
423

Asking	the	Environment	
Smart	Questions
Mieszko Zielinski

33

33.1	 	Introduction

Finding your way in a complex and dynamic environment such as in a shooter game is
a challenge, especially if you’re just an AI actor with very few CPU ticks to spare every
frame. Life is tough. “How do I know where to go? If there are a number of places, how can
I tell which one is better? Oh! There’s an enemy! Two! Three of them! Who do I shoot first?”

It’s a tricky task to create a service that will supply AI with all the data it needs, at low
CPU time cost, while being flexible and easy to use. It needs to be able to look for different
things, filter them, and score them. For Bulletstorm, we created a system that serves all of
the spatial awareness needs of the AI while not taking much CPU time and is also intui-
tive for designers. We concentrated on creating a system which takes input that is easily
understandable by humans, rather than making humans produce counterintuitive data
that the system will have an easy time consuming.

33.2	 	Motivation

Early in the development of Bulletstorm, two new systems were designed and imple-
mented: one for AIs’ logic (our Behavior Tree implementation) and the other for

33.1	 Introduction
33.2	 Motivation
33.3	 Goals
33.4	 Our	Philosophy
33.5	 Anatomy
33.6	 The	Heart

33.7	 Implementation	Details
33.8	 Editor
33.9	 Pros	and	Cons
33.10	Things	to	Fix	and	Improve
33.11	Conclusion

424 Part V. Agent Awareness and Knowledge Representation

centralized environment querying. This article will describe the latter system, which we
called Environment Tactical Querying (ETQ for short).

Environmental queries in Bulletstorm can take two forms: object types and object
 properties. Enemies, covers, and locations are examples of object types. On navmesh, not
visible to enemy, and some distance away from leader are examples of object properties.
These object properties could also take the form of preference: prefer ones not visible,
 prefer ones closer to me, and so on.

33.3	 	Goals

The following are goals that we pursued throughout the development of the system.

 • Think of “What to ask” not “How to ask”: Creating and asking questions was to be
made as simple as possible. We wanted nothing to stand in the way of our creativity.

 • Let nonprogrammers do the job: We aimed from the start to create a dedicated
 editor for designers, so that whenever they wanted to change or tweak the way an
AI picks cover or an enemy, they can do it themselves just by clicking.

 • Code reusability: That was our main coding commandment, and it resulted in
really clean and compact code.

 • Performance: It was essential to have this system perform its duties without any
other system noticing a hit on performance.

 • Asynchronous: Even though the ETQ system itself was running on the game thread,
we made it asynchronous so that questions asked would not block the game. Instead
the system was scheduling query processing to be performed during system’s reg-
ular update. It also allowed us to time slice the main query processing loop.

33.4	 	Our	Philosophy

We wanted our idealized data creator to author queries just by asking him or herself
 simple questions:

 • What to generate? Those could be covers, enemy locations, points—anything that
has a location in the game world.

 • Who’s asking? What is the context object of the query—which entity is asking the
question. Most often that was an AI actor, but questions could also be asked about
an enemy being tracked by an AI (“Where could he go?”), a cover or a spawn point
for example.

 • Where to look? What are the spatial restrictions for candidate items? We could
generate items in a radius around a context object, for example, or in the object’s
assigned combat zone, or so on.

 • Which items are good enough? What are the minimal qualities of an acceptable
item? We might require items visible from some reference object or items that are
no closer than X to the context object, etc. These formed conditions.

 • Which items are better? How can we tell one item is better than the other? We
could prefer items that are closer or further from something, or prefer items
 having some property, or have some property’s value lower than a set limit, etc.

42533. Asking the Environment Smart Questions

33.5	 	Anatomy

The ETQ system is a data-driven solution, and most of its power lies in the design of data
representation. Much care went into making it both flexible and efficient. It’s time to look
a bit more into the details of our design.

33.5.1	 	Query
A Query has three main components:

 • Context object: The game entity that is asking the question (or more precisely on
behalf of whom the question is being asked). What is the spatial context for this
query? This is crucial since this actor’s properties will be used to define a subjec-
tive world view, like, “Is that spot visible from here?” and, “Is it within my view
range?” Note that a context object need not be an AI actor

 • QueryTemplate Id: Which one of the user-created questions are we asking? All
query templates registered with the system have their unique id, and this is the
place to indicate which one to use.

 • Items: All items found are returned as a list. Later, we will remove all items that
fail subsequent filtering tests.

