
49

Production Rules
Implementation in 1849
Robert Zubek

8

8.1  Introduction

This chapter presents implementation details of the production rule system used in the
game 1849. The system’s main design goals were enabling quick iteration via a data-driven
approach and good performance on a variety of hardware, down to significantly under-
powered tablet devices.

First, we discuss the details bottom up, from the world model, through rule implemen-
tation, up to the overall rule system that manipulates them. Then, in the second half, we
examine the performance consequences of these design choices, as well as lessons learned
in the process of implementing the system.

8.2  Game Mechanics and Production Rules

1849 is a city building and management game for tablets, desktops, and the web. The fic-
tion of the game is that gold has just been discovered in California, and player’s task is to
build gold mining towns and make money in the gold rush. The following is an overview
of the game mechanics and simulation.

8.1	 Introduction
8.2	 Game Mechanics and

Production Rules
8.3	 Rule System
8.4	 Performance

8.5	 Lessons from 1849
8.6	 Related Work
8.7	 Conclusion
References

50 Architecture

8.2.1  Game Mechanics
In terms of game mechanics, the game is a classic city builder, along the lines of early
Impressions Games such as Caesar or Zeus. The main units of gameplay are as follows:

•• Buildings, which the player places in town; they can be houses for residents or
workplaces that produce resources or city benefits (such as fire prevention).

•• Resources are created by buildings, either from nothing (such as farms producing
wheat) or by consuming other resources (such as bakery consuming wheat and
producing bread).

•• Workers are the fuel powering all these buildings; they cannot be directly con-
trolled by the player, but they can be influenced by providing them the resources
they want.

The main feedback loops are set up such that workers power all buildings, but they are
fickle and sensitive to what resources are available. As the town grows, more and more
workers arrive looking for work, but they also demand more complex resources, and if
they don’t get what they want, they vote with their feet and leave, causing workplaces
to shut down. Initially, their demands are simple, just food and drink, but soon, they
start demanding increasingly processed resources, such as shoes, clothes, or newspapers.
The player can either try to import those processed resources at a high cost or build out
resource conversion buildings and manage their logistics. Much of the fun and difficulty
of the game comes from the “spinning plates” feeling, of setting up these increasingly
complicated resource production and conversion chains and then maintaining them and
making sure that they are all running smoothly, that workers remain happy, and that the
town’s overall budget is trending in the right direction.

8.2.2  Game Simulation
The game simulation is implemented using a production rule system: all buildings run a
collection of stand-alone rules that simulate the town’s economy.

We can discuss them as a hierarchy of abstractions:

•• Each building is a stand-alone rule executor for a set of rules.
•• Each rule has some conditions that can match and produce some actions.
•• Conditions typically involve queries about resources or the world, and actions

typically involve resource modification and issuing side effects.
•• Resource queries and modification bottom out in a data model optimized for spe-

cific types of context-sensitive access.

8.3  Rule System

Having introduced the layers of the system, let’s discuss them bottom up.

8.3.1  Resources
The basic atomic unit of game economy is a resource. This is an <id, amount> tuple,
such as “50 dollars” or “10 units of gold” or “50 units of stone.” Everything that can be
produced or consumed is a resource.

51Production Rules Implementation in 1849

Most resources are concrete, like gold or stone or food. But there are also abstract
resources such as people and map effects such as crime level.

When you build a house, and people move in, that’s represented as the house gaining
a “1 resident” resource—and later, when that resident gets a job, the workplace gains a
“1 worker” resource as well (and the reverse happens when the resident moves out).

Map effects are things like crime, boredom, or fire risk. For example, every house cre-
ates a tiny amount of fire risk, say, “0.01 fire risk” per day, and this resource collects up in
the world, and later causes fires, as we’ll describe in a moment.

8.3.2  Resource Bins
Resources are not loose objects, rather, they’re stored in bins. A resource bin contains a
whole bag of resources and their amounts. There are three types of bins in the game.

