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Separation	of	Concerns	
Architecture	for	AI	and	Animation
Bobby Anguelov
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12.1	 Introduction

There are two requirements for creating believable characters in today’s games: the first 
is that characters need to make the correct decisions (artificial intelligence [AI]), and the 
second is that they need to look good when acting on those decisions (animation). With 
the heavy visual focus in today’s games, it is fair to say that an AI system will live or die 
based on the quality of its animation system. Smart decisions won’t matter much if the 
animation system can’t execute them in a visually pleasing manner.

As we’ve improved the animation fidelity in our games, we’ve encountered a huge jump 
in the amount of content needed to achieve the required level of fidelity. This content refers 
to both the animation data, the data structures that reference the animation data, and the 
code required to control and drive those data structures. The biggest challenge facing us 
today is simply one of complexity, that is, how do we manage, leverage, and maintain of 
this new content in an efficient manner?

We feel that traditional techniques for managing this content have already reached 
their limits with the content volumes present in the last generation of games. Given the 
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order of magnitude jump in memory between the last generation and the current-gen 
consoles, as well as the expectations of the audience, it is not unreasonable to expect a 
similar jump in the content volumes. As such, we need to take the time to evaluate and 
adjust our workflows and architecture to better deal with this increase in content and 
complexity.

In this chapter, we propose an architecture for managing the complexity of a modern 
animation system based on our experience developing for both last- and current-gen titles 
[Vehkala 13, Anguelov 13].

12.2	 Animation	Graphs

Before we discuss the higher-level architecture, it is worth giving a quick overview of 
modern-day animation systems. Animation graphs (animgraphs) are ubiquitous within 
the industry when it comes to describing the set of animations as well as the necessary 
chaining of these animations in performing in-game actions.

An animgraph is, in its simplest form, a directed acyclic graph wherein the leaf nodes 
are the animation sources (i.e., resulting in an animation pose) and the branch nodes 
are animation operations (i.e., pose modification such as blending). These sorts of anim-
graphs are commonly referred to as blend trees since they primarily describe the blends 
performed on a set of animations. Animation operations contained within a blend tree 
are usually driven through control parameters. For example, a simple blend between two 
animations will require a “blend weight” control parameter to specify the contribution 
of each animation to the final blended result. These control parameters are our primary 
means of controlling (or driving) our blend trees, the second mechanism being anima-
tion events.

Animation events are additional temporal hints that are annotated onto the ani-
mation  sources when authored. They provide contextual information both about the 
animation itself and information needed by other systems. For example, in a walking ani-
mation, we might want to mark the periods in which the left or right foot is on the ground 
as well as when the game should trigger footstep sounds (i.e., contact period for each foot). 
Animation events are sampled from each animation source and then are bubbled up 
through the graph to the root. As these events bubble up through the graph, they can be 
also used by the branch nodes in their decision making, especially within state machine 
transitions. A simple blend tree describing forward locomotion for a character is shown 
in Figure 12.1, wherein we can control the direction and the speed of a character with the 
control parameters: “direction” and “speed.”

In addition to blending, we also have the ability to select between two animations 
at branch nodes. For example, in Figure 12.1, we could replace the speed blend with a 
“select” node that will choose either the walk blend or the run blend based on the control 
parameter.

While a blend tree can perform all the necessary operations needed for a single 
action, it is extremely difficult to build a single blend tree to handle all the actions 
available to our characters. As such, we often wish to separate each action into its 
own blend tree and have some mechanism to switch between the actions. Often, these 
actions would have a predefined sequence as well as restrictions on which actions could 
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be chained together, and so traditionally this switching mechanism between actions 
took the form of a state machine.

Within these state machines, the states would contain the blend trees, and the state 
transitions would result in blends from one blend tree to another. Each state transition 
would be based on a set of conditions which, once met, would allow the transition to 
occur. These conditions would also need to check animation-specific criteria like control 
parameter values, animation events, and time-based criteria like whether we reached 
the end of an animation. In addition, the states would also need to contain some logic 
for controlling and driving the blend trees (i.e., setting the control parameters values 
appropriately).

