
515

43
An Architecture 
for Character-Rich 
Social Simulation
Michael Mateas and Josh McCoy

43.1 � Introduction

More progress has been made creating NPCs that engage in purely autonomous activity or 
small-group behavior organized around combat (e.g., squad behavior) than creating NPCs 
that participate in ongoing social activity. Social activity often has no explicit functional 
goal, but rather involves social actors responding to, displaying, and changing social state. 
Social action strongly depends on the history of previous social acts. Complex social 
actions are often best done through dialog, making use of the full richness of natural 
language to refer to feelings, relationship states, and history. Finally, social action is 
embedded in a rich social context—actions often have ramifications across multiple social 
actors. These features of social action are not easily satisfied by NPC architectures that 
emphasize individual decision making focused on moment-by-moment action selection 
to accomplish primarily functional goals.

This chapter describes the Comme il Faut (CiF) social simulation architecture. CiF 
was used to create Prom Week,* a social puzzle and storytelling game that was a technical 

*	 The design and implementation of Prom Week, as well as significant development of CiF, was carried out by a 
dedicated core team consisting of Josh McCoy, Aaron A. Reed, Ben Samuel, Mike Treanor, Michael Mateas, 
and Noah Wardrip–Fruin, and by a larger team who provided additional programming, writing, art, music, 
sound, and animation work. A full credit list is available at http://promweek.soe.ucsc.edu/?page_id=25.

43.1	 Introduction
43.2	 CiF and Prom Week
43.3	 CiF Architecture

43.4	 Interaction Approaches
43.5	 Related Work
43.6	 Conclusion



516 Part VII.  Odds and Ends

excellence nominee in the Independent Game Festival at GDC 2012 and a nominee for 
IndieCade 2012. Comme il Faut, which in French roughly translates as “as it should be,” 
satisfies the requirements outlined above. In CiF the concept of a multicharacter social 
interaction is a first-class AI construct. Characters use many details of the social state, 
including the history of prior interactions, to decide how to participate in these multichar-
acter social exchanges. The system automatically retargets dialog within these exchanges 
to the particularities of specific characters with their detailed personalities and history in 
specific social situations. The goal of this architecture is to enable casts of characters to 
engage in rich social interaction, speaking the kind of concrete dialog typically associated 
with hand-authored dialog trees, but utilizing a level of emergent social simulation typi-
cally associated with simulation games.

The rest of this chapter first introduces the released experimental game Prom Week, 
which uses CiF to support a form of interactive storytelling in which the gameplay revolves 
around solving social puzzles to accomplish story goals. The bulk of the chapter describes 
CiF’s major architectural elements. The chapter then concludes with a description of 
different interaction styles that a CiF-like architecture can support and a description of 
related work. The goal of this chapter is to provide enough detail to allow the reader to 
borrow elements of the CiF architecture in their own work, without drowning the reader 
in implementation details.

43.2 � CiF and Prom Week

While an early version of CiF was developed as a stand-alone social simulation system 
[McCoy and Mateas 09], the architecture and authoring approaches evolved considerably 
with the development of Prom Week [McCoy et al. 10a, McCoy et al. 10b]. Throughout 
the rest of this chapter, all the examples of different kinds of CiF authoring (knowledge 
representation) will be from Prom Week. Of course, if a CiF-like architecture was used in 
a different game, different content would be authored, but creating the CiF architecture in 
the context of creating a complete, playable experience forced us to scale the architecture to 
the full complexities of authoring and development.

The initial inspiration for developing CiF came from authoring limitations experi-
enced during the creation of the interactive drama Façade [Mateas and Stern 02; Mateas 
and Stern 03]. Façade is an interactive drama in which the player, from a first-person 
perspective, has a short 20-minute interaction with a couple whose marriage is falling 
apart. Façade’s character behaviors are organized around dramatic beats, approximately 
1-minute interactions in which the characters work together to convey some aspect of the 
story or their personality. In Façade these behavior clusters were authored for specific 
characters expressing specific content [Mateas and Stern 07]. Variation in performance 
was implicitly encoded in behaviors and was not reusable between characters. Our work 
on CiF started with the goal of generalizing multicharacter exchanges into reusable units 
that support character-specific performance variation explicitly. Dynamically retarget-
ing animations allows animation authoring effort to be reused across multiple characters. 
Similarly, we want to enable dynamically targeted NPC dialog, in which multicharacter 
dialog performances are authored more generally, and then targeted to specific characters 



51743.  An Architecture for Character-Rich Social Simulation

in specific situations. Starting with this initial goal, our final architecture provides the 
following major features:

•• Multicharacter social exchanges are explicitly represented separately from any 
specific characters. Given a cast of characters, with traits and social state declara-
tively represented, social exchanges are retargeted for specific characters.

•• Characters decide what they want to do and who they want to do it with based on 
soft decision making (not Boolean flags or rigid preconditions) that can take into 
account hundreds of considerations.

•• Social interactions don’t just cause a single change in social state, but have cascad-
ing consequences across multiple characters.

