
549

46
Creating	Dynamic	
Soundscapes	Using	an	
Artificial	Sound	Designer
Simon Franco

46.1	 	Introduction

A game’s audio is the end result of the work done by the sound designer. A game’s sound 
designer will typically create audio content (sound effects and music) and then  create 
sound events to trigger that audio content. Sound events are often authored using middle-
ware tools such as Wwise [Wwise 06] or FMOD [FMOD 02] and are triggered by the game.

Game audio is often triggered and managed via a fixed set of conditions—and often 
these conditions have no connection to each other. For example, sound effects and music 
can be triggered by a number of different systems, such as the level scripting system, the 
animation system, and game code reacting to events.

These disconnected methods for triggering audio present us with a number of prob-
lems. The player will always have the same audio experience every time they play the 
game. This is the result of static correlations between in-game triggers and audio events. 
After playing the game for some time, the soundscape can come across as predictable 
and boring. You may also have systems competing to play audio cues that serve the same 

46.1	 Introduction
46.2	 The	Artificial	Sound	

Designer
46.3	 Generating	Events
46.4	 Creating	and	Maintaining	

the	Database

46.5	 Defining	the	Artificial	
Sound	Designer	Rule	Set

46.6	 Updating	the	Artificial	
Sound	Designer

46.7	 Conclusion



550 Part VII. Odds and Ends

purpose, such as trying to set the game’s ambience. In addition, these isolated methods for 
triggering audio could accidentally inform the player of hidden information. For example, 
a piece of music starting may accidentally inform the player of a hostile character hidden 
around a corner. This can lead to scripted sequences of game play being ruined.

In addition to these limited methods for triggering audio, our techniques for mixing 
audio at runtime are typically very primitive. The sound designer will often create a pool 
of audio mix snapshots for use in the game [Bridgett 09]. Each audio snapshot will typi-
cally hold information on volume settings, volume curves, and various filter settings for 
each sound category. Categories tend to be groups of similar sound types, such as foot-
steps. Unfortunately, there are also problems when using audio mix snapshots:

 • An appropriate snapshot which complements the game’s current state must be 
chosen and applied. This can be done in a number of ways—for example, having 
a level designer script when to apply an audio snapshot, or by having some game 
code monitor for a condition to be met.

 • Each snapshot always contains a fixed collection of settings. Typically, these audio 
snapshots represent a game state, such as a calm moment, being in a safe area, or 
being in a combat situation. This requires the audio designer to decide ahead of 
time which game scenarios they would like to create a snapshot for, and author 
the appropriate snapshots.

This article discusses the idea of developing an Artificial Sound Designer to solve these 
issues. The Artificial Sound Designer avoids these problems and can make intelligent 
audio decisions by monitoring the game’s current state, as well as retaining knowledge of 
the game’s previous states.

46.2	 	The	Artificial	Sound	Designer

The purpose of the Artificial Sound Designer (ASD) is to ensure that the player has the 
richest possible experience by ensuring that they have a varied soundscape and making 
that soundscape closely match the game’s state. The ASD is built around a rule set that 
represents the knowledge and experience of a human sound designer. At a high level, it is 
composed of the following pieces:

 • An event system to pass information about the game’s state to the ASD.
 • A database that holds state information on all relevant game objects.
 • The rule set, which examines the events raised in this frame, the state of the data-

base, and the audio state, in order to determine which audio actions to execute 
(if any).

These component pieces are to be used to facilitate the Artificial Sound Designer. Events 
are posted to the ASD from in-game. We then use those posted events to update the ASD 
database. Then the ASD examines the events raised plus its database to change the sound-
scape and play appropriate sounds. Depending on the situation, the ASD may execute one 
or more of the following actions when a rule is satisfied:



55146. Creating Dynamic Soundscapes Using an Artificial Sound Designer

 • Play a sound effect or piece of music, and associate that piece of audio with a game 
object if needed. For example, we may want a piece of audio to track an object in 
the world.

 • Adjust the volume/DSP settings for categories of sounds. This can be used to 
“duck out” (i.e., reduce the volume of) sounds deemed unimportant to the cur-
rent in-game situation, or to increase the volume of sounds we want the player to 
focus on (such as an imminent threat).

 • Configure any underlying systems that generate events for the ASD. For example, 
if you have a system to count the number of hostile characters within proxim-
ity to the player—then the ASD must be provided with a way to configure that 
system’s radius.

