
441

A	Simple	and	Practical	
Social	Dynamics	System
Phil Carlisle

35

35.1	 	Introduction

One of the issues with current games that have large numbers of characters is that they
often do not portray many of the coordinated interactions seen in any social group in the
real world, for example, when friends cluster together at parties or when long-separated
relatives hug each other after finally meeting each other again. Social interactions are an
important part of how we understand the structure of social groups, and we would be wise
to portray them in order to make the experience of the world more compelling.

This article will describe a social dynamics implementation based on modular com-
ponents that together form a system that enables characters to take part in and portray
social inter actions. Building on a foundation of commonly used components such as
behavior trees, blackboards, animation, and locomotion controllers, we will discuss
aspects of nonverbal behavior commonly seen in social situations and will provide source
code examples and practical implementation details (source code available on the book’s
 website: http://www.gameaipro.com).

35.2	 	The	Importance	of	Observation

When animators work on characters, they do so by implementing motions that they have
observed, either through their own experience or from seeing other similar characters.

35.1	 Introduction
35.2	 The	Importance	

of Observation
35.3	 What	Is	a	Social	Dynamic?

35.4	 Implementation
35.5	 Execution
35.6	 Conclusion

442 Part V. Agent Awareness and Knowledge Representation

Similarly, many of the methods implemented here are intended to reproduce aspects
of social interactions observed by both academics and animators. At the foundation
of all of this work is the notion that observation of interactions is key to our being able
to implement them. We must study life if we are to approximate the illusion of life in
our characters.

AI programmers who are interested in working towards believable characters are
strongly urged to become keen observers of human interaction. It is relatively easy to spot
subtle interactions that can help sell any given relationship or social dynamic, especially if
we film a number of such interactions and later analyze the footage. Small digital cameras
that are suitable for capturing social interactions without being observed are relatively
cheap and are a powerful tool to have available when working on any given scene.

35.3	 	What	Is	a	Social	Dynamic?

A social dynamic is any social interaction that has to happen in real-time between two or
more characters. Typically, there is an element of spatial position, timing, and orientation
involved in the interaction, hence the term “dynamic.” There are a number of different
elements that could be classified as social dynamics, and each of them can contribute to a
more believable set of social interactions for characters, which will ultimately add to the
believability of the world.

Typical examples are:

35.3.1	 	Gaze	Control

We learn a lot about characters by looking at their face. One of the key things we under-
stand is that if a character is gazing (looking) at an object, then it is likely aware of that
object. The other aspect of gaze is that it focuses our attention on what is important to the
character. For example, we can understand if one character is interested in another if their
gaze is held for any significant time. This is useful to signal to the player that a character
is attracted to another. Similarly, if a character we see suddenly gazes in a given direction,
it is likely that we should pay attention in that direction, too, which can be useful for
 leading the players’ view towards a particular visual event.

35.3.2	 	Proxemic	Control

When we interact with other humans, we tend to keep a specific distance from them,
depending on how well we know them, whether we like them, etc. This field of study is
known in social psychology as proxemics and is important because it gives us a model of
how humans move around within any social group.

As humans, we have a preferred distance which we maintain during different social
interactions. For instance, when chatting socially, we have a relatively relaxed distance, but
when trying to be intimate with someone we generally get a lot closer, often within easy
touching distance. We should pay attention to proxemics because it gives us a general guide
for forming small social groups, especially in spatial terms. Readers are referred to a use-
ful paper on the application of this proxemic distance for use in games by Claudio Pedica
[Pedica and Vilhjálmsson 08].

44335. A Simple and Practical Social Dynamics System

35.3.3	 	Posture
When interacting with another, we often adopt a given posture, depending on the nature
of the interaction and the relationship we have with them. In a context where we are chat-
ting with friends, we might adopt a relaxed posture where our arms are by our sides or
gesturing. We might have a wider stance, too, and we will often lean towards people we are
attracted to. Conversely, if we encounter someone in a position of authority over us, or in
a role that puts social pressure on us to act with restraint, we might show this by having a
more closed posture, with feet planted more firmly and closer together, our back straight
or even leaning away slightly. These relatively subtle changes in posture can be used to sig-
nal differences between characters during social interactions. In addition, our posture can
also affect elements of our gait when walking. Animators often exaggerate certain motions
to affect changes in posture that imitate good or bad moods, for instance.