•• The performance details and outcomes of previous social interactions are stored 
in an episodic memory and used both during social exchange performances 
(social exchange dialog can refer to past performances) and to help determine 
which social exchanges characters want to engage in.

Together, these properties provide the foundation for simulating a social world, in which 
characters are embedded in a constantly evolving sea of social state. After first briefly 
describing Prom Week, we will then walk through the details of these different elements 
of the architecture.

43.2.1 � Prom Week
In Prom Week, available for free at promweek.soe.ucsc.edu, the player controls the lives of 
18 high school students during the week leading up to the prom. The gameplay consists of 
the player selecting pairs of characters and choosing a social exchange that the first char-
acter initiates with the second. Given a selected pair of characters, CiF determines what 
actions the first character most wants to initiate, which are presented in a menu to the player, 
and how the second character responds to a selected interaction. In Figure 43.1, the player 
is choosing among the five social exchanges CiF most wants to perform between the two 
selected characters, and is currently highlighting Pick-Up Line, an exchange with the goal of 
initiating a dating relationship. Once a social exchange is selected, CiF decides how the two 
characters will perform the social exchange. Figure 43.2 shows an in-progress performance 
of a Brutal Break-Up, a social exchange with the intention of terminating a dating relation-
ship. The player is trying to accomplish story goals, such as having a character date a specific 
other character, make a certain number of friends, or have a certain number of good or 
bad things happen to them. The story goals for one of the Prom Week scenarios are shown 
in Figure 43.3. Because of the underlying social modeling performed by CiF, story goals 
have multiple emergent, nonprescripted solutions, and different combinations of story goals 
accomplished by the player open up different endings at the prom. In this way, Prom Week 
combines storytelling and character exploration with simulation-based gameplay.

To help the player master the underlying social system, the Prom Week interface 
allows the player to explore the reasons why characters were motivated to initiate a social 
exchange, why they responded to a social exchange the way they did, why social exchanges 
caused the effects they did, and the current social state. Figure 43.4 shows the interface the 
player can use to explore why a social exchange happened the way it did. The explanations 



518 Part VII.  Odds and Ends

are generated from an analysis of the most important rules that fired to influence the 
exchange. Figure 43.5 shows the interface the player can use to explore the current social 
state, guiding strategic selection of characters and social exchanges. Finding the right 
amount of complex simulation state to expose to the player in a usable fashion was one of 
the major design challenges for Prom Week.

Figure 43.1

Selecting a social exchange.

Figure 43.2

Social exchange performance.



51943.  An Architecture for Character-Rich Social Simulation

Figure 43.3

Story goals.

Figure 43.4

Outcome explorer interface.

Figure 43.5

Social state explorer interface.



520 Part VII.  Odds and Ends

As the player makes successful social exchanges happen, they earn social influence 
points. Social influence points can be spent to look ahead at the outcome of a social 
exchange, the factors influencing the social exchange, and/or to override the outcome. 
Strategic management of social influence points becomes another element of the gameplay.

43.3 � CiF Architecture

The primary knowledge representation element in CiF is the social exchange, a collection 
of patterns of (primarily dialog) interaction where the exact performance and social out-
come varies based on the personality-specific attributes of the characters involved and 
the current social state. The idea of social exchanges was inspired by Erving Goffman’s 
work in sociology on dramaturgical analysis of social interaction [Goffman 59]. Goffman 
viewed social interaction in everyday life as dramatic performances designed to express 
properties of one’s personality or to change social state. He used the metaphor of theater to 
analyze how people draft others to perform roles in their performances, organize space and 
objects into a “stage” and “props” for a performance, and so forth. In CiF, social exchanges 
comprise a taxonomy of performances organized around what elements of social state 
they are designed to change or express. Before diving into the details of social exchanges, 
it is necessary to first understand how characters and social state are represented.

43.3.1 � Characters
Characters consist of the elements described in Table 43.1.

Due to the emphasis being placed on social exchanges, the representation of each char-
acter is relatively thin, consisting of a small amount of declarative information (that is, 
information that specifies to the underlying AI system the properties of the character, but 
leaves it to the system to figure out how and when to express these properties). What makes 
a character rich and unique is their situation in the social world and their history, rather 
than a bunch of character-specific AI behavior.

Traits and statuses describe the personality and character state of a character. Traits 
are permanent properties of a character which heavily impact social exchange play. 
Given a character x, examples include trait(brainy, x), trait(stubborn, x), 
trait(attention hog, x), and trait(sex magnet, x). Traits only have meaning to 
the degree that they are referenced in preconditions and influence rules to determine which 
social exchanges a character wants to initiate and to select among different instantiations 
of social exchanges.

Table 43.1  Character representation

Character

Name The character’s name.
Gender The gender of the character.
Traits A vector of the character’s traits.
Statuses A vector of the statuses held by the character.
Prospective memory The character’s desires to play social exchanges, represented as a vector of volitions.
Character-specific phrases Character-specific natural language generation template fill-ins (greetings, 

pejoratives, exclamations, etc.).



