
413

How to Catch a Ninja
NPC Awareness in a 2D Stealth Platformer

Brook Miles

32

32.1 � Introduction

Mark of the Ninja is a 2D stealth platformer game by Klei Entertainment. The player, as 
the Ninja, sneaks through levels keeping to the shadows, crawling through vents, and 
ambushing unsuspecting guards. The engine we used, however, was based on Klei’s previ-
ous game Shank 2, and if Shank knows one thing … it sure isn’t how to be sneaky.

The AI enemies in Shank and Shank 2 only cared about attackable targets (the player, or 
multiple players in a coop game). They would spawn, choose an appropriate player to attack 
when one came within range, and do so until they killed, or were killed by, that player.

This worked well for the Shank games, which focus on constant, head-on combat. But 
for Mark of the Ninja we needed more subtle behavior. Guards needed to have multiple 
levels of alertness; the player needed to be able to distract them with sounds or movement, 

32.1	 Introduction
32.2	 From Shank to Ninja—

Noticing Things Other 
Than Your Target

32.3	 Senses
32.4	 Definition of Interest 

Sources
32.5	 Driving Updates from 

Interest Sources and 
Lightweight Group 
Behavior

32.6	 Prioritizing Interests
32.7	 Investigation and 

Rediscoverability
32.8	 Using Interests for 

Lightweight Agent 
Scripting

32.9	 Limitations and 
Improvements

32.10	Conclusion



414 Part V.  Agent Awareness and Knowledge Representation

or break line of sight to escape detection before circling back to strike from behind. Guards 
needed to display some awareness of their surroundings, notice when something is amiss, 
investigate whatever catches their attention, and respond to fallen comrades.

To address the need for AI characters to be aware of events and objects in the world 
around them, one of the changes we implemented was a data-driven interest system that 
allows designers or scripters to define interest sources in the world, and have agents detect 
and respond to them appropriately.

In Mark of the Ninja, targets and interests are similar concepts; they each represent 
an object with a position in the game world that an agent is aware of and should react to. 
However, there are a significant number of differences, both in the data used to represent 
each concept and in the associated behavior of the agents, which resulted in the decision 
to implement them as separate entities within the game.

Perhaps most importantly, all targets are basically created equal: if it’s an enemy, shoot 
it! Most of the processing going on while an agent has a target is dedicated to tracking its 
position and attacking it. An agent that has a target will always be on high alert, and will 
disregard most other stimuli until either it or its target is dead. Interests, on the other 
hand, represent things that are not targets; they are assumed to be stationary but are much 
more numerous and varied, as we will see later. When an agent has an interest, it will 
usually attempt to investigate the interest and search the surrounding area, all the while 
keeping an eye out for targets, or other potential interests of greater importance.

32.2 � From Shank to Ninja—Noticing Things Other Than Your Target

As part of the Ninja branch from the Shank 2 source tree, agents initially gained the ability 
to notice points of interest. A point of interest consisted simply of a 2D point in the level, 
something to approach but not necessarily shoot at.

These points of interest were created in the update loops of each agent’s brain from 
sources such as sounds, dead bodies, and broken lights. The update loop would collect and 
iterate over each type of game object or, in the case of sounds, a simple list of 2D points. 
After the list of potential interests was collected, one would be chosen based on proxim-
ity, or other hard-coded criteria, to be the current interest which the agent would then 
respond to. This setup worked in some cases, but there were significant problems that we 
wanted to overcome.

First, if the designer wanted an agent to take interest in any new and previously 
undefined object or event, they would need to request a programmer to add a new set 
of checks into the brain, and possibly new data structures to track whatever was being 
sensed. It was already apparent at the time that this process could be tedious and time 
consuming, but it ultimately would have proven to be a serious limitation. We ended up 
with around 60 different types of interest sources in the game and development may have 
been seriously hampered by this programmer-dependent process.

Second, there was no accounting for multiple agents reacting to the same point of 
interest. If you made a loud noise, everyone nearby would come running, which makes 
some sense, but what if you just broke a light? Does it make sense for a group of four 
guards all to walk over and stare dumbly up at the light, each remarking separately to 
themselves that somebody really ought to do something about that broken light?