35.3.4	 	Gesture
This is perhaps the most challenging aspect of social dynamics in that it appears simple.
It is easy to simply play gesture animations on a character, but the underlying reasons for
why we gesture and what gestures we make are quite complex. The biggest area where we
have problems in games is in the area of coordinated character gestures. If we observe real
world social interactions we see many examples of gestures where one character touches
another. A simple greeting might result in a handshake for instance. Yet in games, coor-
dinating animations is actually quite difficult, not least because of the cost of animating a
wide enough range of gestures to allow coordination to occur.

Readers are advised to review literature in the area of embodied conversational agents
for more information on a number of posture and gesture studies; a good reference is the
book Embodied Conversational Agents [Cassell 00].

We also note that the stated social dynamic elements are not an absolute requirement
for every situation. They should be considered as extra details that provide subtle but use-
ful hints to the player, much in the same way that additional texture data is used to add
detail to rendered objects. However, it is likely that future games will feature more depth of
social interaction as we develop our understanding of how this affects player perception.

35.4	 	Implementation

Rather than attempt to create a single system that portrays all social dynamics, instead
we construct a number of systems that deal with individual aspects of social behavior and
rely on the composition of these systems to implement the whole. In the example code, you
will notice that all entities are simply composites. Please refer to the companion chapter
number 34 “A Simple and Robust Knowledge Representation System” for more detail on
the component-based architecture used.

The component implementations for the social dynamics system fall roughly in line
with the aspects of social dynamics discussed previously. Components for gaze, prox-
emics, posture, and gesture control are simply added to characters at run time during
instantiation of the character template. Where possible, a component performs a narrow
subset of behaviors without requiring aspects of other components, but in the case of many
of these social behaviors, other components are required. Frequently, social components

444 Part V. Agent Awareness and Knowledge Representation

delegate actions to other components. For instance the ProxemicComponent, which
controls the social distances at which a character interacts, requires that there is a
LocomotionComponent or other movement oriented component available in order to
request the character to change position.

Before we describe the various components involved in the social dynamics system, we
should describe how they are coordinated. Some aspects of social interactions are entirely
based around the individual involved. For instance, an individual chooses the focus of
their gaze and thus their attention. Yet most social interactions involve dynamically react-
ing to another person. These interactions can often involve groups of characters that may
change over time. A chat may start out with two or three characters, expanding to five or
six as more join the group, eventually having the original characters leave the chat, leav-
ing none of the original group members involved. The initial group members instigated
a social interaction that outlasted the participation of the instigators. This leads to the
realization that another entity must be instantiated to monitor and control participation
in the group activity.

35.4.1	 	SocialObjectComponent

This component performs the task of coordinating much of the group formation aspect of
the system. At its core, it is a component that handles set membership, allowing characters
to request access to the group, removing characters that are no longer participating, and
allocating resources and/or positions in the group structure. This system is also respon-
sible for advertising the availability of the social interaction as well as organizing flow
control for when resources are limited, which as an example is useful to control how many
people are talking at once during a group discussion.

This SocialObjectComponent is usually either added to the world during instan-
tiation of an object or it is added dynamically during the update of a character that is
receptive to a social encounter. An example of the former is a hot dog stand, where the
SocialObectComponent is instantiated to control the behavior of the characters
as they use the stand to buy hot dogs. An example of the latter would be when a char-
acter has true conditions for <idle>, <wants_social>, <sees_friend>, and
<friend_also_wants_social>. When the conditions for social activity are met,
the character spawns a GameObject, which has a SocialObjectComponent added.
This becomes a proposal for social interaction and the SocialObjectComponent
begins its role in coordinating the interaction.

