
539

45
Introduction	to	GPGPU	for	AI
Conan Bourke and Tomasz Bednarz

45.1	 	Introduction

Computer hardware has come a long way in the past decade. One core, two core, four core,
and now hundreds and thousands of cores! The power in a computer has shifted from the
CPU to the GPU, with new APIs allowing programmers to take control of these chips for
more than just graphics processing.

With each advance in hardware, game systems have gained more and more processor
power, allowing for far more intricate and detailed experiences than previously imagined.
For AI this has meant more realistic agents capable of far more complex interactions with
each other, the player, and the environment around them.

One of the most important advancements in hardware has been in the GPU and its
transition from serving purely as a rendering processor into a general floating-point pro-
cessor capable of any calculation we wish, within certain limits. The two major hardware
vendors, AMD and NVIDIA, both make GPUs that commonly have 512+ processors, with
the newest models providing around 3000 processors in consumer models, each able to
process data in parallel. That is a lot of processing power, and we don’t have to dedicate all
of it to high-end graphics. Even the Xbox 360 has a GPU capable of basic general process-
ing techniques, and Sony’s PS3 has an architecture similar to the GPU that is capable of
the same sort of processing.

One common downside to these processors is the latency and bandwidth between CPU
and GPU, but inroads are being made, particularly by AMD, in combining the linear com-
putation models of GPUs with the generic processing models of CPUs, called Accelerated

45.1	 Introduction
45.2	 A	History	of	GPGPU
45.3	 OpenCL
45.4	 Simple	Flocking	and	

OpenCL

45.5	 OpenCL	Setup
45.6	 Sharing	GPU	Processing	

Between	Systems
45.7	 Results
45.8	 Conclusion

540 Part VII. Odds and Ends

Processing Units (APUs), that greatly reduce this latency and provide other advantages as
will be discussed later in the chapter.

45.2	 	A	History	of	GPGPU

General-purpose computation on the GPU (GPGPU) is the term given to using the GPU for
calculations other than rendering [Harris 02]. With the introduction of early shader models,
programmers were able to modify how and what the GPU processed, no longer having to
rely on the fixed-function pipelines of OpenGL or Direct3D and not being forced to render
out an image for viewing. Instead textures could be used as buffers of data, accessed and
processed within a pixel fragment, and the result could be drawn to an output texture. This
method had the drawback that buffers were read-only or write-only. In addition, limitations
with element independence and the need to represent problems in the context of graphics
algorithms and the render pipeline made this technique cumbersome. Nevertheless shaders
had evolved from simple assembly language programs into several new C-like languages,
and hardware vendors began to acknowledge the growing GPGPU field.

Work was done on exposing the capabilities of the GPU outside of the rendering pipe-
line, and thus APIs were created that gave programmers access to the power of the GPU
without having to treat it as a purely graphics-based device, and with these APIs came
buffers that had read-write-modify access and additional mathematical capabilities.

In February 2007 NVIDIA introduced the Compute Unified Device Architecture
(CUDA) API with the G80 series of GPUs which heavily accelerated the GPGPU field, and
with DirectX11 Microsoft released the DirectCompute API. It shares many similar ideas
and methodologies to CUDA but with the advantage of using DirectX’s existing resources,
allowing easy sharing of data between DirectCompute and Direct3D for visualizations.
DirectCompute is also usable on DirectX10 hardware, but is still limited with the rest of
DirectX in that it can only run on Windows-based systems.

A competing standard, OpenCL (Open Computing Language), was first released in
2008. OpenCL gives developers easy access to write efficient cross-platform applications
for heterogeneous architectures such as multicore CPUs and GPUs, even Sony’s PS3, with
a single programming interface based on a modern contemporary of the C language.
OpenCL’s specification is managed by the Khronos Group [Khronos] who also provide
a set of C++ bindings we have used for the purpose of this article. These bindings greatly
simplify the host API setup and speed of code development.

45.3	 	OpenCL

OpenCL programs are written as “kernels,” functions that execute on single processing
units (compute units) in parallel to the other processing units, working independently
from each other. Kernel code is very similar to C code, and supports many built-in
math functions.

When a host program is running we need to execute the following steps to use OpenCL:

 1. OpenCL enumerates the platforms and the compute devices available in the system,
i.e., all CPUs and GPUs. Within each device there are one or more compute units,
and within these one or more processing units that handle the actual computation.

54145. Introduction to GPGPU for AI

The number of units corresponds to the number of independent instructions that a
device (CPU or GPU) can execute at the same time. Therefore a CPU having 8 units
is still considered as a single device, as would be a GPU with 448 units.

