
59

Production	Systems
New Techniques in AAA Games

Andrea Schiel*

9

9.1	 Introduction

Production systems have been around since the 1940s and are now applied in a wide
array of applications and ongoing research. AAA games bring a unique set of challenges
to production systems; they require that AI systems be runtime efficient, determinis-
tic, memory lean, and above all, implementable within the development cycle. Over the
course of many of our titles, production systems have developed along different lines. This
chapter tries to describe the majority of our more unique production systems, assuming
that the reader has a basic knowledge of production systems. For readers who want to
code their first production system, there is a list of references that describe basic pro-
duction systems in more detail [Luger 93, Millington 09, Laird 12, Bourg 04] and these

9.1	 Introduction
9.2	 What	Decisions	Is	the	

System	Trying	to	Make?
9.3	 Choice	of	Rules	

Representation
9.4	 Method	of	Rules	

Authoring
9.5	 Choice	of	Matching	

System

9.6	 What	Happens	If	the	AI	
Fails	to	Find	a	Rule?

9.7	 What	Happens	If	There	
Are	Multiple	Rules?

9.8	 Execution	and	the	Design	
of	the	RHS

9.9	 Debugging	and	Tuning
9.10	 Conclusion
References

* The author has worked at Electronic Arts for over 18 years on a variety of titles, in particular sports games.
This chapter contains the insights from applying production systems to multiple AAA over many generations
of consoles.

60 Architecture

should get you started. This chapter will step through some of the design choices you
might make for a more advanced or specific system and presents some of the innovations
in our AAA titles.

9.1.1	 Terminology
Terminology surrounding production systems can be confusing since it varies depend-
ing on the source of the material. For clarification, Table 9.1 lists the terms in use in this
chapter and some common alternate terms.

9.1.2	 Design	Considerations
Coding your own production system can be very rewarding but there are some choices
that need to be made beforehand. Skipping one of these decisions has caused problems in
development in the past and many of these can be found in postmortems on production
systems:

 • What decisions is the system trying to make? (scope and domain choice)
 • How are rules represented? (rules representation)
 • How will rules be authored?
 • How does the left-hand side (LHS) evaluate? (matching systems)
 • What happens if the AI fails to find a rule?
 • What happens if there are multiple rules? (selection algorithms)
 • Execution and the design of the right-hand side (RHS)
 • How will the system be tuned?

The following sections go into more detail about each one of these points.

9.2	 What	Decisions	Is	the	System	Trying	to	Make?

Like any other architecture, production systems are good at certain tasks and not at others.
If the decisions are particularly simple, a rules-based system is probably overkill. However,
if the game doesn’t break down into nice discrete states and the decisions need to reflect

Table	9.1	 Terms in Use in This Chapter

Term Alternate

AI AI agent or AI opponent system
Rule Production, statement
LHS (left-hand side) Precondition, conditional statement, if side
RHS (right-hand side) Then side, action, postcondition
Rules database Rules set, working set
Variable Operator, assertion symbol, datum, working memory element, fact
Working memory Input, assertion set, perceptions, knowledge, set of facts
Scripting language Predicate logic, symbolic script
Matching stage Rule binding, LHS evaluation, variable unification
Selection stage Rule selection, conflict resolution
Execution stage Act, RHS evaluation

61Production Systems

different scenarios, a production system (or variation thereof) would be appropriate. At a
minimum, a production system can be used when

 • AI decisions are based on a variety of factors and are not easily quantified
 • The system needs to respond quickly to changes in state
 • There is an expert with knowledge of the game that needs encoding and that

knowledge doesn’t break down into a nice algorithm
 • The actions for the system are independent of each other

The key decision is which part of the game the production system should be applied to.
For example, production systems could make decisions for only part of the AI’s process:
when to do a trick or execute specific plays—though even these more narrow scenarios
still need to fit the aforementioned criteria. A more specific AI can help limit when the
system runs, which will help contain the runtime cost, though spikes in performance can
still be an issue.