52143.  An Architecture for Character-Rich Social Simulation

Statuses are temporary, optionally directional, binary social effects that result 
from social exchange play. Statuses capture transitory states in an agent’s mood 
(e.g., status(cheerful, x)), sharp spikes of emotion between agents (e.g., 
status(hasACrushOn, x, y)), and social states (e.g., status(popular, x)). They 
are useful in capturing transitory but potent social situation and character states. When 
a status is posted by a social exchange, it includes a duration specification of how long the 
status lasts before it times out.

Prospective memory is a vector of numeric volitions (desires) for characters to engage 
in specific social exchanges with specific characters. These volitions are computed by 
initiator influence rules, as described in the Social Exchanges section below.

Character-specific phrases are filled into dialog templates in social exchanges. This is 
one way that the general social exchange dialog is retargeted to specific characters. The 
character-specific phrases defined in Prom Week include %greeting% (opening greet-
ing phrase), %shocked% (expression of shock), %positiveAdj% (positive adjective), 
%pejorative% (a nasty thing to call someone), and %sweetie% (a term of endearment). 
Whenever any of these tags appear in social exchange dialog, they are replaced by the 
appropriate character-specific phrase. A character definition should include one or more 
phrases for each of the character-specific tags used in social exchanges.

43.3.2 � Social State
The social state of the world is captured by four different representations: social networks, 
relationships, the cultural knowledge base, and the social facts knowledge base.

Social networks are bidirectional fully connected networks where the edge values mea-
sure the feelings between characters. Prom Week has three networks: a romance network, 
which represents how interested characters are in pursuing intimate relationships with 
each other, a friendship network, which represents how much characters like each other, 
and a “coolness” network, which represents how much respect characters have for one 
another. If x has a romance network value of 80 towards y, but y only has a value of 20 
towards x, the agents see their situation differently. Social network values are the private 
feelings characters feel towards each other. Just because two characters have mutually high 
friendly feelings towards each other does not mean that they automatically have the pub-
licly recognized social state of being friends. Characters with high mutual friendly feelings 
will be strongly inclined to engage in a social exchange that results in them becoming 
friends, but a social exchange is necessary to enact the process of turning mutual private 
friendly feelings into a publicly recognized friendship (and similarly for romance, etc.).

Relationships represent publicly recognized social relationships between characters. 
In  Prom Week the three relationships are friends, dating, and enemies. Unlike social 
network values, which have a numeric range, relationships are binary: two characters either 
are or aren’t friends, are or aren’t dating, are or aren’t enemies. The distinction between 
social networks and relationships enables the representation of dramatically interesting 
(and lamentably true to life) states. For example, given three characters x, y, and z, CiF can 
represent states such as relationship(dating, x, y), network(romance, x, y, 20), 
network(romance, y, x, 95), and network(romance, x, z, 80), which translates 
into x and y are dating, y is head over heels in love with x, while x has fallen out of love 
with y but has eyes for a third character, z. Given the initiator and responder influence 
rules we developed for Prom Week (see Social Exchanges section, below), this state would 



522 Part VII.  Odds and Ends

give x higher volition to want to break up with y but make y more likely not to accept the 
breakup (to interpret it as a joke or a temporary fight), make x more likely to want to flirt 
with z to increase romance and possibly to start dating (which would have the consequence 
of making y angry and lowering y’s romance feelings towards x), and make y more likely 
to want to initiate positive exchanges with x to increase romance but also to initiate nega-
tive exchanges with x out of jealousy or anger (e.g., if y sees x flirt with someone else). The 
relationship representation also allows such complex social relationships as being friends 
and enemies at the same time (frenemies) – our goal was to support rich and dramatically 
interesting social states.

The cultural knowledge base (CKB) is a way to further define the world that CiF-driven 
agents inhabit, providing them with a variety of topics to bond over and squabble about 
The design intent for creating the CKB is to have a representation of props that is socio
logically rich. As props are much more than simple physical objects in dramaturgical 
analysis, CiF needs a way to understand the cultural importance of items in relationship to 
the storyworld. The CKB used for Prom Week has many items, including zombie movies, 
chainsaws, and webcomics. Every agent has one or more connections to these items, linked 
through the uni-directional phrases likes, dislikes, wants, and has. Gunter dislikes bobble-
heads. Oswald likes web comics. Phoebie likes zombie movies. Additionally, every object 
in the CKB can be associated with universally agreed-upon properties in the social world 
(e.g., chainsaws are bad ass, dodgeball is mean). This allows for agents to interact with each 
other based on their individual opinions of objects in the world. The CKB can be queried 
to search for patterns of attitudes characters hold for objects. Consider the example query:

CKB(item,(x, likes), (y, dislikes), lame)

There are four parts (only one has to be specified) to a CKB query: 1) the item to look for, 
item, 2) the first subjective label, e.g., (x, likes), 3) the second subjective label, e.g., 
(y, dislikes), and 4) the truth label, e.g., lame. This query will match an item that x 
likes, y dislikes, and is universally regarded as lame, which could perhaps contribute to 
y’s volition to poke fun at x.