41532.  How to Catch a Ninja

If a group of agents standing together detects an interest source, ideally one or two 
of that “group” (see Section 2.5 for more on how Ninja deals with groups) would be dis-
patched to check it out, while the rest are simply put on alert and hang back waiting for 
the result of the search. Not only does this feel more natural, it provides more interesting 
gameplay opportunities to the player, allowing them to separate closely clustered guards 
and deal with them individually off in a dark corner, instead of running into a brightly lit 
room and getting shot by five guys with automatic weapons.

32.3 � Senses

We determined that fundamentally there were two broad categories of interest sources our 
agents needed to detect in the world, things they could see, and things they could hear, 
which gave us our two senses: sight and sound.

Detection by the sight test involves a series of checks including these questions: Is the 
interest source within one of the agent’s vision cones? Is the game object associated with 
the interest source currently lit by a light source, or does the agent have the night vision 
flag, which removes this requirement? Is there any collision blocking line of sight between 
the agent’s eye position and that of the interest source?

A vision cone, as shown in Figure 32.1, is typically defined by an offset and direction 
from the agent’s eye position, an angle defining how wide it is, and a maximum distance. 
Other vision geometry is possible as well; we have some which are simply a single ray, an 
entire circle, or a square or trapezoid for specific purposes.

C

A B

Sound
Radius

Vision
Cone

Player

Figure 32.1

The player has made a noise by running, represented by the Sound Radius circle. Guard A 
will hear the sound and turn around to investigate. Guard B is within the Sound Radius 
but can’t hear the sound because there is no path from the guard to the sound source. 
Guard C is outside the Sound Radius and can’t hear the sound; however, if the player enters 
Guard C’s vision cone, the player will be spotted.



416 Part V.  Agent Awareness and Knowledge Representation

Detection by sound is determined by pathfinding from the interest source’s position 
to the position of the agent’s head. When a designer exports a level from our level edi-
tor, one of the steps is to generate a triangle mesh from all of the empty space within the 
level (we also generate the inverse mesh, of all of the solid collision in the level, for the 
purposes of rendering the map). We use this “sound mesh” at runtime to perform A* 
pathfinding [Millington 06] from the “sound” interest source to any agent who might 
potentially hear it.

This same pathfinding operation is performed by the audio system between the player 
character and the source of sound events within the world to determine the amount of 
filtering to apply. Both the sound and map meshes were generated using the program 
Triangle by Jonathan Shewchuck [Shewchuk 05], which generates very clean meshes and 
has a variety of useful options to control mesh quality, density, and other interesting prop-
erties for those more mathematically inclined.

For both performance and gameplay reasons, sight and sound interest sources define a 
maximum radius, and only agents within that radius are tested to determine whether they 
can detect the interest source.

32.4 � Definition of Interest Sources

From our two core senses, we can now allow the designers to create an interest source 
representing whatever object or event they want, so long as it can be detected via the sight 
or sound tests. Designers can specify a “gunshot” sound, or a “footstep” sound, a “corpse” 
sight, or a “suspect” sight. The agent’s behavioral scripts can use the specified interest 
source type to determine any special behavior, but the backend only needs to know how to 
determine whether the agent can see or hear the interest source.

You can also bend the definition of “sight” and “sound” somewhat. One special case of 
agent in Mark of the Ninja is guard dogs, who we want to be able to “smell” the player in 
the dark but, for gameplay reasons, only over a very short distance. In this case, instead of 
needing to create an entirely new smell test, we can simply define a sight interest source 
which is attached to the player game object, and require that any agent noticing it have the 
“dog” tag as shown in Listing 32.1. Voila, we have a “smell” interest.

Listing 32.1.  Just a couple of the 60 or so different interest source declarations used 
in the final game.

CreateInterestSource {sense = “sound”, priority =
	 INTEREST_PRIORITY_NOISE_LOUD, radius = RUN_ON_LOUD_RADIUS,
	 ttl = 4*FRAMES, offset = {0, 1.5*TILES}, forgetlosttarget = true} 

CreateInterestSource{sense = “sight”, source = “suspect”, priority = 
INTEREST_PRIORITY_SUSPECT, radius = INTEREST_RADIUS_SUSPECT, ttl = 
INTEREST_TTL_FOREVER, canberediscovered = true, noduplicateradius = 0, 
removeduplicates = true, followowner = true, condition = 
HasAttributeTag(“dog”)}



41732.  How to Catch a Ninja

32.4.1 � Interest Sources Live in the World, Interests Live in Your Brain
An interest is just the record in the agent’s brain of what he’s interested in right this 
moment. It may have a reference to the interest source that created it (if there was one), 
but even if it doesn’t, it still has a copy of all of the necessary information, the sense for the 
interest, the source type, its position, priority, and so on. When an agent is determined 
to have detected an interest source, an interest record is added to its brain, and this is the 
information that the agent uses from that point on.