State machines were the final tool needed to allow us to combine all our individual 
actions in one system and so allow our characters to perform complex behaviors by chain-
ing these actions together. Let’s consider the simple example presented in Figure 12.1; 
since it only covered the forward arc of motion, we extend the direction blend to cover all 
directions, but we don’t have any animation for when the character is idle and not mov-
ing. So we add this animation in another blend tree, which results in us needing a state 
machine to switch between the two blend trees. Now we realized the transitions between 
moving and idle don’t look great, so we want to add some nice transition animations, 
which means that we need two more blend trees. Now we then realize that when stopping, 
it matters which foot of the character is planted, so we need two states to cover that and 
transitions that check the animation events in the walk animation. In the end, we end up 
with the state machine setup shown in Figure 12.2.

We can already see that for even the most basic setup, there is already a large degree of 
complexity present. Consider the fact that each blend tree might have its own set of control 
parameters that the code needs to be aware of and control, as well as all of the transition 
logic and state setup that needs to be created and driven. Now factor in that modern-day 
characters have dozens of available actions, each of which may require numerous blend 
trees as well as state logic for each and we now have a recipe for a complexity explosion, 
one which, unfortunately, has already occurred, and we now find ourselves trying to move 
forward through the fallout.

Resulting pose

Direction

Blend

Blend Blend

Speed

Control Parameters

Animations

Walk left 45

Walk forward

Walk right 45

Run left 45

Run forward

Run right 45

Figure	12.1

A	simple	blend	tree	describing	forward	locomotion.
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12.3	 Complexity	Explosion	and	the	Problem	of	Scalability

To discuss the problem of scalability, we need to focus on the state machines described 
previously. Traditionally, a lot of developers would reuse the same state machine for driv-
ing both the animation and the gameplay state changes. This applies both to AI, where the 
state machine might take the form of a behavior tree or some other decision-making con-
struct, as well as the player’s state machine setup. We used the term state machine here, 
but this could be any sort of AI state change mechanic (behavior trees, planners, etc.). 
For simplicity’s sake, from now onwards, we will use the term gameplay state machine to 
refer to any sort of high-level AI or player decision-making systems.

Reusing the high-level gameplay state machines for animation purposes is problematic 
for a variety of reasons, but the main issue is one of code/data dependency. As the blend 
graphs exist outside of the code base, they can be considered data and so are loaded at 
runtime as resources. With these blend graph resources, it is the responsibility of the game 
code to drive them by setting the necessary control parameters required by the graph. As 
such, the code needs to have explicit knowledge of these parameters and what they are 
used for. It is important to note that control parameters usually represent the animation-
specific values (i.e., normalized blend values [0–1]), and so desired inputs need to be con-
verted by the gameplay code into values that the animation system understands (e.g., the 
direction value in Figure 12.1 needs to be converted from degrees into a 0–1 blend value). 
In giving our code this explicit knowledge of the control parameter conversions, we’ve cre-
ated a code/data dependency from our gameplay code to the blend tree resources meaning 
that whenever we change the blend trees, we need to change the code as well. The code/
data dependency is pretty much unavoidable, but there is a lot we can do to push it as far 
away from gameplay code as possible, thereby reducing the risks resulting from it as well 
as allowing fast iterations.

The second biggest problem with reusing gameplay state machines is the asynchro-
nous lifetimes of states, in that there isn’t a one-to-one mapping between the gameplay 
states and the animation states. For example, consider a simple locomotion state from 
the gameplay’s standpoint: a single state is usually enough to represent that a character is 
in motion, but on the animation side, we require a collection of states and transitions to 

Idle

Moving to idle
right foot

Idle to moving

Moving
Moving to idle

left foot

Figure	12.2

A	simple	animation	state	machine	describing	basic	locomotion.
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actually achieve that motion. This usually means that we end up having animation only 
state machines embedded within the gameplay state machines, and over the course of a 
development cycle, the line between the two state machines becomes blurred. In fact, this 
is the main concern with the code/data dependency, since if we are required to make sig-
nificant modifications to the blend trees, then the code needs to be adjusted as well and, 
unfortunately, this could end up affecting or even breaking the current gameplay since the 
two systems are so intertwined. Even worse, when animation and gameplay are so closely 
coupled, it can be tempting for a programmer to make direct use of information from the 
blend tree or make assumptions about the structure of the blend trees for gameplay deci-
sions, which in pathological cases requires large portions of the gameplay code having to 
be rewritten when animation changes.

