
391

Using Neural Networks to Control
Agent Threat Response
Michael Robbins

30

30.1 � Introduction

Neural networks are one of the oldest and most widely used machine learning techniques,
with a lineage dating back to at least the 1950s. Although there has been some concern
within the game AI community that they might not be the right fit for games, our experi-
ence with using them in Supreme Commander 2 has been tremendously positive. Used
properly, they can deliver compelling behaviors with significantly less effort than it would
take to hand-code them. In Supreme Commander 2, neural networks were used to con-
trol the fight or flight response of AI controlled platoons to great effect. Far from being
useless, neural networks added a lot of value to the AI without an exorbitant amount
of effort.

There are numerous resources both in print and on the web that describe the basics
of neural networks, and even provide sample code. The books Artificial Intelligence for
Games [Millington 09] and AI Techniques for Game Programing [Buckland 02] are great
resources for getting started, while Game Programming Gems 2 [Manslow 01] provides
sample code and a wide range of practical hints and tips. This article will focus on the
specifics of how neural networks were used in Supreme Commander 2.

30.1	 Introduction
30.2	 What Is a Neural Network
30.3	 Setting Up a Neural

Network
30.4	 Training a Neural Network
30.5	 Adjusting Behavior

30.6	 Neural Network
Performance

30.7	 Benefits of Using a
Neural Network

30.8	 Drawbacks of Using
Neural Networks

30.9	 Conclusion

392 Part IV.  Strategy and Tactics

30.2 � What Is a Neural Network

There are many different types of neural networks but this article will focus on multilayer
perceptrons (MLPs), which were chosen for Supreme Commander 2 because they’re rela-
tively easy to implement and simple to use.

MLPs typically consist of three layers of neurons or “nodes,” as they are often called
in the neural network literature. These layers are the input layer, the hidden layer, and the
output layer. Each node has a value associated with it that lies in the range zero to one
and indicates its level of excitation. Nodes are connected to other nodes by unidirectional
“weights,” which are the analog of biological synapses and allow the level of excitation of
one node to affect the excitation of another. In an MLP, each node receives stimulation only
from nodes in the preceding layer and provides stimulation only to nodes in the next layer.

Data is fed into an MLP by setting the levels of excitation of the nodes in the input
layer. Each node in the hidden layer then receives an amount of stimulation that is equal
to an internal bias plus the sum of the products of the levels of excitation of each node in
the input layer and the weight by which it is connected to it. The excitation of each node
in the hidden layer is then calculated by applying a nonlinear activation function to the
value that represents its level of stimulation. The logistic function is the standard choice of
activation function for MLPs and produces a level of excitation in the range zero to one.

This process is repeated with each layer in the network receiving stimulation from
the preceding layer until the levels of excitation of the network’s output nodes have been
updated; these levels constitute the network’s output and hence its response to the earlier
input. The behavior of an MLP is determined entirely by the values of its weights and
biases, and the process of training it consists of finding the values of the weights and biases
that minimizes some measure of the difference between the network’s outputs and some
ideal target values.

30.3 � Setting Up a Neural Network

For Supreme Commander 2, it was decided to use an MLP to control a platoon’s reaction
to encountering enemy units. We decided to use a total of four MLPs, one for each platoon
type: land, naval, bomber, and fighter. We split the MLPs this way so that each platoon
type could learn what it needed to without interfering with the other platoon types.

The bulk of the AI’s platoon logic would exist inside of a finite-state machine that would
use the MLP to decide what to do when the platoon encountered enemy resistance and
would continue to use the MLP to reevaluate the constantly changing situation. MLPs
provide a great way to accomplish this because they can quickly size up a situation based
on their training. In any situation, an MLP can give an AI the ability to determine which
enemy targets it should attack first or to retreat if it found itself outmatched. To accom-
plish this, the first thing that needs to be done is to decide what information the MLP
needs to make these decisions and how it should be represented.

30.3.1 � Choosing Inputs
Inputs are supplied to an MLP by setting the values that represent the levels of excitation of
its input nodes. These values are typically bounded to lie in the range zero to one, though
the range minus one to plus one also works well with MLPs. For Supreme Commander 2,

39330.  Using Neural Networks to Control Agent Threat Response

inputs were created by taking the ratio between the friendly and enemy values of cer-
tain statistics which included number of units, unit health, overall damage per second
(DPS), movement speed, resource value, shield health, short-range DPS, medium-range
DPS, long-range DPS, and repair rate. All input values were clamped to lie in the range
zero to one, so the reciprocals of the ratios were also included to provide the network with
useful information about the relative sizes of the statistics even when the friendly statistic
exceeded the enemy statistic. These statistics were gathered from friendly and enemy units
in a radius around the AI’s platoon. Altogether, 17 ratios were calculated, and hence the
network had 34 inputs.