While sight and sound are the only available sense types for interest sources in Mark 
of the Ninja, interests of any arbitrarily defined sense can be added directly to an agent’s 
brain by the designer through a script call, as no additional testing needs to be done 
against them; the designer or script writer has already determined that this agent should 
be interested in whatever it is.

For example a “touch” interest may be added to an agent’s brain when he is struck with 
a dart projectile, or a “missing partner” interest can be added if the agent’s partner goes off 
to investigate a sound and fails to return.

32.5 � Driving Updates from Interest Sources 
and Lightweight Group Behavior

A question that arose early on was how groups of agents should respond when they all 
sense an interest simultaneously. At first it was every man for himself; each agent did its 
own test and upon sensing an interest would react, most likely by running to investigate 
it. This typically resulted in entire groups of agents running towards the slightest noise or 
converging on the player en masse. This wasn’t the kind of gameplay we were looking for. 
We want the player to be able to manipulate the agents, distract them, split them apart, 
and dispatch them on the player’s own terms.

We looked for ways in which we could have some level of apparent cooperation between 
the agents without going so far as to explicitly manage group behavior or coordinated 
movement. We really only needed guards reacting to the same thing, at the same time, to 
have a variety of responses. Some should go and investigate, one might play a line of audio 
dialog telling another nearby guard to go check it out, and others might just glance over 
and wait for the previously mentioned guards to deal with the situation. Instead of driving 
this scenario from the agent side and attempting to coordinate updates, or creating a sepa-
rate concept of grouping, we chose to rely on the implicit group that already existed: the 
set of agents who detected an interest.

By driving the detection of interest sources from the interest source itself, instead of 
from each agent individually, we can easily collect all of the information we need in order 
to determine who should be reacting, and how they should react.

The sensory manager update loop tests each interest source against all possible 
“detection candidates.” Given this list, it makes some decisions based mainly on group 
size, but possibly also by location or distance from the interest source. If only a single agent 
can detect the interest, our work is done, the agent is notified, and he goes to investigate. 
If more than one agent can detect the interest, we can assign roles to each agent, which are 
stored along with the interest record in the agent’s brain. Roles only have meaning within 



418 Part V.  Agent Awareness and Knowledge Representation

the context of a specific interest, and when that interest is forgotten or replaced, the role 
associated with it goes away too.

If multiple agents can detect the interest, one is chosen as the “sentry” or “group leader” 
and he plays audio dialog telling the other agents nearby to go check out the interest and 
then hangs back waiting. One or more agents are given the “investigate” role and will go 
and investigate, seemingly at the command of the “group leader.” Any remaining agents 
will get the “bystander” role, and may indicate they’ve seen or heard the interest but other-
wise hold position and decrease the priority of the interest in their mind so they are more 
likely to notice new interests for which they might be chosen as leader or investigator.

The key is that once the roles are assigned, and the sensory update is complete, there is 
no “group” to manage. Each agent is acting independently, but due to the roles that were 
assigned, they behave differently from each other in a way that implies group coordination.

32.6 � Prioritizing Interests

If you are investigating a broken light and come across a dead body, should you stop and 
investigate the body, or continue to look at the light? What if you hear your partner being 
stabbed by a Ninja, and then discover a broken light on your way to help him? Should you 
stop to investigate? Clearly, certain types of interest must be prioritized over others.

Interest sources, and by extension interest entries in agents’ brains, contain a simple integer 
value of priority, where higher priority interests can replace lower or equal priority interests, 
and the agent will change his focus accordingly. If the agent currently holds a high priority 
interest, lower priorities interests are discarded and never enter the agent’s awareness.

Balancing the priority of various interests turned out to be a challenging and ongoing 
task all throughout development. Listing 32.2 shows what the priorities for various types 
of interest sources were near the end of the project, but they had changed many times dur-
ing development in response to unanticipated or blatantly unrealistic behavior, resulting 
from the current set of interest priorities. Making them easy to change and try out new 
combinations was a big help.

Initially, we assumed that finding corpses would be one of the highest priority interests 
in the game, superseded only by seeing a target (the player), but it turned out to be not so 

Listing 32.2.  Mark of the Ninja’s priority definitions for interests.