The example presented in Figure 12.2 is misleading: the idle state is a separate game-
play state. So if we were to create a simple gameplay state machine for a character with 
some additional abilities like jumping and climbing ladders, we might end up with a state 
machine setup similar to that in Figure 12.3.

There is already a significant degree of complexity in Figure 12.3, but even so, it doesn’t 
show the full picture, as now the transitions between the gameplay states also need to con-
tain and drive animation transitions. For example, when we transition between the idle 
and jump states, we somehow need to let the jump state know which animation state we 
are arriving from, so that we can choose the appropriate target animation state. Changing 
or adding animation transitions means we now need to modify the gameplay transitions 
in addition to all of the actual gameplay code and animation logic. As our system grows, 
maintenance and debugging starts to become a nightmare. The costs and risks associated 
with adding new states can be so high that it becomes nearly impossible to justify such 
change late in the development cycle. The best way to move forward and avoid this situ-
ation is to work toward loosening the couplings between the systems, and this is where a 
separation of concerns (SoC) architecture comes in.

Idle Locomotion

Ladder

Jump

Gameplay state

Animation state

Idle
Idle to

moving
Moving

Moving to idle
left foot

Idle to ladder

Moving to ladder

Ladder Ladder to
idle

Ladder to
moving

Moving to idle
right foot

Idle to jump

Moving to jump

Land to
moving

Jump

Figure	12.3

A	combined	gameplay/animation	state	machine	for	a	simple	character.
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12.4	 SoC

SoC is a principle that states that various systems that interact with one another 
should each have a singular purpose and thereby not have overlapping responsibilities 
[Greer  08]. It is already clear that this isn’t the case for the state machine presented 
in Figure 12.3, as we have two distinct state machines and responsibilities intertwined 
together. So as a first step, we want to separate the animation state logic from the game-
play state logic. This is relatively easy, and, for many developers, this is already the case, 
in that their animation system supports animation state machines (e.g., Morpheme, 
Mecanim, EmotionFX). Unfortunately, the concept of animation state machines is not 
as common as one would imagine, and it was only in version 4 of both the Unity and 
Unreal engines that animation state machines were introduced. An animation state 
machine is simply a state machine at the animation system level, allowing us to define 
and transition between animation states as described in the previous sections. From this 
point on, we will use the term “animgraph” to refer to the combination of blend trees 
and state machines in a single graph.

Animation state machines can also be hierarchical in that the blend trees contained 
within a state can also contain additional state machines as leaf nodes. This allows for 
easy layering of animation results on top of one another but is not a feature that is avail-
able in all animation systems. For example, Natural Motion’s Morpheme middleware is 
entirely built around the concept, while Unity’s Mecanim only supports a single state 
machine at the root of an animgraph, but allows for the layering of multiple graphs on 
top of one another.

If we extract all the animation state machine logic from Figure 12.3, we end up with the 
state machine setup shown in Figure 12.4. As you can see, the animation state machine 
once separated out is still relatively complex but this complexity can be further simpli-
fied by making use of hierarchical state machines, with container states for each action 
(i.e., “jump” or “ladder”). The gameplay state machine is now free to only worry about 
gameplay transitions without having to deal with the animation transition, and it is now 
also possible, to some degree, to work on either system independently.

There is still a catch. While this initial separation goes a long way to help decouple 
the systems, we still have a coupling between the gameplay state machine and the 
animation system. We still need to have explicit knowledge of the control parameters 

Gameplay state machine Animation state machine Hierarchical animation state machine

Moving to idle
left foot

Idle

Idle to jump

Ladder to idle Ladder Ladder to
moving

Jump Land to
moving

Idle to ladder Moving to jump Moving to
ladder

Idle

Ladder

Moving Jump

Idle to moving Moving

Moving to idle
right foot

Idle Locomotion Jump

Control params
Ladder

Figure	12.4

Separation	of	animation	and	gameplay	state	machines.
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required to drive the state machine as well as explicit knowledge of the topology of 
the animgraph to be able to determine when states are active or when transitions have 
occurred/completed. This means that we still need a lot of code to drive and poll the 
animation system, and unfortunately this code still takes the form of some sort of 
state machine. It is surprising to note that only once we separated out the animation 
state machines from the gameplay state machines did we realize that we actually had 
three state machines that were intertwined: the gameplay state machine that controls 
character decision making, the animation state machine representing the states and 
possible transitions, and the animation driver state machine that acts as the inter-
face between the gameplay and animation state machines. The fact that there was 
a hidden state machine goes a long way to highlight the danger posed by building 
monolithic systems.