First, player’s inventory during a game session is stored in a bin. For example, the facts
that I have $1000 in cash and 10 units of gold ready for trade are just two resource entries
in my bin.

Second, each board unit (such as a building) has its own bin, which is its own inven-
tory. For example, when a wheat farm grows wheat, it inserts a bunch of wheat units
in its own bin. But those units are not yet usable by the player. There’s a separate deliv-
ery step that has to happen, to deliver this wheat from the building to the player’s
inventory.

Finally, each map tile has a resource bin that’s separate from any building that might
sit on top of it. For one example, gold underground is represented as a gold resource inside
that tile’s bin, and it needs to be mined out of the ground and into the building’s bin. For
another example, fire hazard is a resource, conjured up and inserted into the world by
wooden buildings.

8.3.3  Conditions and Actions
Since almost everything in the simulation is a resource, a lot of the game is based on
resource conversions. Some simplified examples from our data definition files:

Ranch produces meat and leather, and shows an animated NPC at work:

	 “doWork”:
	 “outputs”: [“unit 6 meat”, “unit 6 leather”]
	 “success”: [
	 “_ a-spawn-worker npc npc-farmer action ranch days 7”
]

Ranch delivers meat into storage, 20 units at a time:

	 “deliverWork”:
	 “frequency”: “every 5 days”,
	 “checks”: [“unit workers > 0”],
	 “inputs”: [“unit 20 leather”],
	 “outputs”: [“player 20 leather”],
	 “success”: [
	 “_ a-spawn-walker npc npc-delivery
	 to bldg-trade-store then return”
]

52 Architecture

Cobbler brings leather from storage if it doesn’t have any, consumes it, and produces shoes:

	 “bringMaterials”:
	 “checks”: [“unit workers > 0”, “unit leather < 2”],
	 “inputs”: [“player 8 leather”],
	 “outputs”: [“unit 8 leather”]
	 “doWork”:
	 “inputs”: [“unit 2 leather”],
	 “outputs”: [“unit 3 shoes”]

But conversion rules don’t have to be limited to just buildings bins—they also frequently
interact with map tiles underneath and around:

Gold mine consumes gold from the map tiles underneath and produces gold in its own
inventory, until all ground gold has been exhausted:

	 “doWork”:
	 “inputs”: [“map 5 gold”],
	 “outputs”: [“unit 5 gold”]

Every wooden house produces a little bit of fire risk in the map tile underneath:

	 “produceFireHazard”:
	 “frequency”: “every 7 days”,
	 “checks”: [“map fire-hazard < 1 max”],
	 “outputs”: [“map 0.04 fire-hazard”]

Fire brigade consumes all fire risks from the map, within a given radius, using a special
action:

	 “consumeMapResource”:
	 “frequency”: “every 7 days”,
	 “checks”: [“unit workers > 0”]
	 “success”: [“_ a-change-resource-in-area
	 radius 5 res fire-hazard amount −1”]

As you can see, the fact that gold comes from underground, while food and other things
are made in buildings, is not actually hard-coded anywhere in the engine. Right now, it’s
just a matter of convention. This means that you could rewrite the rules such that, for
example, the cobbler makes shoes and inserts them underground inside the tile. You prob-
ably wouldn’t want to, because nobody would be able to get at those shoes if they wanted
them, but it’s a possibility.

8.3.4  Rule Execution
As you can see from the previous examples, each rule consists of several elements. Here is
the complete list:

•• “Frequency”: how often we check.
•• “Checks”: all of these have to be satisfied.
•• “Inputs”: if checks are satisfied, we check if desired inputs exist, and if so, they will

be consumed.

53Production Rules Implementation in 1849

•• “Outputs”: if inputs were consumed successfully, these will be produced.
•• “Success”: actions to run if this rule was applied successfully (neither checks nor

inputs have failed).
•• “FailedInputs”: fallback actions to run if inputs were insufficient.
•• “FailedChecks”: fallback actions to run if checks failed.