Finally, the social facts knowledge base (SFKB) keeps track of the social history of 
the story world so that it can be queried for socially relevant information. The SFKB 
influences what social exchanges characters want to engage in and how they respond, 
and also affects performances of social exchanges, where the specifics of previous 
exchanges are brought up in conversation. Typically, games don’t record much of the 
interaction history and use it to make decisions or refer to it in character dialog. By 
making this history a part of the architecture, CiF provides history-dependence in the 
social simulation that goes far beyond what can be accomplished with ad hoc tech-
niques such as flags.

The SFKB stores an entry for every social exchange played and for every trigger rule 
that causes social state change. This entry includes the details of who was involved, as 
well as any items from the cultural knowledge base mentioned, a natural language gen-
eration template that can be used to turn the entry into text for use in performances, 
and an abstract social exchange label (such as mean, funny, nice to) that can be used for 
querying. For example, if Edward initiates the Bully social exchange with Chloe, engag-



52343.  An Architecture for Character-Rich Social Simulation

ing in a specific instantiation in which x makes fun of y’s SAT score, the following entry 
is stored in the SFKB.

(SocialGameContext exchangeName = “Bully” initiator = “Edward” responder = 
“Chloe” initiatorScore = “15” responderScore = “10” time = “5” effectID = 
“10” other = “”(SFKBLabel type = “mean”))

This entry records the name of the social exchange, the characters involved, the scores 
computed by the initiator and responder influence rules, a time stamp (for Prom Week 
this is discrete turns, but it could be continuous time as well), an effect ID that indicates 
which specific instantiation of Bully happened (in this case, making fun of SAT scores), 
and a label saying that this was a “mean” exchange. SFKB labels are used to support more 
abstract queries. Rather than querying for specific exchange names or instantiations, often 
a query only cares about the general tone, finding past events in which one character did 
something mean, or nice, or lame, etc., to another character. For example, if Chloe later 
initiates a Backstab exchange with Edward, an instantiation of backstab can query for past 
mean things Edward did to Chloe: [SFKBLabel(mean, responder, initiator,0) 
window(10)], in this case looking through the past 10 social exchanges. The matched 
entry is then turned into text, resulting in the performance “You know when you made 
fun of my SAT score?”, which the initiator (in this case Chloe) says just before reveal-
ing what she’s done to get even. In this way, the SFKB supports a compounding effect of 
history, where the characters refer more and more to past events that have happened, with 
the past events affecting decision making.

43.3.3 � Social Exchanges
Social exchanges are the heart of CiF. The rich social state described in the previous 
section exists to provide socially interesting reasons for characters to initiate social 
exchanges; the exchanges then change the social state. Table 43.2 describes the compo-
nents of a social exchange.

The intent captures the initiator’s purpose for initiating the social exchange. These 
purposes involve changing social state, such as increasing another character’s friendship 
feelings towards the initiator (a social network value change) or initiating or terminating 
a relationship (such as a dating relationship). If one views social exchanges as complex 
plan operators, the intent is like the postcondition of the operator. The difference from a 

Table 43.2  Social exchange structure.

Social exchange

Name The name of the social exchange (“Ask Out,” “Text Message Breakup,” etc.).
Intent The intended social change associated with the social exchange.
Precondition A condition that must be true for the social exchange to be applicable in the current 

social environment.
Initiator influence rules The social considerations applicable to the initiator of this social exchange.
Responder influence rules The social considerations applicable to the responder of this social exchange.
Instantiations The details of a specific performance including the NLG dialog templates and 

character animations. Instantiations have a condition that must be true for it to be 
performed and a specification of how the performance changes the social world.



524 Part VII.  Odds and Ends

traditional plan operator is that the social game may be rejected by the responder, which 
usually has the consequence of causing an almost opposite state change. For example, 
character x who feels high romance towards y may initiate an “Ask Out” game towards 
y, with the intent of initiating the dating relationship with y. But just because x initi-
ates “Ask Out”, doesn’t mean that it somehow magically forces y to start dating; y might 
have a status of being angry towards x, or have low romance towards x, or have a status 
of being jealous of x because x has been spending time (engaging in multiple positive 
social exchanges) with a good friend of y’s. There are many factors that may contribute 
to y rejecting the “Ask Out” exchange, with the reject performance perhaps resulting in 
y having even lower romance towards x. Additionally, social exchanges can cause cascad-
ing effects via trigger rules. In this example, x might gain the status of being embarrassed, 
and a third party character who wasn’t even part of the exchange might gain the status of 
pitying x. Even if a social exchange is accepted, and the desired intent occurs, there are 
still often multiple cascading effects of additional social state change, which is a further 
difference from traditional plan operators. For Prom Week there are 12 different intents, 
6 for the three social network values and 6 for the three relationships: increase/decrease 
friendship network, increase/decrease romance network, increase/decrease cool network, 
initiate/terminate dating relationship, initiate/terminate friendship relationship, and 
initiate/terminate enemy relationship.

