
117

Optimizing	Practical	
Planning	for	Game	AI
Éric Jacopin

13

13.1	 Introduction

Planning generates sequences of actions called plans. Practical planning for game artifi-
cial intelligence (AI) refers to a planning procedure that fits in the AI budget of a game and 
supports playability so that nonplayer characters (NPCs) execute actions from the plans 
generated by this planning procedure.

Jeff Orkin developed Goal-Oriented Action Planning (GOAP) [Orkin 04] as the first 
ever implementation of practical planning for the game [F.E.A.R. 05]. GOAP implements 
practical planning with (1) actions as C++ classes, (2) plans as paths in a space of states, 
and (3) search as path planning in a space of states, applying actions backwardly from the 
goal state to the initial state; moreover, GOAP introduced action costs as a search heu-
ristic. Many games used GOAP since 2005, and it is still used today, for example, [Deus 
Ex 3 DC 13] and [Tomb Raider 13], sometimes with forward search, which seems easier to 
debug, as the most noticeable change.

In this chapter, we present how to optimize a GOAP-like planning procedure with 
actions as text files [Cheng 05] and forward breadth-first search (refer to Section A.2 of 
[Ghallab 04]) so that it becomes practical to implement planning. Actions as text files 
allow nonprogrammers to provide actions iteratively without recompiling the game proj-
ect: nonprogrammers can modify and update the action files during game development 

13.1	 Introduction
13.2	 How	Can	You	Optimize?
13.3	 Practical	Planning	Data	

Structures

13.4	 Practical	Planning	
Algorithms

13.5	 Conclusion
References



118 Architecture

and debugging. That is, planning ideas can be developed and validated offline. Moreover, 
if needed, C++ can always be generated from the text files and included in the code of your 
planner at any time during development.

Forward breadth-first search is one of the simplest search algorithms since it is easy 
to understand, extra data structures are not required prior to search, and short plans are 
found faster and with less memory than other appealing plan-graph-based planning pro-
cedures [Ghallab 04, Chapter 6]. Last, it is also a complete search procedure that returns 
the shortest plans; NPCs won’t get redundant or useless actions to execute.

This chapter will first present the necessary steps before going into any optimization 
campaign, with examples specific to practical planning. Next, we will describe what can 
be optimized in practical planning, focusing on practical planning data structures that 
lead to both runtime and memory footprint improvements.

13.1.1	 Required	Background
The reader is expected to have a basic knowledge of GOAP [Orkin 04], predicate-based 
state and action representation [Cheng 05, Ghallab 04, Chapter 2], and basic search tech-
niques (e.g., breadth-first search) as applied to planning [Ghallab 04, Chapter 4].

13.2	 How	Can	You	Optimize?

There are two main features to optimize in practical planning: time and memory. Ideally, 
we want to minimize both, but ultimately which one to focus on depends on the criteria of 
your game. Additionally, most algorithms can trade memory for time or vice versa.

13.2.1	 Measure	It!
Your first step is to get some code in order to measure both time and memory usage. The 
objective here is to instrument your practical planning code easily and quickly to show 
improvements in runtime and memory usage with respect to the allowed budgets.

Runtime measurement is not as easy as it sounds. Often, you’ll get varied results even 
when the timings were performed under the same testing conditions. So an important 
aspect is to decide on a unit of time that has enough detail. Several timings under the same 
testing conditions should provide enough significant digits, with their numerical values 
being very close. If you’re going to improve runtime by two orders of magnitude, you 
need to start with at least 4 significant digits. C++11 provides the flexible std::chrono 
library [Josuttis 13] that should fit most of your needs, but any platform-specific library 
providing a reliable high-resolution counter should do the job. Using microseconds is a 
good start.

