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38.1	 	Introduction

This article describes the requirements, architecture, and best practices for high-speed 
vehicle racing AI. We mainly consider high production value simulation games, but arcade 
style games can also be built using simplified elements of the approach here. Subsequent 
articles in the Racing section of this book will then expand in greater detail some of the 
critical aspects of the racing AI system.

Many of these techniques have been known for some time [Biasillo 02a, 02b, 02c] but 
in racing, the difference between winning and losing can be small fractions of a meter or 
second. Because of this it is important to push for accuracy and detail with the objective of 
convincing the user that his AI opponents are as expert on the track as he is.

38.2	 	Understanding	the	Physics

Before designing the AI system, it is important that the developer fully understands 
the type of physics in play and how that will affect the implementation. In very simple 
games the AI will advance along a predefined spline, and all that is needed is emulation 
of  cornering speed, acceleration, and braking based on parametric formulas and basic 
collision detection—examining if the spline ahead is blocked within the braking distance. 
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There is no physics required. But in a full simulation, the AI car will be similar to that 
experienced by the player, including an engine model, transmission, tire models, braking 
model, and all the vehicle quirks and characteristics this encompasses.

Vehicle physics is mainly about forces and tires. Any acceleration on the car, either a 
speed change or a change of direction, results in forces being applied through the tires. 
The magnitude of the forces is limited by the capability of the tire and, if that limit is 
exceeded, the tire will no longer grip the road surface and the car will slide. In corners this 
can result in oversteer (the car digs in towards the apex and the rear slides out) or under-
steer (the car drifts to the outside of the bend). When accelerating or braking, the tires 
might spin or lock, reducing the effectiveness of the speed change, so a key action of the 
AI is to ensure that the available tire grip is not exceeded. This is done by ensuring corners 
are taken at the correct speed, braking is done in good time, and acceleration is managed 
with gradual pressure on the throttle. If the AI is too conservative it will be slow, so the 
best AI, like the best human drivers, will need to work very near “the limit of grip” at all 
times. This is what the whole AI design is geared towards.

The details of racing physics are beyond the scope of this article, but it is highly recom-
mended that the AI developer gains a solid grounding in this area [Pacejka 06].

38.3	 	The	Architecture

It is best to consider the AI in terms of four layers and one subsystem that extends through 
these layers. The top layer is the character layer or persona layer. This layer works on a 
fairly long timescale and is responsible for the individual driver’s skill levels which affect 
the performance of the AI. The next layer is the strategic layer, which works on short 
 timescales between a single frame and a few seconds. The strategic layer houses the behav-
ioral elements of the system and determines broad steering and speed goals based on an 
examination of the track representation in the near and medium distance. The next layer 
down is the tactical layer, which will normally be processed every frame and is responsible 
for refining the steering and speed goals into solid values. Typically, there will be a number 
of competing goals produced at the strategic and tactical level, and these will be analyzed 
and combined in the final control layer. This layer is responsible for calculating the control-
ler inputs (steering, brake, and throttle) in order to achieve the previous layers’ strategy.

Alongside these layers is the vitally important collision avoidance subsystem. This can 
usually be split into two sections based on the immediacy of the analysis they perform. 
At a longer range, the AI will need to look at the track some distance ahead of the car and 
plan safe routes around any obstacles, such as debris or damaged vehicles. At a shorter 
range, the AI will need to make small but rapid adjustments due to static or dynamic 
obstacles. Examples include racing close to a solid wall, alongside another car when over-
taking, or driving close behind an opponent to ‘slipstream’ in preparation for an overtake.

38.4	 	The	AI	Driver	Persona

In real life no two drivers will be the same, they will have different abilities and approach 
racing with slightly different strategies. In a fixed formula race, such as Formula 1 or 
IndyCar, where the performance of the vehicles is quite similar, differences in driving 
skill will substantially contribute to the race result. At a minimal level, a spread of driver 
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skill will produce a spread of the physical positions of the cars on the track. This is not 
just more realistic, but also helps to ensure the player experiences a number of micro 
challenges as they progress through the field. Done well, driver personas can feed into the 
observed behaviors and add significant color to the game experience. However, such color 
is only really worthwhile if the actions of the AI driver are distinguishable in the game. 
It also helps to support these traits with driver profiles viewable pre-game or perhaps  
in-game signals like audio commentary.