The algorithm in pseudocode is listed in Listing 8.1. As we can see, “frequency” and
“checks” both denote conditions in which the rule runs, “inputs” defines both conditions
to be checked and related actions (consume inputs), while “outputs” and other fields
define actions only. Frequency is pulled out separately as an optimization step (see next
section).

8.4  Performance

Our production system is very efficient—in a town with many hundreds of entities, the
rule engine’s CPU consumption is barely noticeable in the profiler, even when running on
rather underpowered tablets.

Most of the processing power is spent, predictably, on checking conditions. One of the
design goals for this system was to make sure conditions can be checked quickly, ideally
in constant or near-constant time, to help with performance.

We have three optimizations in place to help with this: flexible frequency of rule execu-
tion, a drastically simplified language for conditions and actions, and an efficient world
model that is inexpensive to query.

8.4.1  Condition Checking Frequency
Production systems vary in how often the rules should be run. For example, we could
run rules whenever something changes in the world, which in a game could be every
frame, or maybe on a fixed schedule, such as 10 Hz, or on every game “turn” in a turn-
based game.

In 1849, the game’s simulation is triggered off of game clock days (e.g., a farm produces
wheat every 7 days), so we felt no need to run the rules too often. Our default frequency
is once per day, and we made it easy to raise or lower the frequency as needed on a per-
rule basis.

Listing 8.1.  Pseudocode for rule matching algorithm.

for each rule that should run at this point in time
	 if all checks are satisfied
	 if all inputs exist
	 consume inputs
	 produce outputs
	 run success actions
	 else
	 run failedInputs actions
	 else
	 run failedChecks actions

54 Architecture

Here is an example of how frequency is specified—it’s pulled out of the conditions defi-
nition into its own data field:

	 “produceFireHazard”:
	 “frequency”: “every 7 days”,
	 “checks”: [“map fire-hazard < 1 max”],

Finally, we implemented a very simple scheduler that keeps track of which rules are sup-
posed to run when, so that they don’t get accessed until their prescribed time.

8.4.2  Condition Definition Language
Many rule systems express conditions and actions in an expressive language such as pred-
icate logic, so that the developer can make queries and assertions about entities as a class
without committing to specific instances, and let the computer figure out to which entities
those rules can be applied.

Here is a made-up example in a made-up predicate language:

	 If is-a(X,gold-mine) and is-a(T,map-tile) and
	 is-under(T,X) and contains(T,R,5) and is-a(R,gold)
	 => Then increment(X,R,5) and increment(T,R,-5)

This kind of a rule would be very expressive and general. However, finding entities in the
world that match this query can get expensive quickly: it’s essentially a search problem.
While numerous optimizations for inference systems are well known (e.g., the Rete algo-
rithm [Forgy 82]), they’re still not enough, given our desire to make conditions execute in
constant or near-constant time.

Conditions and actions we use in our engine are not so generic. Instead, they are more
contextual, which lets them be simpler. Once again, here is our gold mine example:

	 “doWork”:
	 “inputs”: [“map 5 gold”],
	 “outputs”: [“unit 5 gold”]

Here, “map” and “unit” are like variables, in that they’re not specific entities like “gold
mine #52”—but they’re also not free variables like X was in the previous example. Instead,
they’re contextually bound indexicals: “unit” refers to the entity that’s currently executing
this rule, “map” refers to all tiles underneath the unit, and “player” refers to the singleton
entity that keeps player’s city inventory.

In other words, instead of using objective representation and predicate logic, we use
deictic representation [Agre 87], with variables that are already contextually bound at
query time to particular entities. Game units typically only care about themselves and
their immediate surroundings, so deictic representation is a perfect match.

This choice constrains our system’s expressiveness, compared to a language with com-
pletely free variables and unification, but it drastically eliminates a huge search problem
and associated costs.