Alternatively, the production system could run all of the AI’s decision logic. This sort
of system requires more extensive optimization, and memory may be an issue since the
scope of the AI is broader. The same can be true if the AI is being used for all of the simu-
lation. Production systems can also be used for non-AI logic—such as for a game analysis
system like color commentary for a sports game or for a contextual help system. The scope
of these applications are harder to determine and handling the case when no rule triggers
can be critical.

Performance-wise, production systems have a heavier update cost than most decision
trees or state machines. Memory is required, but not necessarily more than what might
be needed for another AI system. The rules themselves tend to have a small footprint, but
they do add up quickly as a typical AI agent can require 100–500 rules. Different applica-
tions or more narrow applications of the system may require fewer rules, of course. There
is also a hidden workflow and tool development cost in that an expert needs to author the
rules, be able to iterate on those rules, and debug behaviors.

9.3	 Choice	of	Rules	Representation

The way rules are described is probably the biggest difference between the way these sys-
tems are implemented in games, compared to those used in research and other indus-
tries. The actual scripting language varies between systems: in CLIPS [Riley 13], it’s C;
SOAR has its own symbolic language [Laird 12]; and in our games, the language is very
specific for the domain that the rule is being used for. In larger production systems, the
scripting language supports predicate logic and unification to allow more flexibility in
deciding which rules are applicable. This is often expensive both to develop (if you’re cod-
ing your own) and to run. Due to the cost of unification, there are algorithms like Rete
[Schneider 02, Millington 09] that optimize the matching. The advantage of a full predi-
cate calculus (like SOAR) is that the language is very flexible and can describe a large
variety of scenarios.

In deterministic games, however, unification is often difficult to take advantage of,
and when it is removed, the development of a rules representation can be simplified.
Unification can make it difficult to optimize for the scale of the AI. In the majority of our

62 Architecture

games, a more custom, smaller, and specific language was used. The elements of the LHS
are designed to reflect the game’s perception and state variables and the RHS are called
into the animation or lower systems.

Another detail we discovered is a little unusual; sometimes, designers wanted the abil-
ity to create temporary variables. These variables may not map to a variable in the per-
ception system but are to represent some value the designers want to check, the most
common being some type of counter. In systems with a working memory, this is trivial to
implement, but if there isn’t a working memory, a form of scratch memory or blackboard
is needed to carry these temporary variables.

One caution here is that designers might attempt to use temporary variables to intro-
duce state into the decision process itself. This should be discouraged and the solution is
usually to sit down with the designer to assist them with building a better rule. Temporary
variables have also been used to introduce randomness into the system—which could be
another sign that the designer may need assistance with the development of the LHS of a
rule (i.e., it is being selected too often or too little). Having useful operators for the LHS of
rules or building in a weighting system for rule selection can help here. The types of opera-
tors (usually logical) will help determine how extensive the rules language will need to be.

9.4	 Method	of	Rules	Authoring

Full proprietary systems often support their own editor and in these cases, the authors are
effectively scripting their rules. In addition, with the ability to read definitions at runtime,
the evaluation of the rules can be a fantastic asset for debugging purposes. Live editing
could also be possible but in one variant system we developed, the rules are recorded.

9.4.1	 Recorded	Rule	System
Recording systems allow for rapid iteration on rules and for very quick authoring of rules.
The author runs the game, puts the system into record mode, and the system will auto-
matically record the state of the game. When the specific type of action occurs, the state
of the game is associated with the action and becomes the LHS of the rule (the action is
the RHS). The disadvantage of this system is that manual tweaking of the rules is limited.

For the LHS (the recorded part), the following are necessary considerations:

 • What’s being recorded: which game state variables are important?
 • How important each game state variable is: a weight for each variable that modi-

fies how much that variable applies when being matched. Lower weighted vari-
ables are less necessary for a match.

 • The tightness of the matching for each variable: the range of values that would be
tolerated for each variable.

 • How far back in time is needed to be recorded to form the LHS—is it a snapshot
right before the action or a time range before the action.

In our implementation, the LHS rules produce a score that is considered a match if it sur-
passes a given threshold value. The rules that match form the matched rules set and the rest
of the system is a classic production system. That is, the actions (RHS) go through a stage
of conflict resolution and whichever rules are left after selection then run their actions.

