
23

Dual-Utility Reasoning
Kevin Dill

3

3.1  Introduction

Utility-based approaches to decision making examine the situation in the game at the 
moment a decision is being made, calculate the goodness (which is often called things like 
utility, priority, weight, or score) of each option using a heuristic function, and then drive 
decision making using that value. This can be contrasted against purely Boolean decision-
making approaches, such as the typical finite state machine (FSM) or behavior tree, which 
evaluate a series of black-or-white, yes-or-no questions in order to select an option for 
execution.

The advantage of utility-based AI is that it is better able to account for the subtle 
nuance of the situation when making its decision. In other words, in situations where 
more than one option is valid, utility-based AI will base its decision on an evaluation 
of the relative appropriateness and/or importance of each option instead of picking at 
random or simply taking the first valid option that it finds. At the same time, because 
the heuristic functions are hand-authored, the game designers retain reasonably tight 
control over the behavior of the AI and can thus better ensure that the player’s experience 
will fit with their design.

One point that cannot be overemphasized is the importance of calculating each option’s 
utility in game, at run time. It is not enough to assign fixed weights to the options a priori. 
Only by evaluating them based on the situation at the moment when the decision is being 
made can you achieve the responsive, dynamic behavior that utility-based AI promises.

3.1	 Introduction
3.2	 Dual-Utility Reasoning
3.3	 Dual-Utility Reasoning in 

Zoo Tycoon 2

3.4	 Conclusion
Reference



24 General Wisdom

3.2  Dual-Utility Reasoning

There are two common ways of using utility to make a decision. The first, which we will 
call absolute utility, simply evaluates each option and takes the one with the highest score. 
The second, relative utility, selects an option at random, but it uses the score of each option 
to define the probability that it will be selected. The probability for selecting an option (PO) 
is determined by dividing the utility of that option (UO) by the total utility of all options:

	

P
U

U
O

O

i

n

i

=

=∑ 1

	 (3.1)

This approach is referred to as weight-based random and is implemented as follows:

	 1.	 Add up the total weight of all valid options (i.e., those with a weight greater 
than 0).

	 2.	 Pick a random number between 0 and the total weight from step 1.
	 3.	 Go through the valid options one at a time and reduce the random number by the 

weight for each option. If the result is less than or equal to zero, pick this option. 
Otherwise, continue on to the next.

Relative and absolute utilities each have advantages and disadvantages. Absolute utility is 
best when you want to ensure that the AI always takes the most appropriate action avail-
able. Unfortunately, it can become predictable since, given a particular situation, it always 
does the same thing. In contrast, relative utility avoids the rigid predictability of absolute 
utility. By picking at random, it ensures a certain amount of variation, while still giv-
ing preference to the most appropriate choices. Nevertheless, while it prefers to pick good 
options, there is always some chance that an option with very low utility will be selected. 
This can easily make your AI look stupid. We can reduce the chance that a low-weight 
option will be selected by squaring the weights or eliminate it by screening out the lowest 
weight options, but this quickly becomes a balancing act that is hard to perfect and harder 
to maintain.

Dual-utility reasoning is an approach that combines absolute and relative utilities into 
a synergistic whole. It avoids the weaknesses of both approaches by combining them 
together and is also more flexible and expressive for the game designers.

The big idea is that rather than assigning a single utility value to each option, we assign 
two: a rank and a weight. Rank uses absolute utility to divide the options into catego-
ries, and we only select options from the best category. Weight is used to evaluate options 
within the context of their category. Once we’ve found the category with the highest rank, 
we select from among the options in that category using weight-based random.

The algorithm for actually selecting an option is as follows: First, go through all of 
the options and eliminate any that have a weight that is less than or equal to zero. These 
options can’t be selected by the weight-based portion of the reasoner anyway, and eliminat-
ing them now makes the process simpler. In addition, this gives the designers a convenient 
way to mark an option as invalid or inappropriate given current circumstances. If an option 
shouldn’t be selected, simply set its weight to zero and it will be rejected regardless of rank.



25Dual-Utility Reasoning

Second, find the highest rank among the options that remain, and eliminate any options 
whose rank is less than this. Again, what we are doing is finding the most important cat-
egory and eliminating the options that don’t belong to it.