Preconditions are standard predicate conditions that rule a social exchange in or out 
depending on whether the precondition is satisfied in the current context. One of the 
goals of CiF is to minimize such hard decision making, relying more on soft decisions that 
can take many factors into account and that aren’t liable to break in unexpected states. 
Therefore, by convention, preconditions are used very sparingly, only to encode the mini-
mum conditions for a social exchange to make sense. For example, the social exchange 
“Text Message Breakup,” which has the intent of terminating a dating relationship, only 
makes sense if the initiator and responder are currently dating. Many social exchanges in 
Prom Week have no preconditions (meaning they are always available for consideration).

Initiator influence rules are used to determine the volition (desire) for a character 
to initiate a social exchange with other characters. Responder influence rules are used 
to determine whether a responder accepts or rejects the social exchange. Every social 
exchange has two or three roles: an initiator I, a responder R, and an optional third agent 
referred to as the other, O. The influence rules refer to these roles in predicate arguments, 
with CiF appropriately filling in the roles depending on which character a volition is being 
computed for. Each social exchange has specific initiator and responder rules that combine 
with a much larger number of inherited general rules called microtheories, to determine 
volition and accept/reject decisions. The general form of these rules is:

<condition> → <increment/decrement volition for an intent>

We will first consider examples of initiator influence rules. For the Annoy social exchange 
in Prom Week, whose intent is to decrease the responder’s friendship feelings for the 
initiator, two of the 18 influence rules are:

network(romance, I, R) > 66 && trait(I, inarticulate) → +3
[SFKBLabel(cool, R, I) window(10)] → -3



52543.  An Architecture for Character-Rich Social Simulation

The first rule says that if the initiator feels a lot of romance towards the responder (>66) 
and the initiator has the trait of being inarticulate, add 3 to their tendency to initiate the 
Annoy social exchange with the responder; characters who can’t express themselves well 
will have a tendency to express being romantically attracted to someone by bothering 
them. The second rule, which uses a social facts knowledge base query, says that if the 
responder initiated an exchange with the initiator within the last 10 social exchanges, and 
the exchange was labeled as cool, subtract 3 from their tendency to initiate the Annoy 
social exchange; a character is less likely to annoy someone who initiated a cool social 
exchange with them in the recent past.

While every social exchange has a small number of specific rules, a much larger 
number of shared rules are stored in microtheories. The purpose of microtheories is to 
facilitate knowledge reuse; to support writing, just once, rules that might be used across 
many social exchanges. The microtheory library constitutes a large repository of rules, 
split between dozens of microtheories. A microtheory consists of a definition and a set 
of influence rules. The definition of a microtheory is a condition, often times consist-
ing solely of one predicate. For example, relationship(friends,x,y) is the defini-
tion of the Friends microtheory. Only microtheories whose definitions evaluate to true 
in the current context are considered when calculating volitions. The microtheory’s rule 
set then provides a general representation of the social “common sense” associated with 
the condition, for example, in the Friends microtheory, that friends are more likely to 
get along, and less likely to become enemies, than strangers. So, given the example of 
the Annoy social exchange, if the initiator and responder happen to be friends, then the 
Friends microtheory definition will be satisfied, and all the rules in the Friends microthe-
ory will be considered in addition to the Annoy-specific initiator influence rules. In this 
case, the Friends microtheory contains rules that will subtract from the tendency to 
engage in behavior with the intent to decrease the buddy network, decreasing the voli-
tion to engage in Annoy. Of  course, more than one microtheory can be active during 
volition formation. For example, if in addition to being friends the initiator has the trait 
of being self-destructive, then the Self-Destructive microtheory will also be active. This 
microtheory captures general tendencies for a self-destructive character, which in the case 
of Annoy will actually add to the tendency to engage in friendship decreasing intents.

Forming volitions for a character involves summing the volitions on the right-hand 
sides of the satisfied initiator influence rules for every potential responder (and other) 
for every social exchange. At the end of this process is a vector of numbers correspond-
ing to the character’s desire to engage in each of the social exchanges with each of the 
characters. A variety of policies can then be used to decide what action to take, such as 
weighted random selection from the top N for autonomous action, or placing the top N in 
a menu for the player to select from as was done in Prom Week. The volition calculation 
process can be made efficient through a combination of rule-caching techniques such as 
Rete [Forgy 82] and by limiting the set of potential responders (for example to just nearby 
characters or characters present in a scene) for which volitions are calculated.

Influence rules seek to combine the advantages of utility methods and Boolean predi-
cate representations. Utility methods have well-known advantages including converting 
disparate decisions into a single comparable basis (numbers), and improving robustness 
of decision making by avoiding unaccounted-for corners of the state space for which the 



526 Part VII.  Odds and Ends

binary decision making mechanism doesn’t have a match [Mark 09]. The predicate calcu-
lus, on the other hand, is great at representing complex conjunctions of states, such as “If 
x feels high romance towards y, and a third party z did something mean to x, followed 
by y doing something mean to z, then x will have a higher desire to initiate a dating 
relationship with y.” Such complex conjunctive logic is unwieldy to express through 
combining algebraic functions, especially given the ease with which new conjunctive 
expressions can be incrementally added. By having predicate calculus expressions on the 
left-hand side of rules, but having them add weights to a sum on the right-hand side, 
the rules work together to compute a complex utility surface, combining the benefits of 
numeric and logic-based decision making.