8.4.3  Data Model
Most conditions are resource queries, and most actions are resource modifications. For
example: check if there is gold underground, and if so, consume it and produce gold in my

55Production Rules Implementation in 1849

inventory; or check if I have any workers working here, and if there is gold in my inven-
tory, and if so, deliver gold over to player’s inventory, and so on.

As we described before, we store resources in resource bins, and those bins are attached
to units, map tiles, and the player’s data object. Each resource bin is implemented as a
vector of 64 floating-point numbers, indexed by resource (because there are currently 64
resource types).

A resource query such as “unit gold > 5” then works as follows: first, we get a reference
to the unit’s own resource bin (via a simple switch statement), then look up resource value
(an array lookup), and finally do the appropriate comparison against the right-hand side
value (another simple switch statement). All this adds up to a constant-time operation.
Similar process happens for update instead of a query.

A query such as “map gold > 5” is marginally more expensive, because it means “add
up gold stored in all tiles under the unit and check if > 5”. Fortunately, units are not arbi-
trarily large—the largest one is 2 × 2 map tiles—which means we execute at most four tile
lookups, making it still a constant-time operation.

And as a fallback, we allow ourselves to cheat if necessary: both conditions and actions
can also refer to a library of named built-in functions, and those can do arbitrary computa-
tion. For example, the fire brigade has a built-in action a-change-resource-in-area
that consumes a pre-tuned amount of fire risk resource within its area of effect, but this
operation is actually linear in map size. We use such actions rarely.

8.5  Lessons from 1849

With the system overview behind us, we’ll quickly go over what worked well in the process
of building our game using this engine, and what, with the benefit of hindsight, we wish
we had done differently.

8.5.1  Benefits
Performance was clearly a high point of the system, which can run cities with hundreds
of active entities without breaking a sweat, even on comparatively underpowered tablet
devices. We could probably push production rules even further, if the rendering subsys-
tem had not claimed all available processor cycles already.

Also, as you can see from our examples, the rules themselves are specified in a kind of
a domain-specific language, based primarily on JSON, with condition and action bodies
expressed as strings with a specific syntax. They get deserialized at load time into class
instances, following simple command pattern.

Exposing game rules as a DSL that can be loaded up with a simple restart, with-
out rebuilding the game, had the well-known benefits of data-driven systems: decou-
pling configuration from code, increasing iteration speed, and ultimately empowering
design.

8.5.2  Lessons
At the same time, we ran into two problems: one with how our particular DSL evolved
over time, and one with production systems and how they matched the game’s design.

The DSL was initially developed to support only queries such as “<bin> <resource>
<comparison> <value>” or actions such as “<bin> <resource> <delta>”.

56 Architecture

These were appropriate for most cases, but we quickly found ourselves wanting to do more
than just resource manipulation. For example, we wanted to start spawning workers to go
dig up gold or carry it in wheelbarrows to the storage building—or even more mundane
things, like playing sound effects or setting or clearing notification bubbles if a building is
understaffed or can’t get road access.

Over time, we added support for more types of actions, and a generic deserializer
syntax, which supported actions such as “ _ a-spawn-worker npc npc-farmer
action ranch days 7”. This was just syntactic sugar for a definition like {“ _
type”: “a-spawn-worker”, “npc”: “npc-farmer”, “action”: “ranch”,
“days”: 7}, and that in turn just deserialized into the class ASpawnWorker and filled
in the appropriate fields.

In retrospect, we should have added support for custom or one-off conditions and
actions from the very beginning; that would have saved us engineering time later on
reworking parts of the system. Even in the most organized system design, there will
always be a need for one-off functionality to achieve some specific effects, and all systems
should support it.

Separately from this, we also discovered a representational deficiency, which came from
a mismatch between one-shot and continuous processes. This is a deficiency we failed to
resolve in time for shipping.

