the SSG in Figure 15.4. We call the remaining 
edges direct-h-reachable edges and the subgoals they connect direct-h-reachable subgoals.

Formally, we say that two cells are direct-h-reachable if and only if they are h-reachable 
and none of the shortest paths between them pass through a subgoal. Direct-h-reachable 
edges are easier to follow than h-reachable edges. As mentioned before, h-reachable edges 
are easy to follow because we know exactly how many cardinal and diagonal moves we 
have to make in each direction. The problem is that we have to figure out the order of the 
moves. This is not the case for direct-h-reachable edges. Observe that, in Figure 15.1, all 
shortest paths between s and r cover a parallelogram-shaped area. As an equivalent defi-
nition of direct-h-reachability, we say that two cells are direct-h-reachable if and only if 
the parallelogram-shaped area between them does not contain any subgoals and that the 

A B C D E F G H

1

2

3

4

5

Figure 15.3

An SSG constructed by connecting all h-reachable subgoals.



150 Movement and Pathfinding

movement inside the parallelogram-shaped area is not blocked. Therefore, when following 
direct-h-reachable edges, we can make the cardinal and diagonal moves in any order. The 
equivalence of the two definitions follows from the observation that obstacles that block 
movement in the parallelogram-shaped area between two cells either introduce subgoals 
in the parallelogram-shaped area (meaning that the two cells are not direct-h-reachable) 
or block all shortest paths between the two cells (meaning that the two cells are not even 
h-reachable) [Uras 13].

The definition of parallelogram-shaped areas is also useful for showing that the branch-
ing factors of the search trees generated when using SSGs are lower than when using visibil-
ity graphs. If the movement inside the parallelogram-shaped area between two cells is not 
blocked, then the straight line between the two cells cannot be blocked either, which means 
that they must be visible from each other. Therefore, every direct-h-reachable edge in an 
SSG corresponds to a straight-line edge in the visibility graph. The converse is not true. For 
instance, in Figure 15.4, A3 and F5 are visible from each other but not direct-h-reachable.

To summarize, SSGs are constructed by placing subgoals at the corners of obstacles 
and adding edges between subgoals that are direct-h-reachable. Section 15.3.3 describes 
an algorithm to identify all direct-h-reachable subgoals from a given cell.

15.3.2  Searching Using Simple Subgoal Graphs
Once an SSG has been constructed, it can be used to find shortest paths between any 
two cells on the grid. Given a start cell and a goal cell, we connect them to their direct-h-
reachable subgoals using the algorithm described in the next section. We then search the 
resulting graph with an optimal search algorithm, such as a suitable version of A* with 
the octile distance heuristic, to find a shortest high-level path. We then follow the edges of 
this path by simply moving in the direction of the next cell on the high-level path, to find 
a shortest low-level path on the grid. This process is illustrated in Figure 15.5.

There are some subtle points to the algorithm. If either the start or goal cell is a subgoal, 
we do not need to identify the subgoals that are direct-h-reachable from them since they 
are already in the SSG. Also, since the algorithm described in the next section finds only 
the subgoals that are direct-h-reachable from a given cell, it might not connect the start 
cell to the goal cell if they are direct-h-reachable but neither of them is a subgoal. In this 
case, we might not be able to find a shortest path between them. Before connecting the 

A B C D E F G H

1

2

3

4

5

Figure 15.4

An SSG constructed by connecting all direct-h-reachable subgoals.



151Subgoal Graphs for Fast Optimal Pathfinding

start and goal cells to the SSG, we therefore first generate a possible shortest path between 
them (for instance, by first moving diagonally and then moving cardinally). If the path is 
not blocked, we return it as the shortest path. Otherwise, the start and goal cells cannot 
be direct-h-reachable, and we therefore search using the SSG as described earlier.