Coming back to the animation driver state machine, its responsibilities are to inspect 
the animation state machine and provide that information back to the gameplay system. 
It is also responsible for converting from the desired gameplay control parameter values 
to values the animation system understands as well as triggering the appropriate ani-
mation state transitions when needed. In many cases, this driving code would also be 
responsible for any animation postprocessing required, that is, post rotation/translation 
of the animation displacement. As such, we still have a lot of different responsibilities 
within one system and we haven’t really improved the maintainability or extensibility of 
our characters. To move forward, we need to pull all of this animation-specific code out of 
our gameplay systems, which will remove any remaining code/data dependencies we have 
between our animation data and gameplay code.

12.5	 Separating	Gameplay	and	Animation

To pull out the animation driving code, there are two things we can do, the first is rela-
tively easy and goes a long way to simplify the gameplay code, while the second is sig-
nificantly more invasive and time-consuming. So if you find yourself battling code/data 
dependencies toward the end of a project, the first technique might prove useful.

We mentioned that one of the key responsibilities of the animation driving code 
was to convert between high-level gameplay desires such as “move at 3.5 m/s while 
turning 53° to left” to the animation level control parameters, which might be some-
thing like “direction = 0.3 and speed = 0.24” (i.e., the blend weight values that will 
result in the required visual effect). To do the conversion between the gameplay values 
and the animation values, it is necessary for the gameplay code to have knowledge 
about the animations that are available, the blends that exist, what values drive what 
blends, etc. Basically, the driving code needs to have full knowledge of the blend tree 
just to convert a value from, for example, degrees to a blend weight. This means that 
if an animator modifies the blend tree, then the gameplay code might be invalidated 
and require code changes to restore the functionality. This means that any animgraph 
changes require both programmer and animation resources and a potentially signifi-
cant delay before a build with both the code and data changes can be rolled out to the 
production team.

A simple way to get around this problem is to move all translation logic into the 
animgraph (i.e., directly feed in the higher-level gameplay values). Depending on your 



108 Architecture

animation system, this may or not be possible. For example, in Unreal 4, this is rela-
tively trivial to do through the use of blueprints, while on Unity, there seems to be no 
way to perform math operations on control parameters within the graph. The benefits 
of moving the translation logic into the graph are twofold: first, gameplay code does not 
need any knowledge of the graph or the blends; all it needs to know is that it has to send 
a direction and speed values in a format it understands (i.e., degrees and m/s, respec-
tively). In removing that dependency from the code and moving it into the animgraph, 
animators can now make drastic changes to the animgraphs without having to modify 
the gameplay code; in fact, they can even swap out entire graphs just as long as the 
inputs are the same, taking the setup shown in Figure 12.1 and moving all translation 
logic to the blend tree result in the setup shown in Figure 12.5.

In addition to the translation logic, we can also move a lot of other control parameter 
logic to the graph (e.g., dampening on input values so we get smooth blends to the new 
values instead of an instant reaction to a new value).

It is still important to note that gameplay code should probably be aware of the 
capabilities of the animation (i.e., roughly what the turning constraints are and what 
reasonable speeds for movement are, but it doesn’t have to be explicit). In fact, it is usu-
ally gameplay that defines some of these constraints. Imagine that we have the setup in 
Figure 12.5 and gameplay decides we need the character to sprint; the gameplay team 
simply feeds in the faster velocity parameter and notifies the animation team. The ani-
mation team can now create and integrate new animations independently of the game-
play team. From a technical standpoint, moving the translation logic from the code to 
data removes one layer of coupling and brings us closer to the final SoC architecture 
we’d like.