The primary characteristic will be skill, a measure of their ability to drive at the limit; 
secondary characteristics may include aggression, vehicle control, and mistakes. Primarily, 
the skill characteristic would be applied where any speed related calculations are used, 
such as multiplying the actual available grip in calculations of cornering speed and 
 braking distances. This will have the net effect of reducing the overall speed. While this 
characteristic might be exposed to the user and designer in the range [0, 100], the require-
ment that we always drive close to the limit means that, within the AI strategic layers 
and below, this should be mapped onto a smaller range of say 98–99%. Although this 
may appear as a small range, a 1% variation accumulated over several laps can have a 
surprisingly large effect, especially when applied in several places in the code. It may be 
found that a much smaller range in the skill factor is necessary to avoid the AI spreading 
unrealistically. Similarly, by mapping to a lower range (e.g., 80%–82%) the overall race 
experience should become easier so the skill characteristic can also be used to modify the 
overall game difficulty.

Using a smaller range makes it more difficult for the user to discern the speed variance 
between the different drivers. To counter this, a biorhythm can be applied to the driver’s 
skill. The skill factor will vary slowly with time, for example using a sine wave with a period 
of 100 seconds. In this way, the driver’s average skill measured over a number of laps might 
be 99%, but for some short periods of time, the skill factor could be significantly lower. 
This will make the AI driver temporarily vulnerable to being overtaken without having an 
overly large long term effect. It is not necessary to use a sine wave as the biorhythm, and it 
is worth experimenting with different waveforms, for example, a square wave with a low 
duty cycle that produces a skill factor near the upper limit for 90% of the time but perhaps 
a skill as low as 90% or 95% for short periods. With a defined set of rules, this idea can be 
further extended to encompass a full race-pace system [Jimenez 09, Melder 13].

Secondary characteristics can be used to affect behavioral changes such as the prob-
ability of entering overtaking mode, the rate that the throttle is applied, or the number of 
unforced mistakes that they make. A driver with a high aggression characteristic will drive 
closer to the cars in front and will require less space to overtake a vehicle, a driver with a 
low control characteristic may take twice as long to push the throttle in, and a driver with 
a high mistake characteristic might lead to random errors in corner speed calculation.

38.5	 	Racing	Behaviors

The breadth of behaviors in a racing AI system is not large, so generally a finite-state 
machine (FSM) is sufficient to represent them. At any time most of the behaviors may 
become valid and so they usually all compete to be the active one, and should be reviewed 
on every update of the strategic layer. A good way to manage this is for each valid state 
(as defined by the current state exit transitions) to evaluate a ‘utility’ score. Provided that 
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this utility score is larger than the current state’s, a state transition would result. In order 
to avoid short-lived states and rapid transitioning, a small additional threshold should be 
added to the current state utility. This will produce hysteresis which will tend to retain the 
current behavior state unless a significantly stronger alternative arises. Some of the more 
common behaviors are described below.

38.5.1	 	Normal	Driving
The objective of this behavior is to simply get around the main track as fast as possible. The 
AI should stay reasonably close to the optimum racing line, but remain conservative in 
terms of avoiding other cars: allow a reasonable amount of space between any car in front 
or that happens to be alongside. The utility for this behavior is a baseline constant for the 
whole system that other behaviors must beat. If using a utility range of [0, 1000] a value of 
500 is appropriate.

38.5.2	 	Overtake
In overtake mode, the AI is actively seeking a line which will allow it to pass one or more 
cars in front. The AI is still basically driving along the track, but this is modified in order 
to achieve an overtaking maneuver. Dealing with more than one overtaking target simul-
taneously can be necessary in situations such as the race start, as otherwise the resultant 
behavior may look uncompetitive and mechanical. The analysis for the state is to look 
ahead down the track. If there are one or more opponents in range and the AI has a speed 
advantage, the analysis will determine a safe (wide enough) window across the track width 
for overtaking.