63Production Systems

The disadvantage is that the system works best if the rules share a lot of the same LHS
variables. By the same token, sharing a lot of LHS elements does make the Rete algorithm
a good choice. However, since predicate calculus wasn’t in use, a custom matching system
was implemented.

Determining which game state variables are needed for the LHS is a challenge. Once
this step is completed, the actual authoring is very quick. A useful aid here is the ability
for the system to rewind and playback the rule and to identify, at runtime, which rules
are being triggered, and specific for a rule, how each of the elements of the LHS matched.

9.4.2	 More	Typical	Systems
Nonrecorded authoring utilizes a custom editor—though the best systems seem to be the
ones that read in text files and effectively compile them into rules. However, this may allow
for authors to create malformed rules (which they will have to correct), but it gives them
the most freedom to use whichever text editor they prefer. As such, this is one of the more
accessible approaches.

Alternatively, if the grammar is quite specific, a more symbolic or graphical editor can
be used. In retrospect, many designers seem to dislike graphical editors but depending on
the complexity, this is an option. How easy it is for designs to author the rules will have a
direct impact on the efficiency of the workflow.

9.5	 Choice	of	Matching	System

On some platforms where we are constrained by runtime performance, and unification
isn’t being supported, optimization of the system’s matching stage is required. In one case,
this led to the development of a new system that is a departure from a true production sys-
tem. In this variant, with a very large rules database, the matching system stops at the first
rule matched. This turned the production system into a specialized rules-based system but
it did open up some unique applications. This type of selection, a type of greedy selection,
is described in Section 9.5.1.

9.5.1	 Greedy	Matching/Selection
As an example, let’s start with 500 rules in our database, numbered 1–500. In any given
update, the rule matching is capped at 1 ms. For up to 1 ms, process the LHS of the rules
in order. If a match is made, exit early. If a match is not made, continue to the next rule.
Once a match is made, selection has been effectively completed as well since there is only
one rule. That rule’s RHS is then executed.

This approach created the complication that the AI would always fire the same rule for
the same state. This was solved by randomizing the order of the rules in the rules database.
Figure 9.1 demonstrates how this works.

 • Step 1: Rule 1’s LHS is evaluated but it doesn’t match. The system tries rule 2 and
so forth until it matches rule 4. Rule 4’s RHS is then executed. Before the next
update, the rules database is randomly shuffled.

 • Step 2: Several updates later when the same state occurs again, the database is
now in a different order. The system starts with rule 300 (which doesn’t match in
this example). Finally, rule 87 matches/is selected. Its RHS is then executed. (This
example assumes rule 4 was shuffled below rule 87).

64 Architecture

This made the matching/selection processing extremely fast, allowing it to run very large
rules databases on very limited platforms. In addition, we capped the matching so that
only n numbers of rules were actually checked. This allows for the capping of a spike if all
rules were not going to match. The capping is used because, like any list, the worst-case
runtime is O(n), which, again, can be prohibitive if n is large or a rule has an expensive
LHS. It’s worth noting that spikes can occur during matching (even with a cap) if a rule’s
LHS is very expensive to evaluate. This is mitigated by optimizing the LHS variables and
by limiting the number of variables allowed for the LHS of a rule.

9.6	 What	Happens	If	the	AI	Fails	to	Find	a	Rule?

This may seem like a simple problem, but in practice, we’ve run into issues with the
AI stalling. The first challenge is ensuring that it’s obvious when the system fails to
find a matching rule. The second challenge is to determine if that’s acceptable. In some
games, as long as the AI already has an action, it is fine if the AI doesn’t find a new rule.
In other games, this can lead to an AI standing absolutely still, or a factory not produc-
ing anything, or no tricks being performed, etc. As long as this is identified, a default
rule could be the solution or additional rules to fill in the missing scenarios could be
authored. In one unique case, backward chaining was used. This allowed the system to
work out a sequence of steps to get to a matchable state. Backward chaining is beyond
the scope of this chapter, but it is possible so long as the amount of back chaining is
constrained.