The second thing we need to do to achieve the SoC architecture is to move all the 
animation driver state machine code from the gameplay state machine into a new layer 
that exists between the animation system and the gameplay code. In the classic AI agent 
architecture presented in [Russel 03], the authors separate an agent into three layers: 
sensory, decision making, and actuation. This is in itself an SoC design and one that 
we can directly apply to our situation. If we think of the gameplay state machine as the 
decision-making layer and the animation system as the final actuators, then we need 
an actuation layer to transmit the commands from the decision-making system to the 
actuators. This new layer is comprised of an animation controller and animation behav-
iors. Gameplay systems will directly interface with this new layer for any animation 
requests they have.

Translation logic

 Walk left 45

 Walk forward

 Walk right 45

Resulting pose
Direction

 Run left 45

 Run forward

Run right 45

Blend

Blend Blend
Speed

Convert [–45,45] to [0,1]Clamp to [–45,45]
Convert [2,4.5] to [0,1]Clamp to [2,4.5]

Figure	12.5

Moving	control	parameter	translation	logic	to	the	animgraph.
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12.6	 Animation	Behaviors

An animation behavior is defined as a program that executes a specific set of actions are 
needed to realize a character action from a visual standpoint. As such, animation behav-
iors are purely concerned with the visual aspects of character actions, and they are not 
responsible for any gameplay state changes themselves. That is not to say they have no 
influence on gameplay, though. There is bidirectional flow of information between the 
gameplay systems and the animation behaviors, which will indirectly result in gameplay 
state changes, but these changes will not be performed by the behaviors themselves. In 
fact, we suggest the animation behaviors are layered below the gameplay systems (in your 
engine architecture), so that there is absolutely no way for the behaviors to even access the 
gameplay systems.

In describing animation behaviors, we feel it makes more sense to start at the anima-
tion system and slowly move back up to the gameplay system. As such, let’s take a look 
at the example animgraph presented in Figure 12.6. We have a full-body animation state 
machine that contains all the full-body actions that our characters can perform. Within 
that state machine, we have a state called “locomotion,” which, in turn, contains a state 
machine with the states necessary to perform locomotion. Each of these states represents 
additional blend trees/state machines.

Let’s say that we wish to build a “move” animation behavior. For this behavior to func-
tion, it will need to have knowledge of the animgraph (especially the “locomotion” state 
machine), all the states contained within it, and the contents of each state. Once we’ve 
given the animation behavior all the necessary graph topological information, it will need 
to drive the state machine, which implies it requires knowledge about the needed control 
parameters and context thereof. With this knowledge, the animation behavior is ready to 
perform its task. This is achieved in three stages: “start,” “execute,” and “stop.”

The “start” stage is responsible for ensuring that the animgraph is in a state in which 
the execute stage can proceed. For example, when starting to move from idle, we need to 
trigger the “idle to move” transition and wait for it to complete; only once that transition is 
complete and we are in the “move” state, we can move onto the “execute” stage. In the case 
of path following, we may also need to perform some pathfinding and path postprocessing 
here before the behavior can continue.

Idle

Locomotion

Jump

Ladder

Full-body animation state machine

Sprint

Move

Crouched

Idle to move Move to idle

Crouched to idleIdle to move

Walk left 45

Walk forward

Walk right 45

Run left 45

Run forward

Run right 45

Blend

Blend Blend

Figure	12.6

An	example	of	a	full-body	animation	state	machine.
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The “execute” stage is responsible for all the heavy lifting. It is responsible for driving 
the animgraph to generate the required visual result. In the context of locomotion, we 
would perform the path following simulation and set the direction and speed parameters 
needed to follow a given path. Once we detect that we have completed our task, we will 
transition over to the “stop” stage.

The “stop” stage is responsible for any cleanup we need to do as well as transitioning 
the animgraph to a neutral state from which other animation behaviors can continue. 
With our locomotion example, we would free the path and then trigger the “move to idle” 
transition in this stage and complete our behavior.

It is important to note that in the example given in Figure 12.6, the actual transition 
between “idle” and the “locomotion” state exists within the “full-body” state machine. 
This implies that both “idle” and “locomotion” need to know about the “full-body” state 
machine. Well, in fact, it turns out that all states in the “full-body” state machine need to 
know about it. This brings us to the concept of animgraph views. An animgraph view is 
an object that has knowledge of a specific portion of the graph as well as utility functions 
to drive that portion of the graph. From that description, animation behaviors are in fact 
animgraph views themselves with the exception that they have an execution flow. It is bet-
ter to think of graph views as utility libraries and the animation behaviors as programs. 
Multiple behaviors can share and make use of a single graph view, allowing us a greater 
level of code reuse and helping to reduce the cost incurred when the animgraph changes. 
In our example, we would have a “full-body graph view” that would know about the topol-
ogy of the “full-body state machine” and offer functions to help trigger the transitions 
between the states, for example, set full-body state (IDLE).