Third, find the highest weight from among the options that remain, and eliminate 
options whose weight is less than some percentage of this. This step is optional, and the 
percentage that is used should be configurable on a per-decision basis. Conceptually, what 
we are doing is finding the options that really aren’t all that appropriate (and thus have 
been given very low weight) and ensuring that the random number generator doesn’t 
decide to pick them anyway. What remains are plausible (not stupid) options.

Finally, we use weight-based random to select from among those options that remain.
Once again, the four steps are as follows:

	 1.	 Eliminate the options with a weight of zero.
	 2.	 Find the highest rank category, and eliminate options that don’t belong to it.
	 3.	 Find the best remaining option (i.e., the one with the highest weight), and 

eliminate options that are much worse (i.e., much lower weight) than it.
	 4.	 Use weight-based random to select from the options that remain.

As described earlier, the major strength of dual-utility reasoning is that it allows you to 
divide your options into categories and select from among those categories using absolute 
utility. Once this is done, we can use relative utility to pick from among the options within 
the best category in a random but reasonable way.

3.3  Dual-Utility Reasoning in Zoo Tycoon 2

In Zoo Tycoon 2 [Blue Fang Games 04], the AI for both the animals and guests used dual-
utility reasoning. Most of the time, the characters would select options based purely on 
their needs (i.e., their hunger need, entertainment need, and bathroom need). These 
options all had a rank of 0, but their weight would vary depending on the current situation.

There were times, however, when characters were in a specific situation that had a 
distinct set of behaviors, and only those behaviors were appropriate. For instance, if a 
koala climbed up a tree, then it would have a number of tree-climbing behaviors available 
(including some that allowed it to get out of the tree), and these behaviors would have a 
higher rank (typically around 5) to ensure that the animal didn’t pick some other behavior 
and pop out of the tree unrealistically.

Taking it a step further, the Marine Mania expansion pack introduced the idea of 
marine animal shows. These were shows where the player could train dolphins to jump 
through hoops, seals to play with a ball, and so forth. It was very important that when one 
of these shows occurred, both the animals and an appropriate number of guests showed 
up so that the player was rewarded for their hard work training the animals. Furthermore, 
the behavior of the characters during the show was very heavily scripted. The animals 
would go through a specific sequence where they would come in to the show tank, swim 
over to the trainer, wait for the whistle, do their trick, go back to the trainer, get a treat, 
wait for the whistle again, do their next trick, and so forth. The guests had to come to the 
entrance, wait in line, go in and sit, react appropriately through the show, and then exit in 
a timely fashion.



26 General Wisdom

In order to make sure that the right behaviors were picked at the right time, we simply 
gave them appropriate ranks (which were all between 98 and 102) so that the best action at 
any given moment would play. These ranks were coordinated by a simple FSM, although 
they could have been scripted or set in other ways.

Finally, there was one behavior that took precedence over every other behavior and that 
was dying. We didn’t want any animals coming back from the dead, so the die behavior 
had a rank of 1,000,000, ensuring that it trumped anything else that might happen.

3.4  Conclusion

Utility-based AI is a term used to describe approaches that, rather than using purely 
Boolean logic, use a heuristic function to evaluate the appropriateness of each option 
given the moment-to-moment situation in the game and base their decision on the result-
ing score. These approaches typically either take the option with the highest score or use 
weight-based random to pick in a way that is nondeterministic but still gives a greater 
chance of being selected to the best options.

In this chapter we introduced the idea of dual-utility reasoning. This approach com-
bines absolute and relative utilities. Absolute utility is used to divide the options into cat-
egories and ensure that only options from the most important or most relevant category 
will be selected. Once that is done, relative utility is used to pick at random from among 
the options within that category. This helps to prevent both the predictability of absolute 
utility and the occasional poor choices of relative utility. In addition, it provides a bit more 
flexibility and expressiveness to the game designers who are responsible for configuring 
the AI.

Reference

[Blue Fang 04] Blue Fang Games. 2004. Zoo Tycoon 2. Redmond, WA: Microsoft Games 
Studio.