With no (unpredictable) memory leak, memory measures are stable and must return 
the exact same value under the same testing conditions. The first step here is to measure 
memory overhead; for instance, an empty std::vector takes 16 bytes with Microsoft’s 
Visual C++ 2013, while an empty std::valarray takes only 8 bytes if you can use it 
instead (they only store numeric values; they cannot grow but they can be resized), and 
there’s no memory overhead for an instance of std::array, again if you can use it (they 
are C-style arrays: their size is fixed). The second step is to decide whether any measure is 
at all relevant; for instance, do you want to count distinct structures or the whole memory 
page that was allocated to store these structures?



119Optimizing Practical Planning for Game AI

Finally, you’ll have to decide between using conditional compiling to switch on and off 
the call to measures, assuming the linker shall not include the unnecessary measurement 
code when switched off, or a specific version of your practical planner that shall have to be 
synchronized with further updated versions of the planner.

13.2.2	 Design	Valuable	Tests!
The second step is to design a set of planning tests.

A first set of planning tests is necessary in order to confirm the planner generates cor-
rect plans, that is, plans that are solutions to the planning problems of your game. If your 
planner uses a complete search procedure such as breadth-first search, the correct plans 
should also be the shortest ones. By running your planner against these gaming prob-
lems, your objective is to show this planner can be used in your game. Do not consider 
only planning problems related to your game, because these problems certainly are too 
small to stress the full power of a GOAP-like planner. On one hand, a GOAP-like plan-
ner generates less than one plan per second per NPC on average, and on another hand, 
these plans are very short, say, at most four actions. Consequently, a second set of complex 
planning tests is needed to show any improvement in the optimization process. Runtime 
for such complex tests can be up to several minutes, whereas in-game planning runtime, 
it is at most several milliseconds. There are two kinds of complex tests: scaling tests and 
competition tests.

First, scaling tests provide an increasing number of one specific game object: box, 
creature, location, vehicle, weapon, and so forth. Solution plans to scaling tests can be 
short, and plan length is expected to be the same for all of the scaling tests; the idea is to 
provide more objects of one kind than would ever happen in a gaming situation so that 
the branching factor in the search space explodes, although the solution is the same. For 
instance, and this is valid for a forward state space GOAP-like procedure, take an in-game 
planning problem such that the goal situation involves only one box; assume that this box, 
say box-1, has to be picked up at one location and moved to another location. Then build 
an initial situation with increasing number of boxes: box-2, box-3, and so on, although 
box-1 is still the only box that appears in the goal solution. As the planner can pick up 
one box, it shall try to pick up and then move each box until the goal solution, which only 
requires box-1, is reached.

Second, competition tests are complex problems whose objective is to swallow a lot of 
computing resources with the help of a high branching factor and a solution with a long 
sequence of actions [IPC 14]. For instance, it is now time to move several boxes to the final 
location. This requires that you allow for picking up and moving only one box at a time 
and do not impose priorities between boxes. There are consequently many solutions of the 
exact same length. Each of these solutions reflects the order in which the boxes reach the 
goal location, thus entailing a huge search space.

Of course, if any updated version of the planning code shows a performance decrease 
against these planning problems, then this update is not an improvement.

13.2.3	 Use	Profilers!
There is no way to escape the use of profilers.

With the first two steps, you are able to show your practical planner is usable for your 
game and that your latest code update is either an improvement or else a bad idea. But how 



120 Architecture

are you going to improve more, avoid bad ideas, or discover unexpected and eventually 
fruitful paths? Runtime and memory profilers are here to help.

On the contrary to the quick and easy first two steps that both are matters of days, this 
third step is a matter of weeks and months. Either you use professional tools (e.g., Intel® 
VTunes™ and IBM® Rational® Purify Plus that both allow to profile source code and 
binaries) or else you’ll need to develop specific in-game profiling tools [Rabin 00, Lung 11]. 
Using professional tools requires mastering them, while making your own definitively 
requires development time. Either way, an investment of time will need to be made.