 2. The most powerful device (usually the GPU) is picked, and its context is set up for
further operations.

 3. Sharing of data is configured between the host application and OpenCL.
 4. An OpenCL program is built for your device using kernel code and an OpenCL

context, and then kernel objects are extracted from compiled kernel code.
 5. OpenCL makes use of command queues to control synchronization of kernel

executions. Reading and writing data to and from the kernel and manipulation of
memory objects are also carried out by the command queues.

 6. The kernel is invoked and executes across all processing units. The parallel threads
share memory and synchronize using barriers. At the end eventually, the output
of the work-items is read back into host memory for further manipulation.

45.4	 	Simple	Flocking	and	OpenCL

What we will cover briefly is the conversion of a classic AI algorithm to run on the GPU
using OpenCL. Craig Reynolds [Reynolds 87] introduced the concept of steering behaviors
for controlling autonomous moving agents and with it the concept of flocking and boids
to simulate crowds and flocks. Many RTS games make use of flocking with beautiful
effect—Relic Entertainment’s Homeworld series being one such example—but these games
are usually limited in the number of agents available. Converting this algorithm to run on
the GPU, we can increase our agent counts into the thousands quite easily.

We will implement a brute-force approach to flocking, on both the CPU and GPU, to
demonstrate the easy gains to be had by simply switching to the GPU without utilizing any
partitioning, taking advantage of the GPUs massively parallel architecture. Similar work
has been done using the PS3’s Cell Architecture [Reynolds 06] utilizing a simple spatial
partitioning scheme. Listing 45.1 gives pseudocode for a basic flocking algorithm using
a prioritized weighted sum of forces for separation, cohesion, and alignment, and also
includes a wander behavior to help randomize the agents. The priority is wander, and then
separation, cohesion, and finally alignment. All velocities must be updated before being
applied to positions or initial agents will incorrectly influence later agents.

Listing 45.1 Flocking	pseudocode.

for each agent
 for each neighbor within radius
 calculate agent separation force away from neighbor
 calculate center of mass for agent cohesion force
 calculate average heading for agent alignment force
 calculate wander force
 sum prioritized weighted forces and apply to agent velocity
for each agent
 apply velocity to position

542 Part VII. Odds and Ends

On the CPU this algorithm is trivial to implement. Usually an agent will consist of an
object containing the relevant agent information (i.e., position, velocity, wander target,
and so on). An array of agents would then be looped over twice; first to update the forces
and velocity for each agent, and second to apply the new velocity.

When converting this algorithm to the GPU there are a few items that must be consid-
ered, but the conversion of CPU code to OpenCL code is straightforward. As seen in the
pseudocode above, all neighbors are calculated for each agent, which has 0 2()n complex-
ity. On the CPU this is achieved by double looping through all the agents. On the GPU we
are able to parallelize the outer loop and execute sequentially the inner loop interaction for
every work item (every agent), greatly reducing the processing time.

Spatial partitioning techniques could be implemented to increase performance, but it
must be noted that the GPU works in a very linear fashion, ideal for processing arrays of
data which it typically did in the case of vertex arrays for graphics processing. In the case
of complex spatial partitioning schemes (such as an octree) the GPU would flail while try-
ing to access nonlinear memory. Craig Reynolds’ solution for the PS3 was to use a simple
three-dimensional grid of buckets storing neighboring agents [Reynolds 06]. This allows
buckets to be processed linearly, with agents only having to have read access to the buckets
directly neighboring their own. With this article, however, we are demonstrating a simple
conversion from CPU to GPU without this kind of optimization to show the instant gains
from converting to GPGPU processing.

One of the first steps when converting to GPGPU is to break up your data into contigu-
ous arrays. GPUs can handle up to three-dimensional arrays, but in our example we will
break up our agents into one-dimensional arrays for each element in an agent, that is,
positions, velocities, etc.

It is also worth noting that in OpenCL terminology there are two types of memory:
local and global. The distinction is that global memory can be accessed by any core, while
local memory is unique to a process and is therefore accessed much faster. Think of it like
RAM and a CPU’s Cache.

45.5	 	OpenCL	Setup

Initializing the compute devices is straightforward using C++ host bindings. At first the
host platforms have to be enumerated to access the underlying compute devices. Then a
context is created from a platform (note that in this example we initialized the context to
specifically use the GPU using CL_DEVICE_TYPE_GPU) along with a command queue
in order to execute compute kernels and enqueue memory transfers via the context. Refer
to Listing 45.2 for the details.

OpenCL has two types of memory objects: buffers and images. Buffers contain stan-
dard 4D floating-point vectors using a Single-Instruction Multiple-Data (SIMD) process-
ing model, while images are defined in terms of texels. For the purposes of this article
buffers were chosen as being more appropriate for representing agents located contigu-
ously beside each other.