To trigger query processing, one calls the ETQ system supplying information on what
query template to run and what is the spatial and gameplay context of that query. One
might also request a query to be processed instantly rather than in the background.

33.5.2	 	Query	Template
Now that we know how a question is asked at runtime, how do we define one? We need to
express what we’re looking for and what properties we’d like our “good items” to have. We
might want to require some properties while using others just for item scoring.

A question is defined in the editor, with a special tool we created, and saved as a regular
asset. This asset is referenced in code as a Query Template. A Query Template consists of
one or more Options which in turn are made up of several Tests.

First, the Query Template defines an Option, which contains information on how to
generate the item population that will be processed in later steps. This creates a collection
of items representing entities in the game world. We implemented a number of generators,
for example:

 • Context Object’s Enemies: Gathers all enemies that a given AI is aware of.
 • Covers: Results in a collection of cover points within a parameterized radius of a

context object.
 • Points on grid: Generates points on a configurable grid around a context object.

ETQ makes the authoring of new generators extremely easy, at times requiring only two
or three lines of code.

Once the generator for a Query Template’s Option is set, the ways of filtering out and
scoring those items is specified. Items are conditioned out and scored by tests. Take a look
at Listing 33.1 for a pseudocode look at a Test structure. A Test structure designates a

426 Part V. Agent Awareness and Knowledge Representation

property to test for (TestType), a list of references for the test (Reference), a comparison
type (ConditionModifier), and a value to compare against (TestedValue). We can
also assign tests a weight if they are to be used for scoring.

The order in which tests are set up is irrelevant. Tests will be reordered by the system
according to their computational cost. The cost is estimated by a programmer with a
 relative list of which tests are more expensive than others (Section 33.7), and whether it’s
a condition or just a scoring test. Even the most expensive tests are performed first before
any scoring takes place. This results in fewer items while scoring, which may or may not
save time in the long run. We address this issue in Section 33.10 with final test.

In the case where tests are too restrictive and no item gets past the conditions, we might
relax the constraints rather than simply fail on the whole query. The system supports this
scenario. If a query template has more than one option, then all of them are processed in a
sequence until one produces some items which become the result of a query.

33.5.3	 	Validity	Test
A test declared in the query template’s option can be a condition, a weight, or both.
However, ETQ also allows you to designate certain tests as validity tests. These tests will be
used not at cover generation time, but later, when an AI is moving to that cover, or sitting
in it, to check if the cover is still valid (not exposed to enemy fire for example). Of course,
a test can be both a regular test and a validity test at the same time. This way all of the
configuration information on how to pick a cover point and, later, how to tell if it is still
good (oftentimes not the same thing) are nicely gathered in one place.

We could achieve the same functionality by rerunning a query on that one item in
question, but that would result in a number of tests we don’t need while performing an
ongoing validation. We could also create a separate lightweight query just for validity
 testing, but that on the other hand would require keeping both queries in sync whenever
one of them is changed. Marking some tests as a validity test is the best of both worlds.
During the ongoing testing, we only run the tests we need, while at the same time having
all of the logic for picking items and for ongoing validation in one query asset.

Listing 33.1. Pseudocode	of	a	Test	structure.

struct Test
{
 TestType; //Distance, Reachability,...
 ConditionModifier; //None, Min, Max
 Reference; //Self, Enemy, Leader, Item,...
 TestedValue; //float, int, bool,...
 SymbolicValue; //Melee distance, Weapon range,...
 Weight; //float in [-1,1]
 /** flags */
 bCondition; //boolean flag indicating this test is
 //used as a condition
 bValidityTest; //and/or as a validity test (see 33.5.3)
 bWeight; //or as a weight
}

42733. Asking the Environment Smart Questions

33.5.4	 	A	Test	in	Any	Role
In order to have a nice unified interface to all tests, we decided we’d have every test make
sense in both roles, as a condition as well as a weight. For example if we use “distance to
enemy” as a condition, we can require it to be less or more than 2000 units. But if we use
it as a weight, then we interpret it as preferring a smaller or greater distance to the enemy.
We express how much we prefer a tested property by setting the test’s weight value. The
higher the value, the more a given property is desired. Table 33.1 gives some more examples.

33.6	 	The	Heart

The core ETQ algorithm is captured in the pseudocode in Listing 33.2.