By reporting where the computing resources go, these tools tell you where to focus 
your improvement effort, and this is invaluable. If, on this improvement path, you reach 
a point where no part of your code seems to stand out as a candidate for improvement, 
then, beyond changing the profiling scheme and counters and running the tests again, it 
might be time to settle down and think of your planning data structures and your plan-
ning algorithms.

13.3	 Practical	Planning	Data	Structures

From a far viewpoint, anything can be optimized, from parsing the action text files 
to the data structure holding the solution to the planning problem. There is also the 
planning domain (how actions are encoded) and the planning problems (how states, 
either initial or goal, are encoded) using properties of your game world [Cheng 05, 
pp. 342–343]. For instance, you may not wish to represent the details of navigation from 
one location to another (e.g., navigating into a building, unlocking, and opening doors, 
avoiding obstacles) or the necessary actions to solve a puzzle in the planning problem; 
instead, encode only one action that magically reaches the goal location or magically 
solves the puzzle; then, delegate the execution of this action to a specific routine. Our 
focus here is different.

From a closer viewpoint, we learn from computational complexity that time complex-
ity cannot be strictly less than space complexity [Garey 79, p. 170]; that is, at best, the com-
putation time shall grow (with respect to a given parameter, e.g., the number of predicates) 
as the amount of memory needed for this computation, but never less. Consequently, you 
can design better algorithms to achieve better runtimes, but you can also design better 
data structures and start with shrinking memory: use as less memory as you can and use 
it as best as you can [Rabin 11].

First, make sure to choose the smallest structure that supports the features you need. 
Then, avoid multiple copies of these structures by storing information only once, and 
share it everywhere it is needed [Noble 01, pp. 182–190]. For instance, the action text files 
may contain several occurrences of the same identifier; when reading the first occurrence 
of this identifier, push it in an std::vector and share its position:

std::vector<Identifier> theIdentifiers;

size_t AddIdentifier(Identifier& id)
{
 size_t position = theIdentifiers.size();
 theIdentifiers.push_back(id);
 return position;
}



121Optimizing Practical Planning for Game AI

Of course, the next occurrence of id in the text file must not be pushed at the back of 
theIdentifiers but must be retrieved in theIdentifiers in order to share its 
position. So you may want instead to hash identifiers in an std::unordered_map, 
storing an integer value at the hashed position, and increment this value each time a new 
identifier is added to the table:

std::unordered_map<Identifier, size_t> theIdentifiers;

size_t AddIdentifier(Identifier& id)
{
 size_t position = theIdentifiers.size();
 theIdentifiers[id] = position;
 return position;
}

Lookup and sharing is then achieved through an iterator:

size_t shared_position;
std::unordered_map<Identifier, size_t>::iterator it;

it = theIdentifiers.find(id);
if (theIdentifiers.end() == it)
 shared_position = AddIdentifier(id);
else
 shared_position = it->second;

When the parsing of the action text file ends, we know exactly how many distinct identi-
fiers are in the action text file and thus can allocate an array and move the identifiers from 
the hash table to their position in the array. More space can be saved as soon as we know 
the number of distinct identifiers: that is, use an unsigned char, instead of size_t 
in the aforementioned code, to share the positions when there are less than 256 identifiers 
for your planning problems, and so on.

Finally, consider a custom memory allocator (even for the STL [Isensee 03]) to access 
memory quicker than the classical memory allocation routines (e.g., malloc). Several 
high-performance memory allocators are available [Berger 14, Lazarov 08, Lea 12, 
Masmano 08] with various licensing schemes. Try them or any other one before embark-
ing into developing your own.

Assuming that predicates can share their position to other planning data structures, 
the rest of this section discusses the use of the sharing pattern [Noble 01, pp. 182–190] to 
actions, plans, and states.

13.3.1	 Actions
An action is made of two sets of predicates, in the spirit of IF/THEN rules [Wilhelm 08]: 
the set of preconditions predicates and the set of postcondition predicates (effects). A pred-
icate can only occur in both sets if and only if it is negative (prefixed by not) in one set and 
positive in the other set. For instance, the positive predicate hold(gun) can appear as a 
precondition of the action Drop if the negative predicate not(hold(gun)) is one of its 
effects; accordingly (i.e., symmetrically), hold(gun) can be an effect of the action Take 
if not(hold(gun)) is one of its preconditions.