To execute a given task, animation behaviors require some instruction and direction. 
This direction comes in the form of an animation order. Animation orders are sent from 
the gameplay systems and contain all the necessary data to execute a given behavior. For 
example, if the gameplay systems want to move a character to a specific point, they would 
issue a “move order” with the target point, the desired movement speed, the character’s 
end orientation, and so on. Each animation order has a type and will result in a single ani-
mation behavior (e.g., a “move order” will result in a “move behavior”). Animation orders 
are fire-and-forget, in that once an order is issued, the gameplay system doesn’t have any 
control over the lifetime of the animation behavior. The only way that behaviors can be 
cancelled or have their orders updated is by issuing additional orders, as detailed in the 
next section.

In addition to the animation orders, we have the concept of animation behavior handles 
that are returned for each order issued. These handles are a mechanism through which 
the animation behaviors and gameplay systems can communicate with one another. 
Primarily, the handles are a way for the gameplay systems to check on the status of an 
issued animation order (i.e., has the order completed, has it failed, and, if so, why?). An 
animation handle contains a pointer to the animation behavior through which it can per-
form necessary queries on the state of the behavior. In some cases, for example, a player 
character, it is useful to be able to update a given program on a per frame basis (i.e., with 
the controller analog stick inputs that will be translated into animation control parameter 
settings by the behavior each frame).

We show a simple timeline representing the interaction between a gameplay system 
and an animation behavior for a simple “move” order in Figure 12.7. It is important to note 
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how all communication between the animation behavior and the gameplay system occur 
through the animation handle.

In addition to the three update stages, animation behaviors also feature a post-
animation update “postprocess” stage. This stage is mainly used to perform animation 
postprocessing such as trajectory warping but can also be used for post-physics/post-
animation pose modification (i.e., inverse kinematics [IK]). As a note, IK and physics/
animation interactions should ideally be performed as part of the animation update but 
not all animation systems support this.

Since we will have multiple animation behaviors covering all of a character’s actions, 
we need some mechanism to schedule and execute them. This is where the animation 
controller comes in.

12.7	 Animation	Controller

The animation controller’s main role is that of a scheduler for the animation behaviors. 
It is the primary interface used by the higher-level gameplay systems to issue requests 
to the animation system through the use of animation orders. It is responsible for creat-
ing and executing the animation behaviors. The animation controller also features ani-
mation behavior tracks (queues) used for layering of animation behaviors. For example, 
actions such as “look at,” “reload,” or “wave” can be performed on top of other full-body 
animations (e.g., “idle” or “walk”), and, as such, we can layer those actions on top of full-
body actions at the controller level. In previous games, we found it sufficient (at least for 
humanoid characters) to have only two layers: one for full-body actions and one for lay-
ered actions [Anguelov 13, Vehkala 13]. We also had different scheduling rules for each 
track. We only allowed a single full-body behavior to be active at any given time, whereas 
we allowed multiple layered behaviors to be active simultaneously.

For the full-body behaviors, we had a queue with two open slots. Once a full-body ani-
mation order was issued, we would enqueue an animation behavior into the primary slot. 
If another full-body order was received, we would create the new animation behavior and 
first try to merge the two behaviors. Merging of animation behavior is simply a mechanism 
through which an animation order can be updated for a behavior. For example, if we issue 
a move order to point A, we would spawn a move animation behavior with the target A. 
If we then decided that point B is actually a better final position, we would issue another 
move order with point B as the target. This will result in another move animation behavior 
being spawned and merged with the original move behavior thereby updating its order; 
the second behavior is then discarded. Once the merge process completes, the behavior 
will then detect the updated order and respond accordingly. If an animation order results 
in a full-body animation behavior of a different type than the already queued behavior, we 
would have queued the new behavior to the second slot and updated it, but we would have 
also notified the original behavior to terminate. Terminating a behavior forces it to enter 
the stopping stage and complete. Once an animation behavior completes, it is dequeued 
and is not updated any more. This means that we can in essence cross-fade between two 
full-body actions allowing us to achieve greater visual fidelity during the transition.