Table 33.1	 Shows how different tests can be used as both conditions and weights

Test Condition Weight

Visibility Is (not) visible Prefer (not) visible
Distance More/less/equal to X Prefer closer/further away
Configurable dot More/less/equal to X Prefer more/less
Within action area Is (not) in action area Prefer (not) in action area
Reachable Is (not) reachable with navigation Prefer (not) reachable
Distance to wall More/less/equal to X Prefer more/less
Current item Is (not) current item Prefer (not) current item

Listing 33.2. The	core	ETQ	query	algorithm.

foreach Option in QueryTemplate.Options:
 Query.Items = (generate items with QueryTemplate.Generator
 using contextual data from Query);
 if Query.Items is empty:
 continue to next option;
 foreach Test in Option.Tests:
 Reference = (find world object Test refers to);
 if Reference not empty or not required by Test:
 //explained in Section 33.7 under “Fail Quickly”
 if Test has a fixed result:
 apply result to all Query.Item elements;
 else:
 perform Test on all Query.Item elements;
 if Test.bCondition is true:
 filter out Query.Item elements that failed Test;
 if Test.bWeight is true:
 foreach Item in Query.Item:
 calculate weights from every test result
 if Query.Items not empty:
 foreach Item in Query.Items:
 sum up all weights calculated by weighting tests;
 sort Query.Items descending with computed weight;
 return success;
return failure;

428 Part V. Agent Awareness and Knowledge Representation

33.7	 	Implementation	Details

There are always some little tricks you can perform while implementing even the simplest
algorithm. The following are some of the optimizations we implemented.

 • Start with cheaper tests: We manually presorted test-types according to expected
performance. For example, a Distance test is more expensive than checking if an
actor has a tag, but is less expensive than finding out if a point is on the navmesh.

 • Fail quickly: For some tests it’s possible to fail early, thus saving computation. For
example, checking whether a point is on the navmesh will always fail if there’s no
navmesh. Tests can fail even sooner if they require a reference that doesn’t exist in
a given context, like the squad leader or an enemy for example.

 • Normalize test results and weights: We quickly discovered that trying to weight a
distance test against a “has a property” kind of test was an impossible undertaking.
Even if it could be done with a known maximum distance, it would fall apart as
soon as we change the maximum value and would require retweaking. So we decided
to normalize all test results. While performing a test we store the maximum result
value and once the test is finished, we normalize all the results with the stored maxi-
mum. In some cases we would also use the item generation range of a processed
option. We also made sure that weights are always within the range [-1, 1] (via the
editor), which together with normalizing results gave us some good mathematical
properties and allowed reliable query tweaking.

 • Debug-draw whatever you can: It’s impossible to overvalue debug drawing. While
developing a system like this it’s crucial to be able to trigger any query on any
target of your choice, during runtime, and you need to see the results. Countless
times we found bugs in a query just by debug-drawing its results, which proved a
significant time saver.

33.8	 	Editor

Taking advantage of the ease of creating tools with Unreal Engine 3, we created a tool
for ETQ. Using the tool made working with query assets a lot more pleasant. As a direct
consequence, we were more willing to work with queries, tweak them, and instantly see
if something was set up wrong. Figure 33.1 shows a Query Template in our editor with
examples of option and test node properties.

The tool further provided the following features:

 • Weights auto-scaling: Whenever a weight of a test has been changed to something
outside of the range [–1, 1], the editor rescaled all weights in a given query option
proportionally, so that they again fit in the range mentioned in the implementa-
tion section.

 • Auto-arranging visuals: A query was represented as a tree-like structure. All
 elements that were used to visualize tests were put in columns with an option
node as a head, to achieve a unified look for every query, regardless of who created
it. This made it a lot easier to find your way around in someone else’s queries.

 • Descriptive labels: We made every test node in a query asset produce a
non-programmer understandable description string for itself and displayed it on

42933. Asking the Environment Smart Questions

its visualization in the editor. For example, we had labels like “Leader has a straight
line path to (condition)” or “Distance to context object, prefer less (weight).” The
idea was that even an untrained person could more or less tell what a given query
will generate just by looking at it.

 • Coloring: This one’s pretty obvious, but we colored with yellow (as opposed to
everything else being in dark colors) everything that was incorrectly set up or was
missing some values. This way we instantly knew where a given query was broken
at the very first glance.