Responder influence rules are similar to initiator influence rules, except that they are 
used to score how the responder feels about the exchange that she is included in. In a pro-
cess very similar to desire formation, the responder gets to determine how they feel about 
the exchange. If the responder score is too low, the responder will reject the exchange, 
resulting in a different (and often opposite) social effect than the social exchange intent. 
In addition to the exchange-specific responder influence rules, microtheories are also used 
for computing the responder score. For Prom Week, the default accept/reject boundary 
is 0; responder scores higher than 0 result in accepting the social exchange. The responder 
accept/reject boundary is one of the parameters adjusted by the difficulty settings.

Finally, a social exchange has a set of instantiations, each consisting of effects and 
natural language generation templates. Instantiations are divided into accept and reject 
instantiations. Each instantiation is a different possible way a social exchange can play 
out. Associated with instantiations are conditions that are tested to see if the instantiation 
is valid in the current context. Every exchange has a generic accept and reject instantia-
tion that places no conditions on the instantiation. More specialized instantiations have 
additional conditions, and play out the exchange in more specialized ways, in addition 
to having more effects. For example, one accept instantiation on the Break Up social 
exchange has the condition trait(cold,i)—this instantiation not only leads to termi-
nating the dating relationship, but has additional repercussions, such as terminating the 
friends’ relationship. If multiple instantiations have conditions which evaluate as true, the 
most salient is chosen, with saliency being computed as a weighted sum of the number of 
true predicates in each condition (the weight associated with a predicate type indicates 
how important that predicate is for determining the specificity of a social context).

The instantiation performance consists of lines of dialog, represented using natural 
language generation templates, to be spoken by the characters during the exchange. In the 
case of Prom Week, the dialog lines are tagged with animations to be performed by the 
characters. For example, one of the accept instantiations of Reminisce has the condition 
that the responder has done something recently to embarrass a third party, and the initia-
tor is enemies with the same third party. In this instantiation, the initiator and responder 
bond (increasing friend feelings) by reminiscing about how the responder embarrassed 
this disliked third party. The template dialog for this instantiation is:

I: Hey%r%. Man, I can’t stand%o%...
R: Tell me about it. Hey, remember that time when%SFKB_(embarrassed,r,o)%?
I: Oh god, I totally do!%pronoun(o,he/she)% totally had that coming for 
being such a%pejorative%!



52743.  An Architecture for Character-Rich Social Simulation

The bolded elements of the dialog demonstrate some of the natural language generation 
tags supported by CiF, including an SFKB reference and a character-specific pejorative. 
In the case of Simon and Monica talking about Oswald, the dialog could turn into:

Simon:	 Hey Monica. Man, I can’t stand Oswald...
Monica:	 Tell me about it. Hey, remember that time when I broke up with Oswald in the 

middle of his tennis match just to make him lose?
Simon:	 Oh god, I totally do! He totally had that coming for being such a n00b!

The final element of CiF’s architecture is the trigger rules. These are effects (and associated 
conditions) that are shared across all social exchanges. In addition to the social state change 
caused by the social exchange itself, additional changes may be caused by trigger rules. 
The trigger rules capture the cascading consequences of social exchanges, as well as state 
changes crossing multiple social exchanges. Consider the following example trigger rule:

~relationship(enemies x, y) && trait(x, cat: nice) && 
[SFKBLabel(cat: negative, z, y) window(7)] &&
~[SFKBLabel(cat: negative, x, y) window(7)] →
status(pities, x, y)

This rule says that if x and y aren’t enemies, and x has one of the traits that falls into the 
more general category of “nice” traits, and a third party z has done something that falls 
into the more general category of negative interactions to y in the last 7 social exchanges, 
and x hasn’t themself done something mean to y in the last 7 exchanges, then x gains the 
status of pitying y. Or, more succinctly, nice people will pity those who have mean things 
happen to them as long as they haven’t done mean things themselves to the same person. 
This rule, like all trigger rules, can fire after any social exchange.

43.4 � Interaction Approaches

Now that the architecture has been described, this section describes different ways a 
CiF-like architecture can be integrated into the player interaction loop. The current 
version of CiF treats social exchanges as discrete dialog units; thus CiF currently supports 
a discrete-choice model of social interaction.

Prom Week utilizes a god-game interface in which the player doesn’t play a specific char-
acter, but tells characters what to do. When the player selects two characters, CiF computes 
the volition for the first character to initiate every social game with the second. The system 
then displays the top volition actions in a menu, with some intermixing to ensure variety of 
intentions appearing in the menu. Characters only occasionally take autonomous action. 
When a character develops an extremely high volition to initiate a social exchange, the 
player is informed that the action will take place in a small number of moves. This was 
added to Prom Week to create an additional challenge element. For example, the player 
may be trying to achieve the story goal of having a character date three other characters at 
the same time. But often, when the player has succeeded in having the character initiate a 
second dating relationship, the first romantic partner will develop a high volition to play 
a social exchange terminating the relationship. This autonomously initiated exchange puts 
a sharp limit on the number of turns the player has left to achieve the goal.