The merging mechanism does have the requirement that all behaviors be built in 
a manner that supports order updating. While this manner of updating animation 
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behaviors might seem strange at first, it has significant benefits for the gameplay code. 
The main one is that gameplay no longer needs to worry about stopping and waiting 
for animations to complete or how to transition between the different animation states, 
as this is all handled at the controller/behavior level. This transition micromanagement 
at the gameplay level is also extremely problematic when trying to delegate animation 
control between different systems, for example, when triggering an in-game cut scene, 
the cinematics system requires animation control of the character. When control is 
requested, the character could be in any animation state. The cinematic system needs to 
resolve that state in a sensible way, and this has been extremely difficult to achieve in the 
past without coupling unrelated systems (i.e., giving knowledge of the AI system to the 
cinematics system). With our approach, we can now delegate control to various systems 
without having to create any coupling between unrelated systems. For example, anima-
tion behaviors could be written for cinematics, and when the cinematics code takes con-
trol, it could issue those orders that would terminate existing orders and result in sensible 
transitions between orders. In fact, the cinematics system can even reuse the same loco-
motion orders that the AI is using, since they are entirely system agnostic. Imagine we 
needed to have an nonplayable character (NPC) climb a ladder in a cut scene. Instead of 
fully animating the cut scene, or trying to script the AI to climb the ladder, we could sim-
ply issue the animation order directly in the cinematics system without any knowledge of 
the AI or the current state of an NPC.

There is also an additional benefit of this approach on the animation side. If for what-
ever reason we have a barrage of orders from the gameplay systems, that is, behavior 
oscillation, our full-body queuing mechanism will simply overwrite/merge the queued 
behavior with whatever new behaviors it is ordered to perform. This greatly reduces the 
visual glitches that traditionally arise from these kind of gameplay bugs. On the downside, 
it does make those bugs harder to detect from a quality assurance (QA) perspective, as 
there is no visual feedback now, so we greatly recommend that you implement some sort 
of animation order spam detection.

When it comes to the layered behaviors, we can have any number of behaviors queued, 
and it is up to gameplay code to ensure that the combination makes sense. We also merge 
layered behaviors in the same manner as for the full-body behavior, giving us the same set 
of update capabilities.

There is one last thing to discuss when it comes to the scheduling of animation 
behaviors: behavior lifetimes. The lifetime of a behavior is not synchronous with 
that of the gameplay state that issued the original order. Once a behavior completes, 
it is dequeued, but we may need to keep the behavior since the handle may still be 
checked by gameplay code, which updates at a different frequency. The opposite may 
also be true, wherein a gameplay state issues an animation order that then completes 
without waiting for the order to complete. As such we decided to control animation 
behavior lifetime through the concept of shared ownership. A behavior is kept alive 
(in memory), while either a handle to it still exists or it is still on one of the anima-
tion controller update queues. This can be easily achieved through the use of an STL 
shared_ptr smart pointer. The final architecture across all system layers is presented 
in Figure 12.8. For more details on the controller/behavior architecture, readers are 
referred to [Anguelov 13].
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12.8	 Benefits	of	an	SoC	Animation	Architecture

Up until this point, we have discussed the SoC as a means to solving some existing prob-
lems. However, it is important to mention that there are some additional benefits in mov-
ing to an SoC architecture, which might not be immediately clear, and so we would like to 
highlight a few of them.

12.8.1	 Functional	Testing
The first clear benefit from this architecture is that systems can now be functionally tested 
in isolation. For example, if we wish to create some tests for the AI system, we can create 
a dummy animation controller that will receive orders and complete/fail them as desired 
without actually running any animation code. This will greatly simplify the task of debug-
ging AI issues, as the animation code can be entirely removed from the equation. In the 
past with all the intertwined systems, we would never really be sure what the root cause 
of a bug was. This is also very true for animation testing. On a past project, we had built a 
stand-alone scripting system for testing the animation layer. This scripting system would 
issue the exact same orders as the AI, but allows us to build animation function tests in 
complete isolation. This was a massive win for us on previous projects when maintain-
ing and verifying animation functionality, even across multiple refactoring phases of the 
gameplay code.