INTEREST_PRIORITY_LOWEST = 0
INTEREST_PRIORITY_BROKEN = 1
INTEREST_PRIORITY_MISSING = 2
INTEREST_PRIORITY_SUSPECT = 4
INTEREST_PRIORITY_SMOKE = 4
INTEREST_PRIORITY_CORPSE = 4
INTEREST_PRIORITY_NOISE_QUIET = 4
INTEREST_PRIORITY_NOISE_LOUD = 4
INTEREST_PRIORITY_BOX = 5
INTEREST_PRIORITY_SPIKEMINE = 5
INTEREST_PRIORITY_DISTRACTIONFLARE = 10
INTEREST_PRIORITY_TERROR = 20



41932.  How to Catch a Ninja

simple. If you hear a sound, and while investigating the sound you discover a body, clearly it 
makes sense to pay attention to this new discovery. But what if the situation were reversed? 
If you’re investigating a body and you hear a sound, should you ignore it? This is potentially 
very unwise, especially if the noise is footsteps rapidly approaching you from behind.

It turns out that corpses, noises, and a variety of other specific interest types should all be 
treated on a newest-first basis. The last thing you notice is probably the most important thing. 
Our solution here was simply to make this set of interests all the same priority. However, new 
interests of equal priority (to your current interest) are treated as more important.

Other interests truly are more or less important than others, regardless of the order 
they are encountered. Seeing a broken pot is always less interesting than a shadowy figure 
or a gunshot. Seeing your partner impaled on a spike trap is always more important than 
the sound of glass breaking in the distance.

32.7 � Investigation and Rediscoverability

Once an interest source has been noticed by an agent, the agent has an opportunity to 
“investigate” it, which might simply mean looking at a broken light and commenting that 
it should be fixed. Or it could involve seeing a fallen comrade, running over to check for a 
pulse, and then calling the alarm.

Once an agent determines that an interest source has been dealt with, particularly in 
the case of mundane things like broken lights, we really don’t want every guard that walks 
past to stop and take notice. This would be repetitive and doesn’t make for especially com-
pelling gameplay. Even worse would be the same agent noticing the same interest source 
over and over. When an agent has completed whatever investigation is called for, the inter-
est source associated with the agent’s interest record is marked as investigated, which then 
removes the interest source (but not the game object it was associated with) from the 
world, never to be seen or heard of again.

This still doesn’t completely solve our problem, though; in the case of corpses, for 
example, what happens if you draw the attention of a guard who is investigating a body 
before he has a chance to thoroughly investigate and sound the alarm? After losing his 
target, he may turn around and see the body again. It doesn’t make sense for him to be as 
surprised to see his fallen comrade as he was a moment ago. It would be natural for him to 
return to complete his initial investigation, but this ultimately felt like going a little bit too 
far down the rabbit hole. We made the decision that each agent would be aware of only one 
interest at a time and there would be no stack or queue of interests. Once the highest prior-
ity interest was dealt with at any given time, we wanted the situation to naturally reset to 
a default state and not have the guard continuing on to revisit every past source of interest 
they may have come across during an encounter.

By default then, we only want each agent to detect or notice each interest source once. 
When that happens, we record that this discovery took place and that agent will be 
excluded from noticing the interest source again. Since we drive updates from the direc-
tion of interest sources looking for agents to discover them, the interest source keeps a list 
of discoverers and doesn’t cause itself to be noticed by the same agent twice.

In rare cases, we do want an interest source to be noticeable multiple times by the same 
agent, the primary example being the “suspect” interest source attached to the player. This 
interest source is detectable from farther away than the agent’s ability to see the player as 



420 Part V.  Agent Awareness and Knowledge Representation

a target, and so draws them in to investigate without immediately seeing and shooting the 
player. We want this to happen every time the agent detects the player, and so this particu-
lar interest source is marked as being rediscoverable, and it doesn’t bother keeping a list of 
who has seen it in the past.

32.8 � Using Interests for Lightweight Agent Scripting

In addition to allowing agents to passively notice events or objects in the world, there are 
various situations in the course of designing the game levels where some level of scripted 
encounter is desired. In some cases that scripting is quite rigid; you want an agent to play 
specific animations at certain times and at specific places. For these cases, more specific 
level scripts are created.