9.7	 What	Happens	If	There	Are	Multiple	Rules?

When there are multiple rules—that is, when greedy matching isn’t in use—the matched
rules need to undergo selection. The purpose of selection or conflict resolution is to ensure
that the RHS of rules do not produce actions that conflict with each other but in some
cases, it is also to scope down the number of rules. For example, in one system, when
the set of matched rules is very large, only the first n rules are selected and this limits the

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6

Evaluate rule 1 LHS: no match

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6

Evaluate rules 2–4 LHS: rule 4
matches

Rule 4

Next update (after sorting)

Rule 300
Rule 6

Rule 55
Rule 11
Rule 87
Rule 99

Evaluate rule 300 LHS: no
match

Rule 300
Rule 6

Rule 55
Rule 11
Rule 87
Rule 99

Evaluate rules 6, 55, etc., LHS
until rule 87 matches

Rule 87

First update showing only �rst 6 rules of a set of 500 rules

Figure	9.1

Greedy-based	selection’s	first	two	updates	(read	left	top	to	bottom,	then	right	top	to	bottom).

65Production Systems

number of RHS that execute and scales down the possible conflicts. If the RHS are kept as
unique as possible, then the number of conflicting rules should be reduced since all rules
would be able to run. We discovered it was important to track the number of times that
a rule was executed (selected) since the selection algorithm was sometimes filtering out
rules to the extent that they never were selected.

One system had the problem where for a few game states, a very large number of rules
were always matched. The solution was to randomly select a subset, process these for
conflicts (which were minimal), and then execute the subset. The random selection pre-
vented a bias from creeping into the system from the selection algorithm (constraining the
matching in this particular situation wasn’t possible).

By contrast, in another system where a large number of matches occurred on a regular
basis for many rules, a form of partially supervised training was the solution. The system
supports a weighting of the LHS. When a rule is successful, its LHS weight is increased. If
it fails, the LHS weight is decreased. This requires a selection algorithm that selects biased
on a weight, a system that monitors the results of the RHS execution, and a method for
the authors to tweak the amount of negative/positive feedback for the training system.
The AI is then run many times in training mode against both itself and human players.
After many games, the resulting database is locked and the result is a self-tuned rules
database. The rules subset selected are the first n number of rules that matched—but not a
random subset. Instead, since the subset reflects the result of training, the subset is the set
of higher-performing rules.

This proves to be highly successful and it allows for the weeding out of bad rules.
However, you will need to manually check for rules that are too highly rated and remove
low-frequency rules. Low-frequency rules won’t have as much reinforcement applied to
their weights and will drift to the bottom. Likewise, you can boost the weight of a rule to
increase its probability of selection if the expert feels a rule is being unfairly penalized.

9.8	 Execution	and	the	Design	of	the	RHS

The RHS is the part of the system where an action can be taken as a result. It can be a
flag, a setting of a variable, a message, or an event or any other form of implementation.
In general:

 • The RHS should be cheap as possible to execute
 • As much as possible, the RHS should not preclude other RHS actions. That is,

minimize the number of conflicts between the RHS if possible
 • If implementing backward chaining, the RHS should be discretely identifiable

and be reusable as a variable on the LHS
 • The RHS should be able to support being called multiple times without restarting

on every call or the LHS will need to check if a RHS action is already running
 • There should be minimal dependency between RHS. If an RHS requires that

another action runs before it, the rules need to enforce this, which adds additional
checks to the LHS of the rules

Authoring of the RHS can be done in the same manner as the LHS or it can be distinct. In
the example that follows, the RHS is generated during a recording session.

66 Architecture

9.8.1	 More	Complex	RHS
One system records the joystick actions to produce the RHS of the rules, as shown in Figure 9.2.
The execution for the RHS is simply a playback of the recorded joystick. This system allows a
production system to be applied to a more complicated series of actions. It’s very fast to author
but it also requires a postediting stage so that authors can tweak the playback or discard bad
recordings. Selection is also an issue since it isn’t apparent when rules would be in conflict.