35.4.2	 	SocialComponent

The intracharacter coordination of the various social dynamics components is controlled
by the SocialComponent. This component is responsible for querying the world as to
available potential interactions, forming requests to participate, controlling the focus of
attention, etc. Much of the work of this component is involved in handling events prop-
agated through the game and sending events to the different components of the social
dynamics system to handle. For instance, the social component sends an event to its
 parent GameObject to indicate that the attention of the character has changed.

44535. A Simple and Practical Social Dynamics System

35.4.3	 	GazeComponent
This is perhaps the easiest component to implement in that it functions as a simple
modifier to the animation component. Adding a GazeComponent to a character’s
xml template schema will mean that the component first initializes itself by request-
ing access to the AnimationComponent of the character GameObject. If this
access fails, the GazeComponent asserts the failure, alerting the programmer to the
dependency. The next step is for the GazeComponent to add itself as a listener of the
AnimationComponent, which allows it to alter the animation prior to the animation
being submitted for rendering the final character. During the listener callback method,
the GazeController simply changes the orientation of the head bone within specific
limits, along with the spine bones as in Figure 35.1.

Please refer to the method UpdateGaze() for the actual math involved in modifying
the animation, but it is perhaps useful to note that for a character with more spine nodes,
the rotation of each spine bone should be scaled the further away from the head bone
they are in the hierarchy. This allows for some amount of torso twist, which is desirable
to mimic the twist available in the human torso. Obviously the number of spine links
in a typical game character is less than the number in a human so there will always be
some visual discontinuity, but in general some torso twist is enough to sell the motion.
It should be noted that the amount of rotation that both torso and head bones are allowed
should be carefully selected so that they are in a range of motions that would be generally
considered comfortable for any given character type, depending on age, build, etc.

Figure	35.1

The	skeleton	of	a	character	is	manipulated	by	rotating	the	bones	of	the	head	and	spine	in	
order	to	allow	the	head	to	“look	at”	a	given	position.	Note	the	restricted	range	of	the	vertical	
and	horizontal	motion	(horizontal	restriction	not	shown)	and	the	reduced	proportion	of	the	
horizontal	motion	as	we	get	further	away	from	the	head.

446 Part V. Agent Awareness and Knowledge Representation

The GazeComponent reacts to events sent via the SocialComponent to “look at”
another entity and/or position. The duration of the gaze is modified by the intensity of
the interaction as noted in the “look at” event. Eventually the gaze controller resets the
gaze direction, or may even modulate the current gaze direction to temporarily look away
from the gaze target for a brief period. The character personality data specified in the
AIComponent’s blackboard allow for the gaze to be modified such that a shy character
looks away more often than an assertive one.

35.4.4	 	The	Social	Origin
A key aspect of coordinating movement for social interactions is having a shared social
origin. It is useful to think of many social interactions as a spatially oriented set of timed
actions; in order to have coherent animations, we must assume that the social interaction
is performed with respect to a shared origin. This allows for each interaction to function
anywhere in world space as coordination acts in a space relative to the social interaction
which is propagated to all participants.

This role of coordinating the shared origin is part of the SocialObjectComponent
class as part of its responsibility as arbiter of the interaction. Individual characters
involved in the interaction must respect this shared origin as they calculate their own
movements while also respecting the movements of other characters. This approach bears
some resemblance to the moving origin techniques used for animating a character during
parkour-like behavior. For more information see an interview with Laurent Ancessi of
Naughty Dog on AIGameDev.com [Ancessi 10].

35.4.5	 	ProxemicComponent
Controlling the proximity to other characters during social interaction requires access
to the LocomotionComponent of the character (or other functionality which serves
to move the character and orient them in space). The ProxemicComponent request is
constrained by the locomotion, navigation, and collision avoidance strategy of the char-
acter movement. The ProxemicComponent is responsible for calculating the ideal
position of the character during any movement of agents in the social group.