Other times, however, it’s acceptable or desired to set up a more natural situation and 
let it play out, possibly with interference from the player. Instead of scripting an agent to 
follow a specific path to a specific point, play a specific line of dialog, and so on, an interest 
can be added directly to the agent’s brain. The agent will then pathfind normally to their 
destination interest point, opening doors and so on as he goes. On reaching his destina-
tion, he will perform his normal search pattern. When he gets there, he may notice the 
object placed there for him to notice, in which case he can comment on it and continue 
investigating as usual or perform other contextual actions as a result.

The benefit of this simple approach is that no special handling needs to occur if the 
player alters the parameters of the situation. Perhaps the player distracts the agent before 
he reaches his goal. Or perhaps the player turns off the lights in the room the agent is 
headed towards, preventing him from noticing what he would have in the first case, caus-
ing him to give up and return to his patrol. No special cases need to be scripted for these 
situations, as the agent’s behavior wasn’t a script to begin with.

Other objects that the agent encounters, as this situation plays out, can be handled 
locally by behavior scripts independently of (or in conjunction with) the agent’s current 
interests. Agents know how to open doors and turn on lights as they encounter them, and 
it’s not necessary for these actions to interfere with interest handling.

Creating an interest for every possible little thing in the world that the agent can inter-
act with is unnecessary and unwieldy, partly because of the rule of having only a single 
interest at a time. When an agent comes across a door, he doesn’t need to be interested 
in it; his navigation and behavior scripts simply determine he needs to walk through a 
door and acts accordingly, after which he continues on his way investigating whatever his 
current interest is.

32.9 � Limitations and Improvements

We found it difficult to achieve sensible behavior from agents who are receiving quickly 
repeating or alternating interests. It’s not always immediately obvious what an agent 
should do when his current interest changes or moves from moment to moment. While 
this is primarily a problem outside the scope of interest detection, there was some special 
handling done in order to help address the issue. Specifically, when acquiring a new 
interest, the agent will compare the incoming interest to the current interest if any. If it’s 
the same sense, source type, priority, and is relatively close to the previous interest, then 



42132.  How to Catch a Ninja

it’s not handled as a new interest, but the timers and position of the current interest are 
updated to reflect the new information. A primary example of this is the player creating 
a series of footstep interests while running. It’s not desirable to treat each footstep as a 
new interest.

Similarly, there is no direct support for tracking the movement of a single source of 
interest, as the vast majority of interest sources in the game have a fixed position. This 
imposes some limitations on their use; for example, one of the player’s inventory items in 
Mark of the Ninja is a box made of cardboard that you can hide in. One implementation 
involved attaching an interest source to the box when the player (hiding inside) moved, 
as a way to draw the attention of nearby agents. However, this didn’t result in the desired 
behavior, as most of the interest source handling code and scripts relied on an interest’s 
position not changing after detection.

Section 32.4 touches on the idea of providing a “condition” that is evaluated against 
agents who may potentially detect an interest source. This functionality was added towards 
the end of the project and as a result didn’t end up being used extensively. When used with 
caution, it can provide an extra dose of flexibility for all of those special cases that will 
invariably crop up during a project, but attention must be paid to avoid embedding too 
much complicated logic in the condition that would be better placed elsewhere.

32.10 � Conclusion

What was originally intended to deal with the issue of noticing dead bodies and broken 
lights soon expanded to an ever increasing variety of other purposes, as described in 
this chapter. While by no means a silver bullet, this system granted the designers more 
control over the behavior of game characters, while reducing the need for special case 
scripting or programmer intervention. Overall, the sense detection architecture which 
assigns agent rates during the update of an interest source, combined with the designers’ 
ability to data-drive interest source definitions and priorities, resulted in a simple but 
flexible system that created believable guard awareness and even provided light-weight 
group behavior with minimal additional complexity.

Acknowledgments

We would like to thank the entire team at Klei for making Mark of the Ninja a joy to work 
on, in particular Kevin Forbes whose work on Shank 2 provided the foundation for the 
AI and who provided much helpful direction in expanding on those systems; and fellow 
AI/gameplay engineer Tatham Johnson who also contributed to the work described in 
this article.

References

[Millington 06] I. Millington. Artificial Intelligence for Games. San Francisco, CA: Morgan 
Kaufmann, 2006, pp. 233–246.

[Shewchuk 05] J. R. Shewchuk. “Triangle: A Two-Dimensional Quality Mesh Generator 
and Delaunay Triangulator.” http://www.cs.cmu.edu/~quake/triangle.html, 2005.