12.8.2	 System	Refactoring
Another huge benefit of this approach is that when we wish to make significant ani-
mation changes, it is much safer and easier to do so. This architecture allows us to 
replace character actions, one by one, without any risk of breaking the gameplay code. 
Furthermore, this approach allows us to perform nondestructive prototyping. When 
building a new version of an action, we can simply build a new behavior alongside the 
existing one and have a runtime switch to select between the two within the controller. 

Animation order Behavior handle

Layered behaviorsFull-body behaviors

Gameplay systems

Animation system

Animation controller

Anim Behavior Anim Behavior Anim Behavior Anim Behavior Anim Behavior

Figure	12.8

The	final	SoC	architecture.
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The beauty of this approach is that we can swap out behaviors at runtime without the 
gameplay code even being aware. If we combine this technique with the function test-
ing mentioned earlier, it allows us to build a new version of an action and compare the 
two actions side by side (which alone is priceless), without having modified neither the 
original action nor the gameplay code. This allows us to rapidly prototype features with 
bare minimum functionality and expose them to the gameplay systems early on, all 
while building the final versions alongside them, allowing us to experiment and break 
actions without affecting the build.

12.8.3	 Level	of	Detail
Being able to switch between behaviors at runtime without affecting gameplay allows us 
to leverage this to build a dynamic level of detail (LOD) system for the animation. In sce-
nario’s where the lifetime of characters is significant and AI updates are required even for 
offscreen characters (i.e., artificial life simulations), we require some mechanism to reduce 
or remove the cost of animation updates. If NPC locomotion was based on the animation 
(animation driven displacement), then this becomes relatively complex to achieve without 
a clear separation of the animation and gameplay systems.

With our approach, we can build several sets of cheap animation behaviors that can 
be dynamically swapped out at runtime based on a character’s LOD level [Anguelov 13]. 
When we have an NPC at the highest LOD, we would want to run our default animation 
behaviors. As the character moves away and drops in LOD, we could exchange out some 
of the expensive layered behaviors with lightweight ones so as to reduce the cost. Once 
the character moves offscreen, then we can replace all animation behaviors with dummy 
behaviors that simply track the animation state needed to resume a high LOD behavior 
when needed.

For example, with locomotion, at the highest LOD, we would run the animation 
locomotion fully as well as having a layered footstep IK behavior enabled. At a medium 
LOD, we would replace the footstep IK behavior with a dummy behavior while keep-
ing locomotion untouched. At the lowest LOD (offscreen), we would replace the loco-
motion with a simple time-based update on the given path, as well as estimating the 
velocity and state of the character (crouched, standing, etc.). Once this character comes 
back into view, we would simply swap back to the standard locomotion behavior and 
continue seamlessly. We suggest that you build separate behaviors for the different 
LODs, as this allows you to create “LOD sets” for different characters using various 
combinations of the behaviors. For example, you might not want to disable the foot-
step IK for huge characters even at medium LOD, since it may be more visible than for 
smaller characters.

12.9	 Conclusion

In this chapter, we have presented an approach for decoupling your gameplay systems 
from your animation systems. We discussed the potential improvements to productiv-
ity and maintenance offered by this approach as well as provided advice on how to move 
toward a similar architecture.



116 Architecture

References

[Anguelov 13] Anguelov, B. and Sunshine-Hill, B. 2013. Managing the movement: Getting 
your animation behaviors to behave better. Game Developers Conference. http://www.
gdcvault.com (accessed May 11, 2014).

[Greer 08] Greer, D. 2008. The art of separation of concerns. Online article: The aspiring 
craftsman. http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/ 
(accessed May 11, 2014).

[Russel 03] Russel, S.J. and Norvig, P. 2003. Artificial Intelligence: A Modern Approach, 2nd 
edn. Pearson Education, Englewood Cliffs, NJ.

[Vehkala 13] Vehkala, M. and De Pascale, M. 2013. Creating the AI for the living, breathing 
world of hitman: Absolution. Game Developers Conference. http://www.gdcvault.com 
(accessed May 11, 2014).