122 Architecture

Assume an array of shared positions of predicates, ranging from 0 to (p − 1). Then the 
action predicates can be ordered in the array so that they occur only once:

 • Let a, b, c, d, e, and p such that 0 ≤ a ≤ b ≤ c ≤ d ≤ e ≤ (p − 1).
 • [0, a − 1] is the range of positive preconditions.
 • [a, b − 1] is the range of positive preconditions that occur as negative effects.
 • [b, c − 1] is the range of negative effects.
 • [c, d − 1] is the range of positive effects.
 • [d, e − 1] is the range of positive effects that occur as negative preconditions.
 • [e, p − 1] is the range of negative preconditions.

Consequently, preconditions are in the range [0, b − 1] and in the range [d, p − 1], and 
effects are in the range [a, e − 1] as illustrated in Figure 13.1.

For instance, the positive predicate hold(gun) of the action Drop shall occur in the 
range [a, b − 1], whereas it shall occur in the range [d, e − 1] for the action Take (which is 
detailed in a following section).

Moreover, an action has parameters that are shared among its predicates; for instance, 
both the actions Drop and Take have an object as a parameter for the predicate hold. 
If we further constrain all predicate parameters to be gathered in the set of parameters 
of an action, then all predicate parameters only need to be integer values pointing to the 
positions of the parameters of their action; the type unsigned char can be used for 
these integer values if we limit the number of parameters to 256, which is safe.

13.3.2	 Plans
A GOAP-like plan is a totally ordered set of actions. An action is uniquely represented by 
an action identifier, for example, Drop, and its parameters (once they all have a value), 
which is called the action signature, for example, Drop(gun). An action signature is a 
good candidate for sharing its position in an array. Consequently, a plan is an array of 
shared positions of action signatures.

As plans grow during the search, using an std::vector is practical, while keep-
ing in mind the memory overhead for std::vectors. Assume the 16  bytes of Visual 
C++ 2013, at most 256 action signatures, and a maximum plan length of 4 actions 
[F.E.A.R. 05]: std::array<unsigned char,4> (4  bytes) can safely replace 
std::vector<unsigned char> (at least 16 bytes and at most 20 bytes for plans of 
length 4). Assuming 65,535 action signatures and a maximum plan length of 8 actions, 
then std::array<short,8> still saves memory over std::vector<short>.

Positive preconditions Negative preconditions

Negative effects Positive effects

0 a b c… d e… … … … … p–1

Figure	13.1

Action	predicates	occur	only	once	when	preconditions	and	effects	overlap.



123Optimizing Practical Planning for Game AI

13.3.3	 States
The planning problem defines the initial and the goal states. Forward breadth-first 
search applies actions to states in order to produce new states, and hopefully the goal 
state. Indeed, if the preconditions of an action, say A, are satisfied in a state, say s, then 
the resulting state, say r, is obtained by first applying set difference (–) with the negated 
effects of A and second to s and then by applying set union (+) with the positive effects of 
A: r = (s – (negative effects of A)) + (positive effects of A).

States are made of predicates, and as for actions, it is obvious to substitute predicates 
by their shared positions.

Set operations can be easily implemented with the member operations of std::set or 
std::unordered _ set. The memory overhead of these STL containers is of 12 bytes 
for the former and 40 bytes for the latter with Visual C++ 2013; if you want to store all 
generated states in order to check whether the resulting state r has previously been gener-
ated, then 1000 states means 12 kb or else 40 kb of memory overhead.

Set operations can also be implemented with bitwise operations where one bit is set 
to 1 if the predicate belongs to the state and set to 0 otherwise. std::bitset provides 
the bitwise machinery so that a 1000 states over (at most) 256 predicates would require 
32 kb.