46.3	 	Generating	Events

The Artificial Sound Designer uses events as a means of being notified of what is happen-
ing in game. Events typically have a type in order to help categorize and describe the type 
of event, such as a footstep, an explosion, or a gun firing. As well as having a type, an event 
will also have a subject. The subject of the event would typically be a reference to the game 
object triggering the event. The event will also store any other associated information that 
was part of that event. For example, a footstep event would typically also store the material 
that the character stepped on.

We have two basic types of events that can be posted. Information-only events notify 
the ASD of changes in the game state, which may not be directly related to a sound emit-
ting action. For example, if a game object has been spawned or despawned, or if the game 
is paused or resumed, then we can use an information-only event to pass this knowledge 
to the AI. These events may not cause sounds to be played directly, but they can affect the 
way in which we play other sounds.

The second type of event is the play-request event. These events are used when we want 
to play a specific type of sound, such as a gunshot. These events replace where previously 
we would have called directly into the sound system. For example, we now post an event 
at the point when an explosion occurs, or when the animation system causes feet to strike 
the ground (so that we can play footstep sounds). By using play-request events, we give the 
ASD the opportunity to make decisions about which sound sample to play and how loud 
to play it (e.g., should the volume of gunshot events be reduced so that we can hear enemy 
speech?). The ASD can evaluate the event and use the player’s current context, and the 
state of the game objects involved, to drive its decisions.

Listing 46.1 shows an example of a general event class that can be inherited from and 
extended for each type of event. Each event should have a process function which will 
update the subject game object’s database record appropriately for that event type. It can 
also return whether it is an information-only event or a play-request event.

46.4	 	Creating	and	Maintaining	the	Database

The database contains the Artificial Sound Designer’s knowledge. This section will discuss 
the elements making up that database.



552 Part VII. Odds and Ends

46.4.1	 	The	Database	Structure
The database contains a number of tables. We will need a table for game objects, a table 
for sounds previously played, and a table for the ASD to store any additional data it 
wishes to keep. This last table is used to help the ASD keep track of nonaudio or game 
object state information. For example, we may want to store the time since the player was 
last under threat.

Each game object is registered with the ASD’s database and, along with a reference to 
the object, we store a set of flags describing the object’s state. This is so the system can 
query its database of knowledge in order to determine information on a game object, and 
on the world state.

As well as storing information within a game object’s record on the object’s actual 
state, the record should also contain data describing the object’s perceived state to the 
player. For instance, we may wish to store the last position where it was seen by the player. 
Although the majority of the information about each object is stored in the database, cer-
tain information (such as the object’s current position) may be queried directly from the 
engine. This allows us to avoid storing redundant information.

The sound-history table stores a record of each type of sound, along with its category, 
when it was last played and how many times it was played. This is so the ASD can keep 
track of what it has previously played. This knowledge is used when selecting which sounds 
to play back. For example, we may want to avoid playing the same piece of music too often, 
or perhaps not play a tension piece of music if we had just played a piece of combat music.

This rich body of information allows the Artificial Sound Designer to make informed 
decisions when selecting audio relating to a particular game object. These decisions take 
into account not only the object’s characteristics, but also its history with the player. For 
example, if the player is currently engaging in combat with an enemy that had previously 
dealt damage to the player, or even killed the player, then we could use that information 
to select appropriate music and dialog (such as playing more intense music, or having the 
character taunt the player).

Depending on the multithreaded nature of your game and audio engine, it may also be 
advisable to create a database table to store a record of the audio state (i.e., the sounds that 

Listing 46.1. An	example	Event	base	class.

class Event
{
public:
 Event(GameObject * obj) : m_object(obj) {}
 virtual void process(GameObjectRecord &) = 0;
 virtual const GameObject * get_subject_game_object() const
  {return m_object;}
 virtual EVENT_TYPE get_type() const = 0;
 virtual bool is_play_request_event() const
  {return false;}
protected:
 GameObject * m_object;
}



55346. Creating Dynamic Soundscapes Using an Artificial Sound Designer

are playing and their settings). By having a separate record of which sounds are playing, 
we avoid the problem of the sound state changing unexpectedly while we are deciding 
what audio to play next.

46.5	 	Defining	the	Artificial	Sound	Designer	Rule	Set

The Artificial Sound Designer has two separate rule sets, which can be thought of in a 
similar manner to a rule based system [Negnevitsky 11]. One rule set is consulted when 
making changes to the overall soundscape. Other rule sets can be assigned to the different 
types of play-request events. These rules are then consulted when processing play-request 
events in order to select the most appropriate sample to play. The human sound designer 
needs the facility to easily create and edit these conditional rules for the ASD to process. 
The rules must be listed in priority order, with the highest priority rules first. When a 
conditional rule is satisfied, it will perform one or more actions.