15.3.3  Identifying All Direct-H-Reachable Subgoals from a Given Cell
Being able to identify all direct-h-reachable subgoals from a given cell quickly is impor-
tant both during the construction of SSGs and when connecting the start and goal cells 
to SSGs. The algorithm we propose is a dynamic programming algorithm that identi-
fies all direct-h-reachable cells from a given cell s and returns all subgoals among them. 
Figure 15.6 shows an example.

Our algorithm uses clearance values. The clearance value of a cell s in a direction d, 
called Clearance(s, d), is the maximum number of moves the agent can make from s 

A B C D E F G H

(a) (b)

g

s

1

2

3

4

5

A B C D E F G H
g

s

1

2

3

4

5

Figure 15.5

Connecting the start and goal cells to the SSG and finding a shortest high-level path on the 
resulting graph (a). Then, following the edges on this high-level path to find a shortest low-
level path on the grid (b).

A B C D E F G H
1

2

3

4

5

I J J L M N O P

s6

7

8

9

Subgoal that is direct-h-
reachable from s

Subgoal that is not direct-
h-reachable from s

Line that explores direct-
h-reachable cells from s 
that can be reached by 
moving in one direction
Line that explores direct-
h-reachable cells from s 
that can be reached by 

moving in two directions

Figure 15.6

Identifying the direct-h-reachable area around s (shown in gray), which contains all direct-
h-reachable subgoals from s.



152 Movement and Pathfinding

toward d without reaching a subgoal or being blocked. For instance, the east clearance of s 
in Figure 15.6 is 6 because M6 is blocked. The north clearance of s is 2 because F3 is a sub-
goal. Clearance values can be either computed at runtime or be precomputed, although 
the algorithm does not benefit much from storing clearance values in diagonal directions. 
The algorithm works in two phases:

The first phase identifies all direct-h-reachable cells from s that can be reached by mov-
ing in only one direction. This is achieved by looking at the clearance values of s 
in all eight directions to figure out if there are direct-h-reachable subgoals in these 
directions. For instance, since the north clearance of s in Figure 15.6 is 2, the algo-
rithm checks the cell 2 + 1 moves north of s, F3, to see if it is a subgoal. In Figure 15.6, 
the first phase determines that C3 and F3 are direct-h-reachable subgoals from s.

The second phase identifies all direct-h-reachable cells from s that can be reached by 
a combination of moves in a cardinal and a diagonal direction. There are eight 
combinations of cardinal and diagonal directions that can appear on a shortest 
path between two direct-h-reachable cells, and each of them identifies an area. 
Figure 15.6 shows these combinations, divided by the solid lines emanating 
from s in eight directions. The algorithm explores each area line by line (using the 
dashed lines in Figure 15.6). Assume that it is exploring the area that is associated 
with cardinal direction c and diagonal direction d. For each cell that is direct-h-
reachable from s by moving toward d, it casts a line that starts at that cell and trav-
els toward c. It starts with the line closest to s and continues until all lines are cast.

We now present three rules to determine how far each line extends. The first rule is 
simple: a line stops when it reaches a subgoal or directly before it reaches an obstacle. This 
is so because the additional cells the line would reach cannot be direct-h-reachable from s 
according to the definition of direct-h-reachability. Otherwise, the parallelogram-shaped 
area between s and the next cell the line would reach contained a subgoal or obstacle. The 
second rule follows from the following observation: if cell t is direct-h-reachable from 
cell s, then any cell u that lies in the parallelogram-shaped area between s and t is also 
direct-h-reachable from s. This is so because the parallelogram-shaped area between s 
and u is a subarea of the parallelogram-shaped area between s and t and, therefore, does 
not contain any subgoals and the movement inside the area is not blocked (since s and 
t are direct-h-reachable). Therefore, the area of cells that are direct-h-reachable from s 
is a union of parallelogram-shaped areas, each area between s and some other cell. This 
results in the second rule: a line cannot be longer than the previous line. Otherwise, the 
area cannot be a union of parallelogram-shaped areas. The third rule is a refinement of 
the second rule: a line cannot be longer than the previous line minus one cell if the previous 
line ends in a subgoal.