Query

Option: AdjustCover
Covers available to context object

Distance to enemy
more than close distance

[item-enemy] dot [item rot]
more than 0.30
prefer greater

Ownable by querier

Reachable for querier

Distance to querier
prefer closer

Distance to enemy
prefer closer

Within Action Area of querier

Prefer those with straight line path
from enemy

W

Q

W

W

C

C

W

C

C

Q

Q

Figure	33.1

A	Query	Template	in	our	editor	with	examples	of	option	and	test	node	properties.

430 Part V. Agent Awareness and Knowledge Representation

33.9	 	Pros	and	Cons

There are a number of good properties ETQ achieved. Some examples include:

 • Intuitive query creation: With the tool we created, designers were able to con-
struct a query with minimal tutoring. The idea itself was so close to the way people
express these kinds of queries that even less technical designers had no trouble
understanding it.

 • Data driven: Having data control the way code behaves is the holy grail of game
development. For example, programmers no longer need to be involved in every
change to the way AIs pick enemies or cover.

 • Efficient: By having our system time-sliced and our queries set up to not generate
insane numbers of items, we were able to squeeze ETQ to under 0.02 ms per frame
on average, while still having it look for game entities of specified properties with
very sophisticated queries.

 • Flexible: Adding new tests or generators was so easy that whenever someone needed
to do something that the current tests or generators did not provide, adding a new
one was simple—very easy to add and still efficient at runtime (due to time-slicing).

The main issue with ETQ is it can take some time or experience to tweak the queries to
get the desired behavior. On the other hand, iterations while working with queries were
very fast (we also had some runtime tools for it) and inexperienced users developed the
required intuition quickly.

The ETQ system was also used in Gears of War: Judgment. On that project, it exhibited
a number of issues. One major issue was that in some scenarios it generated huge CPU
usage spikes of up to 15 ms. This was due to performing expensive tests on a large collec-
tion of items, since we treat each test on a single collection of items atomically and don’t
time-slice it. These spikes resulted from the query generator reading cover gathering range
from level-placed entities (in this case “Goal Actors”), a value that was set up by level
designers. This is in fact a problem inherent in data-driven systems and care needs to be
taken to make sure data supplied by designers doesn’t kill the system’s performance. The
quick fix was to limit the radius to some experience-based maximum value.

33.10	 	Things	to	Fix	and	Improve

There were a number of improvements that we were unable to get to in the final stages of
shipping Bulletstorm. These include:

 • Merging tests: Certain tests tend to show up as a group. For example, while query-
ing for cover points, dot product to enemy more than X, distance to enemy more
than Y, and not my current cover would routinely come up as group. Intuitively
it would make sense to have one special test that does all three things instead of
three individual tests executed one after the other.

 • Final test: Often, even numerous filters were not able to reduce enough the total
number of items to test. When the system reached the expensive tests, there were
far too many items to process and performance was poor. The idea of the final test

43133. Asking the Environment Smart Questions

is to pick the required first N items that pass that test and abort testing the rest.
The final tests would be the very last ones to process, and this way we’d get good
enough results without calculating expensive tests for all items.

 • Reversed processing: [Robert 11] presented a scheme to quickly pick a cover better
than the one our AI is currently using. The same could be added to ETQ. Thus
instead of running regular processing of a query, we could take the AI’s current
cover point, grade it first, and then accept the very first item that passes all of a
query’s filters and has a higher score.

 • Multigenerators: Allow a Query Template to use multiple generators to be able to
run unified testing on a collection of different items (like regular points and cover
points in one pass).

 • Multithreaded implementation: There was neither a need nor CPU resources to
run ETQ in a separate thread, but with the trend toward more CPU cores, this is
a promising future direction.

33.11	 	Conclusion

Even though the described system was very simple in its design, it proved to be very
 powerful. We gained a lot of environment querying power without eating up a lot of CPU
time. Having ETQ driven by data and queries, created with our dedicated authoring tool,
allowed very rapid iteration over how AI picks enemies or covers, further enhanced with
runtime debugging tools.

There’s also a higher level gain. From the very start we were thinking about ETQ in
asynchronous service terms and it helped us make the rest of our AI system components
asynchronous as well. Designing and implementing asynchronous AI takes a slightly
different mindset, but it results in solutions that scale well on multiple cores, which is a
requirement in coming years.

Acknowledgments

I’d like to thank my wife, Agata, for talking me into writing this article. I also would like to
thank Łukasz Furman for helping me make all my crazy ideas for Bulletstorm AI happen.

References

[Robert 11] G. Robert. “Cover Selection Optimizations in GHOST RECON.” Paris AI
Conference Shooter Symposium, 2011.