Runtime measurement can help you make the final decision, but combining the two 
representations provides an interesting trade-off. For instance, you may want to use an 
std::array, which has no memory overhead, to represent a state and convert it to an 
std::bitset when computing the resulting state; then, convert the resulting state back 
to an std:array. In this case, 10 shared positions of predicates in a state on average 
means 10 kb for a 1000 states, which is less than 12 kb, while 32 kb would allow for the 
storing of more than 3000 states.

13.4	 Practical	Planning	Algorithms

Runtime profiling should report at least the two following hot spots for forward breadth-
first search with actions as text files: (1) checking which predicates of a given state can 
satisfy the preconditions of an action and (2) unifying the precondition predicates of an 
action with predicates of a given state in order to assign a value to each parameter of this 
action (consequently, we can compute the resulting state).

13.4.1	 Iterating	over	Subsets	of	State	Predicates
First, consider the following description for action Take, stated with simple logic expres-
sions (conjunction and negation) and written with keywords (:action,:parameters,:
preconditions,:effects), a query mark to prefix variable identifier, and parenthesis, 
to ease parsing and the reading of the action:

(:action Take
 :parameters (location ?l, creature ?c, object ?o)
 :preconditions (not(hold(?object, ?c))
 and at-c(?l, ?c)
 and at-o(?l, ?o))
 :effects (not(at-o(?l, ?o)) and hold(?object, ?c))
)



124 Architecture

Assume the shared positions of the predicates of the action Take are the following:

Predicate Shared Position

at-o(?l, ?c) 3
at-c(?l, ?o) 7
hold(?object, ?c) 9

If predicates are shared in the order they are read from the action file, the values of these 
shared positions means at-o(?l, ?o) is the third predicate that was read from the file, 
while at-c(?l, ?c) and hold(?object, ?c) were the seventh and ninth, respec-
tively. With these shared positions, the array (refer to Figure 13.1) representing the 3 predi-
cates of the action Take is shown in Figure 13.2.

Second, consider the following initial state:

(:initial (at-c(loc1, c1) and at-c(loc1, c2)
 and at-c(loc2, c3) and at-c(loc3, c4)
 and at-o(loc1, o1) and at-o(loc1, o3)
 and at-o(loc3, o4) and at-o(loc5, o2)
 and at-o(loc5, o5))
)

For instance, the action represented by the action signature Take(loc1,c1,o1) can be 
applied to the initial state because all its preconditions are satisfied in the initial state. 
But there are four more actions that can be applied to this initial state, represented by 
the four following action signatures: Take(loc1,c1,o3), Take(loc1,c2,o1), 
Take(loc1,c2,o3), and Take(loc3,c4,o4).

We can first note that each positive precondition identifier must match at least one state 
predicate identifier. Second, we can note that no state predicate identifier can be a negative 
precondition identifier. When these two quick tests pass, we can further test the applica-
bility of an action, pushing further the use of the predicate identifiers.

To test the applicability of action Take in any state and in particular in the initial state ear-
lier, we can sort the predicates of the state according to their identifier (refer to Figure 13.2). 
It is consequently possible to test only 20 pairs (4 instances of at-c × 5 instances of at-o) 
of predicates from the initial states instead of the 36 pairs (choosing any two elements in a 
set of 9 elements = (9 × 8)/2 = 36 pairs), which can be built from the initial state.

3 7 9

Positive preconditions Negative precondition

Negative effect Positive effect

Figure	13.2

Three	predicates	of	the	action	Take.	Based	on	the	key	in	Figure	13.1,	this	three-digit	array	
can	be	decoded	as	a	=	1,	b	=	c	=	d	=	2,	and	e	=	p	=	3.