The buffers can be initialized for read-only, write-only, or read–write, as Listing 45.3
shows. The buffers were created to hold the maximum numbers of agents the simulation
will make use of, though we are able to process fewer agents if we desire. In addition to

54345. Introduction to GPGPU for AI

agent data we send to the kernel the parameters for the flocking algorithm, along with a
time value specifying elapsed time since the last frame for consistent velocities.

In order to create a compute kernel we need to compile the kernel code into a CL
 program, and then extract the compute kernel. In our example the kernel code is located
in a separate file program.cl, loaded to create the program, as shown in Listing 45.4.

Listing 45.5 shows a portion of our example kernel, with the body omitted as it is nearly
identical to a CPU implementation. Of note, however, is the last portion of the kernel per-
taining to barriers. On the CPU we loop twice to apply the forces to all agents after they
have been calculated. We can achieve this in the kernel by placing a barrier, which causes
all executed threads to wait at this point until all threads have caught up. Within a kernel

Listing 45.2. OpenCL	host	setup.

cl::Platform::get(&m_oclPlatforms);
cl_context_properties aoProperties[] = {
 CL_CONTEXT_PLATFORM,
 (cl_context_properties)(m_oclPlatforms[0])(),
 0};
m_oclContext = cl::Context(CL_DEVICE_TYPE_GPU, aoProperties);
m_oclDevices = m_oclContext.getInfo<CL_CONTEXT_DEVICES>();
std::cout << “OpenCL device count: “ << m_oclDevices.size();
m_oclQueue = cl::CommandQueue(m_oclContext, m_oclDevices[0]);

Listing 45.3 OpenCL	buffer	setup.

typedef struct Params
{
 float fNeighborRadiusSqr;
 float fMaxSteeringForce;
 float fMaxBoidSpeed;
 float fWanderRadius;
 float fWanderJitter;
 float fWanderDistance;
 float fSeparationWeight;
 float fCohesionWeight;
 float fAlignmentWeight;
 float fDeltaTime;
} Params;
cl::Buffer m_clVPosition;
cl::Buffer m_clVVelocity;
cl::Buffer m_clVParams;
...
m_clVPosition = cl::Buffer(m_oclContext, CL_MEM_READ_WRITE,
uiMaxAgentCount * 4 * sizeof(float));
m_clVParams = cl::Buffer(m_oclContext, CL_MEM_READ_ONLY,
sizeof(Params));

544 Part VII. Odds and Ends

we can access the current index of the input buffers with a call to get_global_id(0)
using 0, 1, or 2 depending on the buffer dimensions.

Kernel arguments are passed to OpenCL explicitly once a kernel has been built, shown
in listing 45.6. Rather than passing the arguments to the kernel when it is executed, the
arguments must be pre-loaded into their corresponding argument index.

Once everything has been initialized and built, we can enqueue our kernel to be com-
puted. Kernels do not execute immediately but are rather queued up to be processed. The
kernel must be launched with global work-size equal to the number of elements to be pro-
cessed. We can also specify an offset into our array range, but we can specify a NullRange
to start at the front of the array. Refer to Listing 45.7.

Listing 45.5. The	OpenCL	kernel.

__kernel void Flocking(
 __global float4* vPosition,
 ...
 __constant struct Params* pp)
{
 //get_global_id(0) accesses the current element index
 unsigned int i = get_global_id(0);
 ...
 barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
 vPosition[i] + = vVelocity[i] * pp->fDeltaTime;
 barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
}

Listing 45.6. Specifying	kernel	arguments.

m_clKernel.setArg(0, sizeof(cl_mem), &m_clVPosition);
m_clKernel.setArg(1, sizeof(cl_mem), &m_clVVelocity);

Listing 45.4 Building	the	OpenCL	program.

//read source file
std::ifstream sFile(“program.cl”);
std::string sCode(std::istreambuf_iterator<char>(sFile),
 (std::istreambuf_iterator<char>()));
cl::Program::Sources oSource(1,
 std::make_pair(sCode.c_str(), sCode.length() + 1));
//build the program for the specified devices
m_oclProgram = cl::Program(m_oclContext, oSource);
m_oclProgram.build(m_oclDevices);
m_clKernel = cl::Kernel(m_oclProgram, “Flocking”);

54545. Introduction to GPGPU for AI

45.6	 	Sharing	GPU	Processing	Between	Systems

Initial concerns developers may have when making use of GPGPU, especially for game
developers, is that processing time is taken away from graphics processing. Many of today’s
high-end games make use of GPGPU for graphical pre-processing and post-processing,
and also for physics simulations using APIs such as NVidia’s PhysX. Adding AI to the mix
will reduce the processing time these other systems have available. This is a concern that
cannot be avoided. However GPU processing power has increased with massive leaps and
bounds, from the core counts in the hundreds for the NVidia 500 series, to thousands in
their 600 series. With time more processing power will be available for more systems, and
developers will start to find other interesting uses for that power besides graphics, physics,
and AI.