This means that, for instance, if a character leaves the group, the other characters may
change position in order to stay in reasonable proximity for the social interactions. In
practice, this means that each character tries to maintain a comfortable proxemic distance
from all other characters in the group, while still maintaining other constraints such as
line of sight or being close enough to touch with gestures for characters that have positive
affection. Acting in a very similar manner to steering behaviors, the proxemic distance is
maintained via a simple vector length calculation which relates character distance away
from a group circle. This behavior approximates what has been observed by social scientist
Adam Kendon who referred to the phenomenon as an “O frame” [Kendon 90], although
it must be noted that it is useful to dampen any movement force such that the character is
not continually shifting position (Figure 35.2).

35.4.6	 	PostureComponent
Posture is one of the easier components to implement as it simply relies on animation
selection and/or blending to achieve the desired effect. The implementation provided
demonstrates the simplest form of this animation selection to simply affect a bias in the

44735. A Simple and Practical Social Dynamics System

choice of available animations. A more complex implementation would be to add blend
nodes into an animation blend tree that would blend different postural clips at different
weights based on the overall mood of the character. This requires that a number of similar
animation clips be prepared that correspond to the changes in mood that would normally
affect posture.

Effects such as fatigue, happiness, sadness, and excitement can then be portrayed by
simply selecting the appropriate clip from the available animation set. In the case of the
Floyd character in the demonstration provided, there are a number of animation clips that
are chosen based on a notional “mood” value held in the blackboard of the character. With
this we are able to portray a number of moods through postural changes that can be quite
subtle; elements such as slumping of the shoulders, making the eyelids droop, or in the
case of Floyd, who is intended as a comedic sidekick worker robot, his “eye” glows slightly
less to denote a more somber mood.

35.4.7	 	GestureComponent
Gestures play a large part in the portrayal of a character, in that they allow the player to
quickly appraise the feelings of the character by observing the gestures made. Characters
that gesture often, with wide arm movements and large shifts of body weight, are generally
considered more energetic and positive. Once again, the GestureComponent essen-
tially modifies the animation of the character by selecting different animation clips.
In this case, the clips are usually additively blended on top of basic motion clips. In the
case of a humanoid character we must take care not to attempt a gesture while performing
other animations that would look out of place. So, for instance, we only play gestures that
require arm movements when no other animation is playing that would affect the arms
too strongly. More specifically, it makes no sense to incorporate greeting gestures when
the character is doing a forward roll.

Figure	35.2

Proxemic	distance	is	controlled	by	the	ProxemicComponent	that	calculates	a	position	
offset	relative	to	a	circle	known	as	an	“O	frame”	and	attempts	to	maintain	that	position	as	
members	of	the	group	change.

448 Part V. Agent Awareness and Knowledge Representation

One of the more challenging aspects of the GestureComponent functionality is in
knowing when to initiate a gesture. Typically, we gesture more when we are trying to make
a point or guide a conversation. Usually this gestural “language” underlies a discussion by
punctuating key words with gestures, known by social scientists as nonverbal communication.
Fully describing the role of nonverbal communication is beyond the scope of this chapter,
but it is very important for believable characters. The reader is recommended to seek out
academic work in this area such as Bodily Communication by Michael Argyle [Argyle 88].

Given that gestures often accompany speech, it may be useful to allow audio engineers
to trigger gestures by allowing them to send events at appropriate points in the audio
clip. Another issue is when gestures are required to touch another character. This requires
a great deal of precision in order to achieve the touch without problems of penetrating
the mesh of the other character. Although it is not implemented in the example code,
a simple 2 bone inverse kinematic controller is often used to control the exact position of
the hand during gestures involving other characters.