125Optimizing Practical Planning for Game AI

In Figure 13.3, the top array containing three and seven represents the positive precon-
ditions of action Take. We then iterate over the predicates of the initial state. If an initial 
state predicate has the same predicate identifier as a precondition predicate, then this ini-
tial state predicate is pushed at the back of the appropriate column. If the identifier of an 
initial state predicate does not correspond to any identifier of a precondition predicate, 
then this initial state predicate is ignored. Finally, iterating in both columns, we can make 
pairs of predicates as indicated in Figure 13.3.

Note that if the language of the actions file allows predicates with the same identifier 
but with a different number of parameters, then the number of parameters must also be 
checked to build both columns in Figure 13.3.

There are various ways of achieving the iterations over both columns. For instance, we 
begin by forming the two-digit number made by the size of the columns in Figure 13.3: 54. 
Then we start with the two-digit value 00 and increase the rightmost digit; when this 
value reaches 4, we rewrite the two-digit number to 10 and increase it until the rightmost 
digit reaches 4 again. We then rewrite this number to 20 and so on until 54 is reached. 
This procedure builds the following list of two-digit numbers: 00, 01, 02, 03, 10, 11, 12, 
13, 20, 21, 22, 23, 30, 31, 32, 33, 40, 41, 42, and 43. Alternatively, we can start from 43 and 
decrease until 00 is reached, thus producing the two-digit numbers of the previous list 
in the reverse order. Each of these 20 two-digit numbers can be used to access a position 
in both columns in order to make a pair of state predicates. The iterating procedure in 
Listing 13.1 works for any number of positive preconditions.

13.4.2	 	Recording	Where	the	Action	Parameters	
Occur	in	the	Action	Predicates

The procedure in Listing 13.1 generates tuples such that each state predicate identifier 
matches the identifier of a precondition predicate. Consequently, the unification proce-
dure need only checking whether the state predicate parameters unify with the action 
parameters.

We know from Figure 13.3 that the positive precondition predicate whose shared posi-
tion is 3, that is, at-o(?l,?o), is unified with state predicate at-o(loc5,o5), and then 
the parameter ?l of action Take gets the value loc5, and the parameter ?o of action 
Take gets the value o5. The positive precondition predicate whose shared position is 7, 

3 7

at - o(loc1,o1)

at - o(loc1,o3)

at - o(loc3,o4)

at - o(loc5,o2)

at - o(loc5,o5)

at - c(loc1,c1)

at - c(loc1,c2)

at - c(loc2,c3)

 at - c(loc3,c4)

Figure	13.3

Sorting	state	predicates	with	respect	to	their	identifiers.



126 Architecture

that is, at-c(?l,?c), with the parameter ?l equal to loc5, must now unify with state 
predicate at-c(loc3,c4). This fails because loc3 is different from loc5.

The idea is to record all the positions where an action parameter occurs in positive 
precondition predicates and then check that the parameters at these positions in the state 
predicates have the same value. For instance, the parameter ?l of action Take occurs as 
the first parameter of both positive precondition predicates. If the values at these positions 
in the state predicates are equal (which can be trivially achieved by testing the value of the 
first position against all other positions), then we can check for the equality of the occur-
rences of the next parameter. Recording the positions can be achieved once for all when 
parsing the action files.

13.5	 Conclusion

A Visual C++ 2013 project is available from the book’s website (http://www.gameaipro.
com), which implements a practical planner with the features (i.e., actions as text files and 
forward breadth-first search) and the data structures and algorithms described in this 
chapter.

Although planning is known to be very hard in theory, even the simplest planning 
algorithm can be implemented in a practical planner, which can be used for your gaming 
purposes, providing you focus on shrinking both memory and runtime requirements. 

Listing 13.1. Iterating	procedure	to	find	all	pairs	of	state	predicates.