528 Part VII.  Odds and Ends

In Mismanor, an experimental RPG built using CiF [Sullivan et. al. 10; Sullivan 12], CiF was 
extended to include information and objects. This version of CiF, dubbed CiF-RPG, supports 
characters in forming volitions to perform actions related to gaining and sharing information, 
and gaining, losing, and using objects, in addition to network and relationship intents. Quests 
often have social, nonprescripted solutions enabled by the CiF model. In Mismanor the player 
plays a specific player character. The player character is modeled like any CiF character, 
having a collection of traits, statuses, and so forth. Traits are assigned during the character 
creation process. When the player interacts with an NPC, the menu options presented are 
determined by the highest volition social exchanges the player character wants to perform 
with that NPC. In a sense, CiF takes an active, dynamic role in supporting role play. NPCs 
are also given opportunities to engage in autonomous actions with the player and each other.

Another use of CiF would be as a simulation to create a rich social background around 
the player. For example, in an RPG, the characters in a village could go about their daily 
lives engaging each other in social exchanges driven by CiF. The social exchanges could be 
used to dynamically reveal backstory and frequently reference actions of the player char-
acter. In this more autonomous mode, action selection could be performed using any one 
of a number of well-known utility selection methods (e.g., weighted random based on the 
volitions, random among the top n, etc.).

Currently, we are working to extend CiF to support moment-by-moment interaction, 
moving away from the currently atomic social exchanges. In this interaction model, the 
player controls a real-time character employing individual gestures and limited natural 
language interaction. To accomplish this, instantiations are represented as collections of 
ABL behaviors [Mateas and Stern 02], with bottom-up recognition of player-initiated intents.

43.5 � Related Work

Here, we briefly describe the most relevant related work. The Sims 3 employs a social 
model similar to CiF. Its characters have traits and desires that inform the social practices 
(social norms and clusters of expectations) they perform [Evans 08]. A Sim can be involved 
in more than one practice at a time, and a practice can involve more than one Sim at a time. 
Thus, the Sims 3 AI represents social practices as nonatomic interactions that can be inter-
mixed, unlike the atomic interactions of CiF. However, the Sims engage in more abstract 
interactions, and do not use concrete dialog. Further the characters don’t have backstories 
or make complex use of history in decision making. Finally, CiF supports reference to 
third parties outside of the immediate social exchange, supporting more complex social 
decision making and cascading social effects.

More recently, Evans has developed EL, a deontic logic that “distinguishes between what 
is in fact the case and what should be the case” [Evans 11]. For example, an EL rule can 
capture inferences such as “if it is the case that x’s stomach is empty and that y is food, then 
it should be the case that x should eat y.” While CiF relies upon weight/intent pairs on the 
right-hand side of a rule to determine character desires, EL’s rules infer what a character 
should be doing as well as what the character thinks other characters should be doing. L is 
a deontic epistemic logic (it can represent what is the case, what should be the case, what 
has been seen to be communicated, and what is intended to be communicated) [Evans 09] 
that has been implemented in EL. It’s a response to Evan’s critique of his own earlier work in 
which social practices are represented as activities that characters unproblematically know 



52943.  An Architecture for Character-Rich Social Simulation

how to participate in, versus being activities in which characters actively work to help each 
other maintain state in the activity (the ethnomethodological approach to human activity). 
The same critique applies to CiF.

Evans and Short have developed Praxis, a system with many similarities to CiF that lies 
behind the commercially released game Versu [Evans and Short 12; Evans and Short 13]. 
In Praxis, social practices are represented as collections of states that provide social affor-
dances for character actions. Unlike CiF social exchanges, which are atomic performances, 
practices involve multiple state changes with opportunities for player choice. This also 
supports multiple practices intermixing. Character traits as well as judgements characters 
make about each other influence the performance of these practices.

43.6 � Conclusion
The CiF architecture enables casts of characters to engage in rich social interaction, speak-
ing the kind of concrete dialog typically associated with hand-authored dialog trees but 
utilizing a level of emergent social simulation typically associated with simulation games.

To accomplish this, multicharacter social exchanges are explicitly represented sepa-
rately from any specific characters. Given a cast of characters, with traits and social state 
declaratively represented, social exchanges are retargeted for specific characters. Thus, 
social exchanges provide both an abstraction layer for reasoning about social exchanges 
and a mechanism for generalizing reusable dialog.

Characters decide what they want to do and who they want to do it with, based on 
soft decision making (not Boolean flags or rigid preconditions) that can take into account 
hundreds of considerations. This allows complex relationship states and history across the 
entire cast of characters to influence individual decisions.

Social interactions don’t just cause a single change in social state, but have cascading 
consequences across multiple characters. These cascading effects help create a sense of a 
living world, with the characters enmeshed in a constantly changing social context.

The performance details and outcomes of previous social interactions are stored in an 
episodic memory and used both during social exchange performances (social exchange dialog 
can refer to past performances) and to help determine which social exchanges characters want 
to engage in. This provides a strong sense of history dependency typically missing from NPCs.