This is solved in two ways. In the first method, the rule is marked as unique so that if it
matches, only that rule can be selected. In the second method, which applies to most of the
rules, certain joystick maneuvers are identified and any rules that also hold these maneu-
vers are selected out. The authors could also watch the AI play, and if a rule is firing in the
wrong scenario, the game can be paused, the rule opened for editing, and the LHS can be
tweaked. The game then resumes but the production system reruns so that the author can
ensure that their changes were appropriate. The final issue with this system is that if the
player is what is being recorded, this will only work if the AI can use the data in the same
way that the player uses it.

9.9	 Debugging	and	Tuning

Several variants on how to author systems have been presented, but all of these need to be
tuned and tested. Outside of the typical performance profiling, there are a couple of com-
mon key indicators that all of our systems have:

 • Number of times a rule executes
 • Success rate of executing the RHS

Game pauses
and author
edits LHS

Game resumes
and rule is added
to rules database

Joystick
deflections and
button states
saved to RHS

Record player
joystick

AI will now start
playing back the
joystick moves

when LHS
matches

Figure	9.2

Recording	the	RHS.

67Production Systems

 • Number of times a LHS variable matches
 • List of rules that execute with a very high frequency
 • List of rules that never execute

Another common debugging tool is to allow the RHS for a rule to be executed on
demand—such that the behavior itself can be tuned or tweaked. Some systems support a
complete reedit or rerecording of the RHS.

One implementation uses the selection step to train its AI. In training mode, the game
is running with debug information available and the rules open for editing. If a rule is
selected in training mode that the expert (designer) doesn’t like, they can indicate that,
and the system lowers the rule’s weighting. Alternatively, the expert can pause the game
and adjust the rule’s LHS at runtime to ensure that the rule doesn’t fire in that circum-
stance. They can likewise reward a given selection. This system requires a runtime editor
for the rules and a way to reload the rules. Much more common is for production systems
to log the results of matching and selection and have the training done offline.

In general, support for live editing can make iteration on the LHS of rules much easier.
It can be difficult to author the constraints for the LHS of a rule for all possible scenarios—
and having a way to edit and then rerun a scenario can help with this tuning immensely.

Logging and debug display of which rules are firing for a given AI is common. It helps
to know which rules are creating the current behavior. Many systems support the graphi-
cal display for the test of the LHS variables. For example, if a variable is testing the range
from one object to others, the debug might inscribe a circle to show what the radius/
distance is set to.

9.10	 Conclusion

Production systems have been used in a variety of published AAA titles and have proven
themselves in many industries for some time now. All of the systems described are the
results of the hard work of many engineers for different types of games over the course of
many years. Some of these systems have evolved over time—almost all due to a practical
constraint. Some are no longer production systems but all had their start with such a sys-
tem and were usually developed initially over the course of 2 years.

A challenge all of these systems face is that they need to be very easy to iterate on and
this has inspired new ways to author systems. Likewise, domain-specific systems have
launched a variety of new ways to represent rules and to optimize matching outside of
Rete and other classic algorithms. There is nothing inherently flawed with a more classic
approach, but it is hoped that by presenting some of the techniques we use, readers might
be inspired to think beyond the typical implementation and extend what is possible for
these systems in their own games.

References

[Bourg 04] Bourg, D. M. and Seemann, G. 2004. AI for Game Developers. Sebastapol, CA:
O’Reilly Media Inc.

[Laird 12] Laird, J. 2012. The Soar Cognitive Architecture. Cambridge, MA: Massachusetts
Institute of Technology.

68 Architecture

[Luger 93] Luger, G. F. and Stubblefield, W. A. 1993. Artificial Intelligence Structures and
Strategies for Complex Problem Solving, 2nd edn. Redwood City, CA: The Benjamin/
Cummings Publishing Company Inc.

[Millington 09] Millington, I. and Funge, J. 2009. Artificial Intelligence for Games. Boca
Raton, FL: CRC Press.

[Riley 13] Riley, G. 2013. CLIPS: A tool for building expert systems. Sourceforge. http://
clipsrules.sourceforge.net/ (accessed May 27, 2014).

[Schneider 02] Schneider, B. 2002. The Rete matching algorithm. Dr. Dobbs Journal. http://
www.drdobbs.com/architecture-and-design/the-rete-matching-algorithm/184405218
(accessed May 27, 2014).