From the earliest points in the game’s design, we operated under the assumption that
resource manipulation is sparse and discrete, for example, every 7 days, the wheat farm
produces 6 units of wheat or the bakery consumes 3 wheat and produces 5 bread. This lent
itself perfectly to a rule system that triggers on a per-rule timer.

However, fairly late in the process, we realized that this kind of a discrete system
was hard for our players to understand. Whether it was because we surfaced it poorly
or because their expectations were trained differently by other games, our beta players
had difficulty understanding the simulation and what was actually going on, because the
activities were so sparse.

When we explored this further, we found that players reacted best when buildings
looked like they operated continuously, for example, wheat farm producing wheat at
velocity of 0.8 per day, and when its storage fills up, the surplus gets delivered.

Ultimately, we were able to produce much of the desired user effect by essentially
faking it in the UI and in how we give feedback to the player. But had this happened
earlier in development, we might have rewritten all of our rules to run much more fre-
quently, to simulate continuous production, even at the cost of spending significantly
more processing time on rule checks per second. Even better, we should have considered
combining it with a form of parallel-reactive networks [Horswill 00], to help represent
continuous processes, and hooked that up as part of the data model manipulated by the
rule system.

8.6  Related Work

On the game development side, this implementation was very directly influenced by previ-
ously published implementation details of Age of Empires (AoE) [Age of Empires 97] and
of the GlassBox engine used in SimCity [Willmott 12].

57Production Rules Implementation in 1849

AoE was one of the earliest games to expose data-driven production systems. Their
syntax is based on s-expressions, and rules might look something like

	 (defrule
	 (can-research-with-escrow ri-hussar)
	 =>
	 (release-escrow food)
	 (release-escrow gold)
	 (research ri-hussar))

The AoE system plays from the perspective of the player, that is, one rule engine is
active per enemy player. The GlassBox rules, on the other hand, are much more granular
and run from the perspective of each individual unit, for example,

unitRule mustardFactory
	 rate 10
	 global Simoleans in 1
	 local YellowMustard in 6
	 local EmptyBottle in 1
	 local BottleOfMustard out 1
	 map Pollution out 5
end

We were highly inspired by the design choices from GlassBox, especially the data model
that organizes resources into bins, distributes those bins in the game world, and lets pro-
duction rules check and manipulate them.

Finally, the representation of conditions and actions using a contextual language like
“unit gold > 5” is related to the history of work on deictic representation, such
as the implementation of game-playing AI for the game Pengi by [Agre 87] or reactive
autonomous robots in [Horswill 00]. In particular, we decided against inference or queries
with arbitrary free variables such as “is(X,gold-mine) and has-workers(X)”.
Instead, we replaced them with task-relevant indexicals, which made fast queries much
easier to implement. The task of binding deictic variables can then be moved to a separate
subsystem that can be optimized separately (in the Pengi example, it was done by simulat-
ing a visual attention system, but in our system, it’s trivially easy, based on which entity
executes the rule).

8.7  Conclusion

This chapter examined the implementation details of a production rule system used in the
game 1849. We started by examining the architecture of the system, followed by details of
production rules and their components. As we demonstrate, a few specific simplifications
enabled a very efficient implementation, suitable even for underpowered mobile devices.

References

[Age of Empires 97] Uncredited. 1997. Age of Empires. Developed by Ensemble Studios.
[Agre 87] Agre, P.E. and Chapman, D. 1987. Pengi: An implementation of a theory of activity.

In Proceedings of the AAAI-87. Los Altos, CA: Morgan Kaufmann.

58 Architecture

[Forgy 82] Forgy, C. 1982. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19: 17–37.

[Horswill 00] Horswill, I.D., Zubek, R., Khoo, A., Le, C., and Nicholson, S. 2000. The cere-
bus project. In Proceedings of the AAAI Fall Symposium on Parallel Cognition and
Embodied Agents, North Falmouth, MA.

[Willmott 12] Willmott, A. 2012. GlassBox: A new simulation architecture. Game Developers
Conference 2012, San Francisco, CA.