The algorithm uses these rules to determine quickly how far each line extends. For 
instance, in Figure 15.6, when the algorithm explores the east–northeast area around s, 
the first line it casts travels along row 5 toward east and reaches subgoal L5 after 5 moves. 
Since the first line ends in a subgoal, the second line can only travel 5 − 1 = 4 moves 
and stops before reaching subgoal M4, which is not direct-h-reachable from s. Instead of 
explicitly casting lines, the algorithm can use the clearance values of the cells in which the 
lines originate. Listing 15.1 shows pseudocode that uses the clearance values.



153Subgoal Graphs for Fast Optimal Pathfinding

15.4  Two-Level Subgoal Graphs

Searches using SSGs are faster than searches of grids because SSGs are smaller than grids and 
searching them expands fewer cells on average. In a way, SSGs partition the cells into subgoals 
and nonsubgoals, and the search ignores all nonsubgoals other than the start and goal cells.

Two-level subgoal graphs (TSGs) apply this idea to SSGs instead of grids. TSGs are 
constructed from SSGs by partitioning the subgoals into local and global subgoals. The 
search ignores all local subgoals that are not direct-h-reachable from the start or goal cells, 
allowing us to search even smaller graphs. TSGs satisfy the following property, called the 
two-level property (TLP):

The length of a shortest path between any two (local or global) subgoals s and t on the SSG 
is equal to the length of a shortest path between s and t on the graph consisting of all global 
subgoals of the TSG plus s and t (and all edges between these subgoals in the TSG).

In other words, if we remove all local subgoals except for s and t (and their associated 
edges) from the TSG, then the length of a shortest path between s and t does not change.

This property guarantees that TSGs can be used to find shortest paths on grids [Uras 13]. 
Figure 15.7 shows an SSG and a TSG constructed from the SSG. Observe that the subgraph 
of the TSG consisting of A1, D1, D3, and H5 contains the shortest path between A1 and 
H5. Also, observe that the edge between D3 and H5 is not direct-h-reachable. During the 
construction of TSGs, h-reachable edges can be added to the graph if this allows classify-
ing more subgoals as local subgoals.

15.4.1  Constructing Two-Level Subgoal Graphs
Constructing TSGs from SSGs is different from constructing SSGs from grids. When con-
structing SSGs from grids, we identify some cells as subgoals and connect them with a 
connection strategy that allows them to be used to find shortest paths on the grids. This 
is possible because grids have structure, and visibility graphs provide some intuition for 
exploiting it.

Listing 15.1.  Identify all direct-h-reachable subgoals in an area.

GetDirectHReachable(cell s, cardinal dir. c, diagonal dir. d)
	 SubgoalVector list = {};
	 int maxLineLength = Clearance(s,c);
	 int nDiagMoves = Clearance(s,d);
	 for int i = 1 … nDiagMoves
	 s = neighbor of s toward d;
	 l = Clearance(s,c);
	 if (l < maxLineLength)
	 maxLineLength = l;
	 s’ = the cell l+1 moves away from s toward c;
	 if (s’ is a subgoal)
	 list.add(s’);
	 return list;



154 Movement and Pathfinding

On the other hand, there is little structure to exploit when constructing TSGs from 
SSGs. Therefore, we start by assuming that all subgoals are global subgoals. At this point, 
the TLP is satisfied since the TSG is identical to the SSG. We then iterate over all global 
subgoals and classify them as local subgoals if doing so does not violate the TLP. We are 
allowed to add edges between h-reachable subgoals if doing so helps to preserve the TLP 
and allows us to classify a global subgoal as a local subgoal.