The deeper this analysis, the better overtaking events will be and anticipation is key. 
For example, the car ahead may not be slow enough now, but if it is approaching a corner 
it is likely to slow down and offer an opportunity. Another example is the car in front is 
under-steering and will shortly open up a viable gap on the inside.

Not every overtaking opportunity should be taken and randomness or a biorhythm 
trait should contribute to the utility calculation. Generally, overtaking is less likely on a 
straight where all cars are at full throttle, so the current and future track features should 
figure in the utility. If there is a significant speed advantage (such as an opponent slowing 
due to a mechanical failure), then overtaking should always be activated. Note that this 
behavior should not go into too fine a grain in terms of dimensional precision, since when 
the AI does overtake, the tactical layer and short range avoidance subsystems will deal 
with the detail of driving past the opponent(s) safely.

Once overtaking mode is activated, the driver should become a little more aggressive 
and even closer to the limit. Not withstanding any mechanical boost, such as using nitro, 
the AI skill levels should be increased close to saturation or indeed beyond. For example 
a driver might deliberately choose to accept the risk of exceeding their grip limits tem-
porarily and skidding slightly (under-steering) by braking late to get past the opponent 
as they enter the bend on the inside, in the knowledge that once they have claimed the 
position and blocked the other car they can then regain composure and complete the 
turn. Avoidance tolerances should also be reduced; the AI will be prepared to get closer 
behind or alongside an opponent while overtaking. Indeed in some game types some light, 
 controlled contact might be allowed.
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The strategic analysis of the overtaking opportunity should continue so that, for exam-
ple, if the gap closes, the overtake is aborted and the AI returns to normal driving mode. 
To avoid erratic AI switching, it is also good to disallow re-activation of the overtaking 
state for a few seconds after an aborted attempt. A successful overtake is where the AI has 
passed the opponent and is some distance ahead, in which case it can return to normal 
driving. The AI should not switch too early, though, as a small reduction in speed due 
to the state change could mean the positional advantage is quickly lost as the opponent 
comes back past the AI.

38.5.3	 	Defend	and	Block
In some racing styles it is acceptable to try to defend an overtake by moving across into the 
path of the opponent. This state would be triggered using a utility where an opponent was 
approaching from behind, not directly on the same line and with some current or future 
potential speed advantage.

The defend and block state operates by making small steering moves to match the AI’s 
line on the track with the opposing vehicle behind. Depending on the racing rules in force, 
defending may be aborted once the opponent gets alongside or even after a set duration 
or lateral movement has been exceeded (Formula 1 rules for example allow a single lateral 
move, i.e. you cannot weave back and forth).

In all but the most aggressive racing genres, defending should be terminated if you are 
putting the opponent in danger—for example, pushing him off the track. A good way to 
manage this is to allow the opposing AI or human to post a complaint message if they feel 
they are in danger, so that the defending mode is aborted. Similar to overtaking, while 
the AI is performing a defend and block, the speed margins should be pushed to the limit.

38.5.4	 	Branch
Some racing genres use tracks with multiple routes and branches; even in classic simula-
tion games, there may be a pit lane. The utility value to decide to take a branch could be 
based on all sorts of strategic considerations: tire wear, fuel levels, and position relative 
to other cars in a simulation genre, or an analysis of the value of a short cut against the 
risk in a more arcade style game. In either case, the key detail is to make the decision 
early enough so that the correct line into the branch can be followed. Also, the AI needs 
to be extra aware of nearby vehicles that might block access to the branch—if necessary, 
 braking to fall behind the other vehicle in plenty of time. For that reason, this behavior 
should not end until well into the alternative track or, for example, the branch is aborted 
due to obstructive vehicles.

38.5.5	 	Recover
In the most realistic games, the AI can make occasional mistakes resulting in going off 
road or spinning within the track bounds. Thus, the objective of a recovery behavior is to 
get back racing. In practice, on- and off-track recovery may be separate behaviors trig-
gered using metrics, such as pointing the wrong way along the track or being too far out of 
the main track bounds. In either case, the first task is to stabilize the car, stop sliding, and 
slow down or even stop if facing the wrong way or close to a barrier.