In the meantime, at least for OpenCL, there exists interoperability APIs that allow
sharing of OpenCL buffers between both OpenGL and Direct3D, reducing the need to
constantly transfer information to the GPU and back to the CPU. Positional buffers for AI
agents could be both used in flocking computations on the GPU—for instance, rendering
buffers for hardware instancing of rendered agents, without the need to return the data to
the CPU only for it to be transferred back to the GPU.

45.7	 	Results

Figure 45.1 displays performance measured in milliseconds to process agents with the
brute-force implementation of our example flocking algorithm (lower is better). As clearly
shown the GPU offers a massive performance increase with higher agent counts, with
minimal work needed to convert the algorithm to OpenCL. However, at lower agent
counts the GPU runs slower than the CPU, shown in Figure 45.2, due to the buffer trans-
fers. Also tested is a GPU intended for computation and research, to show the optimized
bandwidth and latency in such devices, resulting in faster computations than consumer
level GPUs, but also giving an insight into future consumer level performance.

45.8	 	Conclusion

As our example shows we could easily use GPGPU computing for a game that makes use of
extremely high agent counts, such as an RTS game using thousands of entities rather than
just the standard dozens to hundreds in most current RTS games. We would still have dif-
ficulty moving our agent’s decision making to the GPU, but elements such as locomotion

Listing 45.7. Executing	the	kernel	program.

m_oclQueue.enqueueNDRangeKernel(
 m_clKernel, cl::NullRange,
 cl::NDRange(uiMaxAgentCount),
 cl::NullRange,
 nullptr, nullptr);

546 Part VII. Odds and Ends

and even obstacle avoidance can be moved off the CPU. Taking processing time away from
other systems, such as graphics, will be another concern, but can be alleviated somewhat
with various interoperability APIs.

Other examples of GPGPU for AI exist, and work has been done by groups for
 neural networks and pathfinding, and the classic Conway’s Game of Life can easily be

0

2

4

6

8

10

12

14

16

18

64 128 256 512

Intel i7-2670QM
Nvidia GTX 560
Nvidia Tesla C2050

Figure	45.2

Performance	in	milliseconds	with	lower	agent	counts.	The	consumer	GPU	stays	constant	as	
the	processing	of	the	agents	takes	next	to	no	time	at	all	but	buffer	transfers	to	and	from	the	
GPU	are	not	optimized.	However,	the	C2050	has	a	much	higher	bandwidth	and	latency.

0

500

1000

1500

2000

2500

3000

3500

4000

512 1024 4096 8192 16384

Intel i7-2670QM
Nvidia GTX 560
Nvidia Tesla C2050

Figure	45.1

Performance	in	milliseconds	to	process	agent	counts	of	512,	1024,	4096,	8192,	and	16384	
with	various	GPUs	and	CPUs.

54745. Introduction to GPGPU for AI

implemented on the GPU [Rumpf 10]. The main limit to the types of AI processing avail-
able in GPGPU is the branching nature of most AI decision making.

APUs could allow us to closely couple decision making techniques with GPGPU tech-
niques, but the consumer take-up for such devices will dictate if this style of AI will show
up more in games.

As it stands GPGPU is a viable option for mass simulations, with the current most
common consumer GPU at the time of writing, according to Valve’s Hardware Survey,
being the NVidia GTX 560 which packs 336 processors. Plenty for our AI needs.

References

[Harris 02] M. Harris. GPGPU.org. http://www.gpgpu.org, 2002.
[Khronos] The Khronos Group. http://www.khronos.org.
[Reynolds 87] C. Reynolds. “Flocks, herds, and schools: A distributed behavioral model.”

SIGGRAPH ’87 Conference Proceedings. Available online (http://www.red3d.com/
cwr/papers/1987/SIGGRAPH87.pdf).

[Reynolds 06] C. Reynolds. “Big fast crowds on PS3.” SIGGRAPH ’06 Sandbox Symposium.
Available online (http://www.research.scea.com/pscrowd/PSCrowdSandbox2006.pdf).

[Rumpf 10] T. Rumpf. “Conway’s game of life accelerated with OpenCL.” CMC11 ’10 Conference
Proceedings. Available online (http://cmc11.uni-jena.de/proceedings/rumpf.pdf).