Together, these properties provide the foundation for simulating a social world, in 
which characters are embedded in a constantly evolving sea of social state.

Acknowledgments
This material is based upon work supported by the National Science Foundation under 
Grant No. IIS-0747522.

References
[Evans 08] R. Evans. “Re-expressing normative pragmatism in the medium of computation.” 

Proceedings of Collective Intentionality VI. 2008. Available online (http://philpapers.org/
rec/EVARNP).

[Evans 09] R. Evans. “The logical form of status-function declarations.” Etica and Politica/
Ethics and Politics, XI, 2009, 1, pp. 203–259. Available online (http://www2.units.it/
etica/2009_1/EVANS.pdf).



530 Part VII.  Odds and Ends

[Evans 11] R. Evans. 2011. “Using exclusion logic to model social practices.” In Agents for 
Games and Simulations II, pp. 163–178. Springer Lecture Notes in Computer Science, 
2011. Available online (http://www.springerlink.com/index/W2675776V4411H58.pdf).

[Evans and Short 12] R. Evans and E. Short. Talk during the AI summit session “Beyond Eliza: 
Constructing socially engaging AI.” Game Developers Conference, San Francisco CA. 2012.

[Evans and Short 13] R. Evans and E. Short. “Versu-A Simulationist Storytelling System.” 
IEEF Transactions on Computational Intelligence and Artificial Intelligence in Games, 
forthcoming 2013.

[Forgy 82] C. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern 
match problem.” Artificial Intelligence, 19, pp. 17–37, 1982.

[Goffman 59] E. Goffman. The Presentation of Self in Everyday Life. Garden City, NY: 
Doubleday, 1959.

[Mark 09] D. Mark. Behavior Mathematics for Game AI. Boston, MA: Course Technology, 2009.
[Mateas and Stern 02] M. Mateas and A. Stern. “A behavior language for story-based believ-

able agents.” IEEE Intelligent Systems, Vol. 17, Number 4, 2002, pages 39–47. Available 
online (http://users.soe.ucsc.edu/~michaelm/publications/mateas-is-2002.pdf).

[Mateas and Stern 03] M. Mateas and A. Stern. “Integrating plot, character and natural language 
processing in the interactive drama Façade.” Technologies for Interactive Digital Story
telling and Entertainment (TIDSE), Darmstadt, Germany. March 24–26, 2003. Available 
online (http://users.soe.ucsc.edu/~michaelm/publications/mateas-tidse2003.pdf).

[Mateas and Stern 07] M. Mateas and A. Stern. “Procedural authorship: A case-study of 
the interactive drama Façade.” In Second Person: Role-Playing and Story in Games and 
Playable Media, edited by Patrick Harrigan and Noah Wardrip-Fruin, pp. 183–208, 
Boston, MA: MIT Press. 2007. Available online (http://users.soe.ucsc.edu/~michaelm/
publications/mateas-second-person-2007.pdf).

[McCoy and Mateas 09] J. McCoy and M. Mateas. “The Computation of Self in Everyday 
Life: A Dramaturgical Approach for Socially Competent Agents.” Intelligent Narrative 
Technologies II, Papers from the 2009 AAAI Spring Symposium. AAAI Technical 
Report, SS-09-06, AAAI Press, Menlo Park, CA, 75–82, 2009. Available online (http://
users.soe.ucsc.edu/~mccoyjo/publications/AAAI-INT2-09-McCoy.pdf).

[McCoy et al. 10a] J. McCoy, M. Treanor, B. Samuel, B. Tearse, M. Mateas, and N. Wardrip-Fruin. 
“Comme il Faut 2 : A fully realized model for socially-oriented gameplay.” In Proceedings 
of Foundations of Digital Games (FDG 2010) Intelligent Narrative Technologies III 
Workshop (INT3). Monterey, California, 2010. Available online (http://games.soe.ucsc.
edu/sites/default/files/CiF-FDG2010-IntelligentNarrativeTechnologies3.pdf).

[McCoy et al. 10b] J. McCoy, M. Treanor, B. Samuel, B. Tearse, M. Mateas, and N. Wardrip-Fruin. 
2010. “Authoring game-based interactive narrative using social games and Comme il 
Faut.” In Proceedings of the 4th International Conference and Festival of the Electronic 
Literature Organization: Archive and Innovate, 2010. Providence, Rhode Island, 2010. 
Available online (http://games.soe.ucsc.edu/sites/default/files/TheProm-ELOAI.pdf).

[Sullivan et al. 10] A. Sullivan, N. Wardrip-Fruin, and M. Mateas. “Rules of engagement: Moving 
beyond combat-based quests.” In Proceedings of Foundations of Digital Games, Intelligent 
Narrative Technologies III Workshop, Monterey, California, June 18, 2010. Available online 
(http://games.soe.ucsc.edu/sites/default/files/rulesofengagementcameraready.pdf).

[Sullivan 12] A. Sullivan. “The Grail Framework: Making Stories Playable on Three Levels 
in CRPGs.” Ph.D. Dissertation, University of California Santa Cruz, 2012. Available 
online (http://www.asdesigned.com/dissertation.pdf).