In off-track recovery, the goal is to drive towards the nearest edge of the track at a mod-
est speed, giving way to any cars that are approaching from behind. For on-track recovery, 
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the AI can do a slow tight turn or may even try to spin up the back wheels for a donut. 
In either case, good driving manners mean that, until the upstream road is clear, the AI 
should just stay put to avoid causing a collision.

Because the recovery process is very disadvantageous in terms of competitiveness, the 
AI should be allowed every chance to carry on racing where possible, so it is best not to 
trigger recovery based on a single update of the utility value, but rather to integrate up the 
utility over a few seconds. For example, at a strategic update rate of 10 frames per second 
and a utility range of [0, 1000], one might add 10 points for every meter off the track and 
10 points for every wheel that has lost grip, but also subtract 20 points every frame even 
if off-track. Once the car is on-track, stable, and facing the correct way, the points are 
quickly subtracted, leading to the completion of this behavior.

38.6	 	The	Race	Choreographer

The race choreographer is essentially a scripting system that can be used by designers to 
affect storyline aspects within the course of a race. It is a separate AI object, receiving  
event triggers from the individual AI vehicles, the physics system, or the main game code. 
It then interacts with the AI at the persona or strategic level (although it could also imple-
ment actions on the physics or other systems). Examples of events include changing a 
specific driver’s skill level halfway through the race, causing a tire blowout, or triggering 
an AI custom behavior (e.g., try to collide with the player).

38.7	 	Interfaces

The main interface between the AI and the vehicle should be the same as that between 
the human controller and the car, so that the AI and a human are interchangeable. The 
AI will also need an interface to extract metrics from the physics, such as available grip 
and whether each tire is currently sliding. And there is no harm in one AI vehicle asking 
another for detailed information such as, “Are you about to turn left?” This may seem 
like cheating, but a real life experienced driver will always be able to read the signs and 
interpret an opponent’s intentions. Of course, a real driver may not get it right all the 
time, so adding some fuzziness and randomization within the AI request interface might 
be appropriate.

38.8	 	Balancing	the	AI

The AI must always be balanced and tuned to make sure each car can drive as quickly as 
possible, but also to maintain a good distribution of vehicles through the track so that 
the player always feels “involved” with the other cars. Balancing the AI can often be the 
most difficult part of the game development process. It can be very time consuming and 
stressful, so it is always worth considering how this process will work and what tools can 
be built to ease the pain.

The objective is to maximize the experience for the player; we want them to have to 
work hard to compete and overtake, but ultimately we want players of varying abilities to 
still have a reasonable likelihood of winning the race. In a scenario with tightly restricted 
car specifications, like Formula 1, the problem is mainly to bring a group of quite similar 
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AI opponents’ performance into proximity with the player. In a game with a wider range 
of vehicle performance on the same track, the problem is even greater.

It is for this reason that many games employ a system called rubber-banding [Melder 13] 
which attempts to change the AI speed to best match the player’s over the course of the 
race. Normally, the objective is to be beating the player at the start of the race, but to be 
losing at the finish, ideally such that the player reaches a winning position in the last few 
hundred meters of the race. Note that the mechanics of balancing may not lie solely within 
the AI. If the AI is pushed past the 100% grip limit it will make mistakes, slide, and ulti-
mately its performance will suffer, thus hindering the balancing process.

It is usually better to consider the AI balancing as a process of achieving the correct 
spread of performances over the group, while the overall balance against the player is better  
achieved using adjustments within the vehicle physics such as tire grip, engine power, and 
torque. Also bear in mind that in some implementations, the AI uses a “cut-down” version 
of the physics, which may not produce the same outcomes as the human’s vehicle, even 
where all the parameters are equal. This must also be accounted for with balancing adjust-
ments in the physics.