The question remains how to determine quickly whether a subgoal s can be clas-
sified as a local subgoal. The straightforward method is to check if removing s from 
the TSG increases the length of a shortest path between two other subgoals that are 
not h-reachable (if they are h-reachable, we can simply add an edge between them). It 
is faster to check if removing s from the TSG increases the length of a shortest path 
between two of its neighbors that are not h-reachable, because any path that passes 
through s must also pass through its neighbors. The process of removing s in this way is 
called a contraction [Geisberger 08]. Listing 15.2 shows  pseudocode for constructing a 
TSG from an SSG.

For each global subgoal s, we accumulate a list of edges that would need to be added to 
the TSG if s were classified as a local subgoal. We iterate over all pairs of neighbors of s. 
If there exists a pair of neighbors such that all shortest paths between the two neighbors 
pass through s and the neighbors are not h-reachable, then s cannot be classified as a local 
subgoal because doing so would violate the TLP. Otherwise, we classify s as a local subgoal 
and add all necessary edges to the TSG.

SSGs do not necessarily have unique TSGs since the resulting TSG can depend on the 
order in which the subgoals are processed. For instance, in Figure 15.7, if D1 were a local 
subgoal and A3 were a global subgoal, the resulting TSG would still satisfy the TLP. No 
research has been done so far on how the order in which the subgoals are processed affects 
the resulting TSG.

15.4.2  Searching Using Two-Level Subgoal Graphs
Search using TSGs is similar to search using SSGs. We start with a core graph that consists 
of all global subgoals and the edges between them. We then connect the start and goal 
cells to their respective direct-h-reachable (local or global) subgoals. Next, local subgoals 

A B C D

(a) (b)

E F G H

1

2

3

4

5

A B C D E F G H

1

2

3

4

5

Figure 15.7

An SSG (a) and a TSG constructed from the SSG (b). Hollow circles indicate local subgoals, 
and solid circles indicate global subgoals.



155Subgoal Graphs for Fast Optimal Pathfinding

that are direct-h-reachable from the start or goal cells using edges not in the core graph 
are added to the graph. Once a high-level shortest path from the start cell to the goal cell is 
found on this graph, we follow its edges to find a low-level path on the grid. We might have 
to follow edges between cells that are h-reachable but not direct-h-reachable. This means 
that we have to identify the order of cardinal and diagonal moves, which can be achieved 
with a depth-first search. Figure 15.8 shows an example of this search graph. The number 
of subgoals excluded from the search can be much larger for larger TSGs.

Listing 15.2.  Constructing a TSG from an SSG.

ConstructTSG(SSG S)
	 SubgoalList G = subgoals of S; //Global subgoals
	 SubgoalList L = {}; //Local subgoals
	 EdgeList E = edges of S;
	 for all s in G
	 EdgeList E+ = {}; //Extra edges
	 bool local = true; //Assume s can be a local subgoal
	 for all p, q in Neighbors(s) //Neighbors wrt E
	 d = length of a shortest path between p and q
	 (wrt E) that does not pass through s or any
	 subgoal in L;
	 if (d > c(p,s) + c(s,q))
	 if (p and q are h-reachable)
	 E+.add((p,q));
	 else //s is necessary to connect p and q
	 local = false; //Can’t make s local
	 break;
	 if (local)
	 G.remove(s); //Classify s as a local subgoal
	 L.add(s);
	 E.append(E+); //Add the extra edges to the TSG
	 return (G, L, E);

A B C D E F G H

(a) (b)

1

2

3

4

5

A B C D E F G H
g

s

1

2

3

4

5

Figure 15.8

A TSG (a) and a search using this TSG (b). The graph that is searched consists of the solid 
circles.



156 Movement and Pathfinding

15.5  N-Level Graphs

We now generalize the ideas behind the construction of TSGs to be able to generate graphs 
with more than two levels from any given undirected graph [Uras 14].