While the class diagram in Figure 35.3 may seem complex, the beauty of this system of
components is that each component is relatively simple to implement. Because each compo-
nent deals with a single aspect of behavior, we can structure the code to be straightforward
in dealing with only that single aspect. In practice, this means that we can implement each
component optionally; components are tied together via events and generally do not know
about one another or rely on each other to function. The exceptions to this case are that

GazeComponent

AIComponent

SocialComponent

ProxemicComponent

PostureComponent

GestureComponent

MessageManager

GameObject

Blackboard

Behavior Tree

queries

events

contains

LocomotionComponent

AnimationComponent

Figure	35.3

Shows	how	the	individual	components	communicate	with	one	another	and	with	the	behavior	tree	and	black-
board	implemented	within	the	AIComponent.

44935. A Simple and Practical Social Dynamics System

most of the components discussed require access to the AnimationComponent and
that the functioning of many of the components requires that the SocialComponent
be added to the character in order to coordinate the behavior. Even this is not a strict
requirement, as it is possible to debug behavior by simply injecting the relevant events into
the event stream to be read by the various components.

35.5	 	Execution
As is shown in Figure 35.3, the individual components are contained within a GameObject
parent container. Each component can access data from the AIComponent via the
blackboard. When a character becomes aware of available social interaction possibilities ,
either via the sensory system or via the event system, this information is placed into
the blackboard. This in turn makes the behavior tree conditions become true, which
cause an event to be sent to the SocialComponent of the parent GameObject. The
SocialComponent in turn sends an event to the SocialObjectComponent of the
sensed object to request participation in the interaction.

Once the SocialObjectComponent receives enough requests to fulfill its role,
it sends an event to all participants notifying them of their role in the interaction. Prior
to this notification, all agents are continuing with their previous behavior. It should be
noted that the number of potential social interactions in which a given agent can request
participation should be determined by the requirements of the game and can have an
impact on overall performance. Too few requests mean agents appear to be unsociable,
but too many requests create unnecessary processing to occur when agents have to remove
their requests upon successfully starting an interaction. Events to set the origin for the
interaction, as well as participant information, turn taking, and other coordination infor-
mation, are sent periodically. Finally when the interaction is deemed completed, the
SocialObjectComponent sends an event to release all remaining participants, allow-
ing them to continue seeking other interactions or to pursue alternative behavior.

Each update of the AIComponent in the main game loop executes the character
behavior tree, which in turn updates data in the blackboard. During the same update
loop, the SocialComponent reads the updated data and sends events to the other com-
ponents that respond with appropriate changes in position/orientation/posture/gaze/etc.
The final effect of these changes is then either assimilated into the current animation or is
output as forces which are then incorporated into the next locomotion update.

35.6	 	Conclusion
The requirement for social dynamic behavior for game characters is compelling. As we
strive for ever increasing visual realism, we should also strive for behavioral realism. This
is not to say that we need to restrict ourselves to “realistic” behavior so much as to propose
that we pay attention to the facets of behavior that increase the believability of our char-
acters. A component-based approach to these facets of behavior allows us to iteratively
implement and refine our approaches to these aspects. We can start off with a simple “look
at player” component and extend the system over time. The goal is to create characters
that enable the player to believe they are alive and ensuring that they play their part in
 making the game a compelling experience. Incorporating the finer details of character
social dynamics helps lead us to worlds in which the player believes in the illusion of life.

450 Part V. Agent Awareness and Knowledge Representation

References

[Ancessi 10] Laurent Ancessi interview with Alex Champandard (aiGameDev.com). Available
online (http://aigamedev.com/premium/masterclass/interactive-parkour-animation/).

[Argyle 88] M. Argyle. Bodily Communication. Taylor & Francis, 1988, p. 363.
[Cassell 00] J. Cassell. Embodied Conversational Agents. MIT Press, 2000, p. 440.
[Kendon 90] A. Kendon. Conducting Interaction: Patterns of Behavior in Focused Encounters

(Studies in Interactional Sociolinguistics). Cambridge University Press, 1990, p. 308.
[Pedica and Vilhjálmsson 08] C. Pedica and H. Vilhjálmsson. “Social perception and steering

for online avatars.” Intelligent Virtual Agents, Springer, 2008, pp. 104–116.