 For each predicate of the current state
 Push the predicate back to the list which corresponds to its identifier
 End For each;
 Make the number n with as many digits as there are non-empty lists;
 Set each digit of n to 0;
 Repeat
 Access each of the lists with respect to the digits of n and
 make the tuple of predicates of s;
 Increase the least significant digit of n by 1;
 For each digit d of n, starting with the least significant digit,
 If the digit d is equal to the size of the dth list Then
 If d is the most significant digit of n Then
 Break the enclosing For each loop;
 End if;
 Reset digit d to 0;
 Increase digit (d+1) of n by 1
 Else
 Break the enclosing For each loop;
 End if;
 End For each;
 Until the value of n is made of the size of the n lists.



127Optimizing Practical Planning for Game AI

Quick runtime and memory measurement routines, as well as relevant testing and sys-
tematic profiling, can hopefully help you succeed in making planning practical for your 
gaming purposes.

References

[Berger 14] Berger, E. 2014. The hoard memory allocator. http://emeryberger.github.io/
Hoard/ (accessed May 26, 2014).

[Cheng 05] Cheng, J. and Southey, F. 2005. Implementing practical planning for game AI. 
In Game Programming Gems 5, ed. K. Pallister, pp. 329–343. Hingham, MA: Charles 
River Media.

[Deus Ex 3 DC 13] Deus Ex Human Revolution—Director’s Cut. Square Enix, 2013.
[F.E.A.R. 05] F.E.A.R.—First Encounter Assault Recon. Vivendi Universal, 2005.
[Garey 79] Garey, M. and Johnson, D. 1979. Computers and Intractability: A Guide to the 

Theory of NP-Completeness. New York: W.H. Freeman & Co Ltd.
[Ghallab 04] Ghallab, M., Nau, D., and Traverso, P. 2004. Automated Planning: Theory and 

Practice. San Francisco, CA: Morgan Kaufmann.
[IPC 14] International Planning Competition. 2014. http://ipc.icaps-conference.org/ 

(accessed May 28, 2014).
[Isensee 03] Isensee, P. 2003. Custom STL allocators. In Game Programming Gems 3, ed. 

D. Treglia, pp. 49–58. Hingham, MA: Charles River Media.
[Josuttis 13] Josuttis, N. 2013. The C++ Standard Library. Upper Saddle River, NJ: Pearson 

Education.
[Lazarov 08] Lazarov, D. 2008. High performance heap allocator. In Game Programming 

Gems 7, ed. S. Jacobs, pp. 15–23. Hingham, MA: Charles River Media.
[Lea 12] Lea, D. 2012. A memory allocator (2.8.6). ftp://g.oswego.edu/pub/misc/malloc.c 

(accessed May 26, 2014).
[Lung 11] Lung, R. 2011. Design and implementation of an in-game memory profiler. 

In Game Programming Gems 8, ed. A. Lake, pp. 402–408. Boston, MA: Course 
Technology.

[Masmano 08] Masmano, M., Ripoli, I., Balbastre, P., and Crespo, A. 2008. A constant-time 
dynamic storage allocator for real-time systems. Real-Time Systems, 40(2): 149–179.

[Noble 01] Noble, J. and Weir, C. 2001. Small Software Memory: Patterns for Systems with 
Limited Memory. Harlow, U.K.: Pearson Education Ltd.

[Orkin 04] Orkin, J. 2004. Applying goal-oriented action planning to games. In AI Game 
Programming Wisdom 2, ed. S. Rabin, pp. 217–227. Hingham, MA: Charles River 
Media.

[Rabin 00] Rabin, S. 2000. Real-time in-game profiling. In Game Programming Gems, ed. 
M. DeLoura, pp. 120–130. Boston, MA: Charles River Media.

[Rabin 11] Rabin, S. 2011. Game optimization through the lens of memory and data 
access. In Game Programming Gems 8, ed. A. Lake, pp. 385–392. Boston, MA: Course 
Technology.

[Tomb Raider 13] Tomb Raider—Definitive Edition. Square Enix, 2013.
[Wilhelm 08] Wilhelm, D. 2008. Practical logic-based planning. In AI Game Programming 

Wisdom 4, ed. S. Rabin, pp. 355–403. Boston, MA: Course Technology.