Observe that only the terms “subgoal” and “h-reachable” are specific to subgoal 
graphs in the partitioning algorithm shown in Listing 15.2 and can be replaced by the 
terms “vertex” and “a property P that all extra edges need to satisfy,” making the par-
titioning algorithm applicable to any undirected graph. The lengths of the edges added 
to the graph should always be equal to the lengths of shortest paths on the original 
graph between the two vertices they connect. We need to specify a property P that all 
extra edges need to satisfy. Otherwise, all vertices of a graph can be classified as local 
by adding edges between all vertices, which would create a pairwise distance matrix for 
the graph. P should be chosen such that the extra edges can easily be followed on the 
original graph and the branching factors of the search trees do not increase too much. 
H-reachability satisfies these criteria for subgoal graphs, although other properties could 
exist that would result in even faster searches. If it is hard to come up with such a prop-
erty, one can always choose P such that no extra edges are added to the graph, resulting 
in fewer vertices being excluded from the search. Two-level graphs can be constructed 
by applying the general version of the partitioning algorithm described in Listing 15.2 
to any undirected graph. Figure 15.9 shows an example with an undirected graph with 
unit edge costs and a two-level graph constructed from the undirected graph without 
adding extra edges.

The general version of the algorithm described in Listing 15.2 partitions the vertices of 
an undirected graph into local and global vertices. Call local vertices level 1 vertices and 
global vertices level 2 vertices. Level 2 vertices and the edges between them form a graph, 
and one can apply the general version of the algorithm described in Listing 15.2 to this 
graph to partition the level 2 vertices into level 2 and level 3 vertices. Figure 15.10 shows an 
example of a three-level graph, constructed from the two-level graph shown in Figure 15.9 
by partitioning its level 2 vertices into level 2 and level 3 vertices.

One can keep adding levels to the graphs by recursively partitioning the highest-level 
vertices until they can no longer be partitioned. Adding more levels to the graph means 

E

D

G
H

(a) (b)

I

C

LK

B

F

J

A

E

D

G
H

I

C

LK

B

F

J

A

Figure 15.9

An undirected graph with unit edge costs (a) and a two-level graph constructed from the 
undirected graph without adding extra edges (b). Solid circles indicate global vertices, and 
dashed circles indicate local vertices.



157Subgoal Graphs for Fast Optimal Pathfinding

that the graphs that are searched are getting smaller but also that one needs to spend more 
time constructing the graph for each search.

Once an n-level graph has been constructed, it can be used to find shortest paths 
between any two vertices of the original graph. Call the graph consisting of all highest-
level vertices (and the edges between them) the core graph since it appears in every 
search. When using a two-level graph to find a shortest path between given start and goal 
vertices, one adds them to the core graph and searches the resulting graph with an opti-
mal search algorithm to find a high-level path. When using a three-level graph to find 
a shortest path between given start and goal vertices, one also adds any level 2 vertices 
that are neighbors of the start or goal vertices. This process is illustrated in Figure 15.11. 
Listing 15.3 shows pseudocode to determine which vertices need to be added to the core 
graph when using n-level graphs, for any value of N. This algorithm needs to be called 
for both the start and goal vertices. When this algorithm is called for an SSG, it creates 
an n-level subgoal graph.

SSGs are essentially two-level grid graphs. If one were to allow the addition of extra 
edges between direct-h-reachable vertices of the grid graph, the general version of 
the algorithm described in Listing 15.2 could classify all subgoals as level 2 vertices 
and all nonsubgoals as level 1 vertices [Uras 14], although it could take a long time to 
run and the extra edges between direct-h-reachable cells could require a lot of mem-
ory to store. The construction of SSGs, as described previously, avoids these issues 
by exploiting the structure of grids and by only storing direct-h-reachable edges 
between subgoals. Direct-h-reachable edges that are not stored are reconstructed 

E
D

G
H

I

C

LK

B

F

J

A

> Level 3 vertex

> Level 2 vertex

> Level 1 vertex

Figure 15.10

A three-level graph constructed from the undirected graph in Figure 15.9.