To form these rules, the sound designer must have access to typical logical operators 
such as AND, OR, and NOT. The sound designer will then use these to form the condi-
tions within the rules which the system will process.

The simplest way to implement this is to use an embedded scripting language such as 
Lua [LUA 93]. This presents an easy way for the sound designer to formulate rules. It also 
provides easy methods to wrap access to events, the database, and perform sound actions 
in a Lua interface.

In addition, consideration should be given to adding extra logging functionality to 
record which rules were fired, and which sound actions were executed. This will help the 
sound designer and programmer understand how decisions about the game’s soundscape 
were reached.

In Listing 46.2 we show a sample pseudocode snippet to modify the in-game music.

Listing 46.2. A	pseudocode	sample	rule	set	to	control	music	selection.

if (EventRaisedThisFrame(PLAYER_DEATH)) then
 PlayMusic(MUS_GAME_OVER)
elseif (EventRaisedThisFrame(SCRIPTED_MUSIC) and 
SoundSystem:PlayingMusic()) then
 StopMusic();
elseif (Database:Objects:NumberOfObjectsInRangeOfPlayer
(GRENADE, NO_FLAGS, 5.0f) > 1) then
 PlayMusic(MUS_WARNING)
elseif (Database:Objects:NumberOfObjectsInRangeOfPlayer
(ENEMIES,SEEN|HEARD,16.0f) > 15) then
 PlayMusic(MUS_BATTLE)
elseif (Database:Objects:NumberOfObjectsInRangeOfPlayer
(ENEMIES,SEEN|HEARD,16.0f) >= 1) then
 PlayMusic(MUS_DANGER)
elseif (not SoundSystem:PlayingMusicInCategory(MUS_CALM)) then
 PlayMusic(Database:Sound:GetLeastPlayedSampleInCategory
(MUS_CALM))
endif



554 Part VII. Odds and Ends

46.6	 	Updating	the	Artificial	Sound	Designer

Once per frame, after the other game systems have had a chance to post events, the 
Artificial Sound Designer will perform its update. This update consists of three phases: 
updating the database, changing the soundscape, and playing requested audio.

46.6.1	 	Updating	the	Database
In the first phase, we process the events raised during the current frame and incorporate 
them into the database. A simple way to implement this is to give each type of event a 
Process() function, which will handle updating the corresponding database record. 
We can then simply loop over the events, calling process on each, in order to bring the 
database up to date.

46.6.2	 	Changing	the	Soundscape
Now that the database is up to date, we can perform the main update for the Artificial 
Sound Designer. During this phase the ASD will process its main rule set in order decide 
whether to play any new sounds, or change the playback of sounds already in progress 
(for instance by stopping all sounds of a particular type, or changing the volume of one 
or more categories).

46.6.3	 	Playing	Requested	Audio
In the final phase, we process the play-request events. As discussed in an earlier section, 
these events are sent from the game in order to request that specific sounds be played. 
Playing requested audio typically involves processing each event that has requested audio 
playback. The Artificial Sound Designer can examine the event parameters and use a 
rule set for that event type (if one has been set) to select the actual audio sample to play. 
For example, you may have an NPC shout “Who’s there?” when they spot an intruder. 
If the database has information stating that the NPC had seen the player before then we 
change the speech to “There he is again!” to reflect this. This persistence helps re-enforce 
the  player’s interactions with the game world.

46.7	 	Conclusion

Creating a dynamically changing soundscape that responds closely to the player’s 
actions helps to deliver a rich and varied audio experience. Using an Artificial Sound 
Designer empowers your sound designers to create a more immersive experience for 
the player.

Designing the rule set used by your game to shape the soundscape requires careful 
consideration. Where possible, work should be done to ensure that there is only a short 
turnaround between changing the rule set and testing it in game.

References

[Bridgett 09] R. Bridgett. “The Future Of Game Audio—Is Interactive Mixing The Key?” http://
www.gamasutra.com/view/feature/4025/the_future_of_game_audio__is_.php, 2009.



55546. Creating Dynamic Soundscapes Using an Artificial Sound Designer

[FMOD 02] Firelight Technologies. “FMOD.” http://www.fmod.org, 2002.
[LUA 93] “Lua.” http://www.lua.org, 1993.
[Negnevitsky 11] M. Negnevitsky. Artificial Intelligence: A Guide to Intelligent Systems, 

Addison-Wesley, 2011, pp. 25–54.
[Wwise 06] Audiokinetic “Wwise.” http://www.audiokinetic.com, 2006.