38.8.1	 	Offline	Automated	Learning
Even where a dynamic in-game system is not used, there is substantial opportunity for 
optimizing the AI performance using offline automated learning. Initially during devel-
opment, the definition of the racing line is usually specified by the designer placing splines 
directly on the track, but this can then be improved. One simple improvement is to use 
bisection to optimize each node on a racing line one by one [Biasillo 02c]. However, those 
who are familiar with multivariate optimization know that this sort of strategy can be 
prone to false solutions.

Broadly, the issue is that a racing line is a sum of its parts, or rather each part or node is 
not independent of those around it. Consider a single node on a curve containing 10 nodes 
which is smooth but not optimal. If a single node is moved 0.5m laterally, all this will do 
is produce a kink in the racing line that is likely to have the effect of slowing down the AI. 
In practice, what needs to happen is that several points should be moved coherently and in 
proportion. A good technique to achieve this is a modified genetic algorithm. This is based 
on the random Monte Carlo technique where a number of variables are randomly selected 
and randomly modified and, if the measured process metric (usually the average lap time) 
improves, the new solution is kept, otherwise it is discarded, and a new attempt is tried.

In a multivariate problem, Monte Carlo is generally of the order of √N faster than a linear 
search, where N is the number of variables. Where genetic algorithms improve efficiency 
is that they deal with groups of variables in the problem together, patching lines of several 
nodes together from two parents. If this is combined with coherent mutation (modifying a 
run of adjacent nodes), then this automated technique can be improved greatly. Moreover, 
it can be very advantageous to use knowledge of the track in the construction of the GA. 
For example, marking up groups of nodes that are known to form a curve and encouraging 
mutations that follow a pattern which is likely to be favorable will help the GA find a good 
solution. Note also that optimization of the racing line is not the only area for automated 
learning. Parameters used with the strategic layer, such as utility weights and the constants 
within the control layer or PID controller, are also ripe for this technique.
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There are a number of pitfalls and tips when using automated learning. As with any 
numerical optimization method, the difficulty increases geometrically with the number 
of parameters being optimized in the problem. Thus, if automated learning is to be used, 
the AI should be designed from the start in a way which minimizes the amount of data. 
For example, in defining the racing line, nodes should be placed wider apart to minimize 
their number around the track.

Another pitfall with automated learning is that it can be difficult to see how the solu-
tion has arisen, and any changes to the underlying system that require a re-evaluation of 
the solution can be time consuming. For this reason, a manual editing method should 
always be provided as a fallback. However, other optimization methods can also suffer 
similar issues. For example, in a regime where the racing line is simply recorded using 
a human player, a substantial change in the track will still require the whole track to be 
re-learned, recorded, and tested.

Ultimately, though, the final arbiter of whether a balancing process has worked or not 
must be a human. In such a complex process as a race, even though AI lap times say they 
are optimized, it may be that the AI is not competitive in real terms. This is perhaps the 
case because the AI runs slower when other cars are on the track or perhaps because the 
AI are too easy/hard to overtake. Testing with a range of player abilities over varying 
 scenarios will always remain an essential balancing tool.

38.9	 	Conclusion

This article has described in detail a broad architecture for the AI in a high-speed  racing 
game. The detail and depth of the implementation will depend on the style of racing 
game, but most games will require most, if not all, of the elements described. However, 
in real life, racing can often depend on small fractional details, and the same is true in a 
high-end racing simulation. In that respect we have only really provided a starting point; 
there is much more to learn and many areas to experiment with in the quest for realism, 
 performance, and excellence.

A racing AI implementation is full of paradoxes. The principle paradox is that the AI 
must operate in real-time, making complex decisions in order to not only remain in con-
trol of the car, but to drive it at the very edge of its capabilities. However, the success of the 
AI lies in long hard hours preparing prebaked data, tweaking parameters, and anticipat-
ing solutions to potentially difficult scenarios. Thus, the paradox is that a successful racing 
AI is the careful balance of real-time control and carefully thought-out data. Moreover, 
you should not skimp on the design phase; in a highly connected AI system the discovery 
of a weakness in the latter stages of development can be very difficult to remedy.
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