E

D

GH

I C

LK BF J A

E GH

I C

BFLevel 1

Level 2

Level 3

(a) (b)

Figure 15.11

The three-level graph from Figure 15.10 with vertices rearranged in layers (a) and the graph 
searched for a shortest path between vertices F and B of the three-level graph (b).



158 Movement and Pathfinding

before a search when connecting the start and goal cells to the SSG or when checking 
if the start and goal cells are direct-h-reachable. Figure 15.12 shows an SSG, a TSG, 
and a five-level subgoal graph (six-level grid graph).

The ideas behind n-level graphs are also closely related to contraction hierarchies 
[Geisberger 08], where the vertices of a graph are first ordered by “importance” and then 
iteratively contracted, starting from the least important vertex. Contracting a vertex v 
means replacing unique shortest paths between the neighbors of v that go through v by 
shortcut edges. The resulting graphs are searched with a bidirectional search algorithm, 
where the forward search uses only edges leading to more important vertices and the back-
ward search uses only edges coming from more important vertices. Vertex contraction is 
used during the construction of n-level graphs whenever the level of a vertex is decreased. 
In essence, n-level graphs are contraction hierarchies where there are constraints on add-
ing new edges to the graph but each level is not limited to contain only one vertex.

Listing 15.3.  Identifying which vertices need to be added to the core graph during 
search.

IdentifyConnectingVertices(vertex s, Graph G, int graphLevel)
	 VertexList open = {s};
	 VertexList closed = {};
	 while (open != {})
	 vertex p = open.getVertexWithSmallestLevel();
	 open.remove(p);
	 if (p.level == graphLevel)
	 break;
	 if (!closed.contains(p))
	 closed.add(p);
	 for all neighbors q of p in G
	 if (q.level > p.level && !closed.contains(q))
	 open.add(q);
	 return closed;

(a) (b) (c)

Figure 15.12

An SSG (a), TSG (b), and a five-level subgoal graph (c). Only the highest-level subgoals and 
the edges between them are shown.



159Subgoal Graphs for Fast Optimal Pathfinding

15.6  Conclusion

Subgoal graphs are generated by preprocessing grids and can be used to significantly speed 
up searches on grids, with little memory overhead. The ideas behind them apply to any 
undirected graph, although it might need some ingenuity to figure out a suitable property 
that all extra edges need to satisfy. We have, so far, only tested n-level graphs on grids.

Acknowledgments

The research at USC was supported by NSF under grant numbers 1409987 and 1319966. 
The views and conclusions contained in this document are those of the authors and should 
not be interpreted as representing the official policies, either expressed or implied, of the 
sponsoring organizations, agencies or the U.S. government.

References

[Geisberger 08] Geisberger, R., Sanders, P., Schultes, D., and Delling, D. 2008. Contraction 
hierarchies: Faster and simpler hierarchical routing in road networks. Proceedings of 
the International Workshop on Experimental Algorithms, Provincetown, MA, 319–333.

[Hart 68] Hart, P., Nilsson, N., and Raphael, B. 1968. A formal basis for the heuristic 
determination of minimum cost paths. IEEE Transactions on Systems Science and 
Cybernetics 4(2):100–107.

[Sturtevant 12] Sturtevant, N. 2012. Benchmarks for grid-based pathfinding. Transactions 
on Computational Intelligence and AI in Games 4(2):144–148.

[Uras 13] Uras, T., Koenig, S., and Hernandez, C. 2013. Subgoal graphs for optimal pathfind-
ing in eight-neighbor grids. Proceedings of the International Conference on Automated 
Planning and Scheduling, Rome, Italy, 224–232.

[Uras 14] Uras, T. and Koenig, S. 2014. Identifying hierarchies for fast optimal search. 
Proceedings of the AAAI Conference on Artificial Intelligence, Quebec City, Quebec, 
Canada, pp. 878–884.