This relatively large number of inputs worked well in Supreme Commander 2 but could
be problematic in other applications, particularly if there were only a few thousand exam-
ples that could be used in training. This can lead to what is called “overfitting,” which is
where a network effectively learns certain specifics of the training data rather than the
general patterns that lie within it. Overfitting is apparent when a network performs sig-
nificantly better during training than it does when tested. Overfitting is most easily pre-
vented by retraining with a simpler network (or by providing a larger set of training data,
of course). Thus, in general, it’s a good idea when choosing inputs to find as small a set as
possible. At the same time, the MLP will only be able to account for information that you
provide to it, so the desire to have a small input set needs to be balanced against a desire to
include as much of the relevant information as possible. At the end of the day, you’ll need
to experiment to find what works for your project.

30.3.2 � Choosing Outputs
When inputs are applied to an MLP, it computes outputs in the form of values between
zero and one that represent the levels of excitation of its output nodes. For Supreme
Commander 2, it was decided that each output node would represent the expected utility
of one of the actions that the platoon could take. These actions included attack the weakest
enemy, attack the closest enemy, attack the highest value enemy, attack a resource genera-
tor, attack a shield generator, attack a defensive structure, attack a mobile unit, attack an
engineering unit, and attack from range. Although the platoon could run away, the act of
running away was not associated with any individual output. Instead, it was decided that
the platoon would run away if none of the network’s outputs were above 0.5, because that
indicated that no individual action was expected to have particularly high utility.

30.3.3 � Choosing the Number of Hidden Nodes
It is the hidden nodes in an MLP that are responsible for its ability to learn complex non-
linear relationships, and the more hidden nodes a network has, the more complex are the
relationships that it can learn. Unfortunately, increasing the number of hidden nodes also
comes at the cost of increased training time and, as with increasing numbers of inputs, an
increased risk of overfitting. Unfortunately, the optimum number of hidden nodes is prob-
lem dependent and must be determined by trial and error. One approach is to initially test
your network with only two or three hidden nodes, and then add more until acceptable
performance is achieved. For more complex decisions, it’s reasonable to start with a larger
network, but you will want to ensure that the trained network is thoroughly tested to make
sure that its performance under test is consistent with its performance during training.

394 Part IV.  Strategy and Tactics

For Supreme Commander 2, we found that a network with 98 hidden nodes achieved
good and consistent performance during both training and testing. Such a network would
be too large for many other applications, particularly when the amount of training data is
limited, but given our ability to generate arbitrarily large amounts of training data and the
complexity of the decision being made, this worked well for us.

30.4 � Training a Neural Network

Training an MLP usually involves repeatedly iterating through a set of training examples
that each consist of a pairing of inputs and target outputs. For each pair, the input is pre-
sented to the network, the network computes its output, and then the network’s weights
and biases are modified to make its output slightly closer to the target output. This process
is repeated for each example in the training set, with each example typically being pre-
sented hundreds or thousands of times during the course of training.

In Supreme Commander 2, we decided not to create a fixed set of training examples but
to generate examples dynamically by making the AI play against itself. This was achieved
by putting two AI platoons on a map and having them battle against each other as they
would in a regular game, except we would run the game as fast as possible to speed up
iteration time. During the battle, the AI’s platoons would act the same as they would in a
regular game. The AI’s neural networks would make a decision as to which action should
be performed whenever opposing platoons met on the battlefield by gathering data about
the friendly and enemy units in a radius around the platoon and feeding that data into
the MLP. Instead of actually taking the action suggested by the network, however, each
platoon was made to perform a random action and a measure of how good those actions
were—a measure of their utility—was derived using a fitness function. The utility measure
then formed the target output for the output node corresponding to the random action,
and the target outputs for all other output nodes were set to each node’s current level of
excitation; in this way, the network updated its weights and biases to improve its esti-
mate of the utility of the random action but didn’t attempt to change any other outputs.
Random actions were used instead of the actions suggested by the networks to ensure that
a good mix of actions were tried in a wide range of circumstances. An untrained network
will typically repeatedly perform the same action in a wide range of circumstances and
hence will learn extremely slowly—if it learns at all.

This training process produced an MLP that responded to an input by estimating the
utility of each of the different actions. Choosing the best action was then a simple matter of
choosing the action associated with the output that had the highest level of excitation. The
key to ensuring that these actions were appropriate was to make sure that the fitness func-
tion—which assessed the utility of actions during training—assigned the highest utility to
the action that was most appropriate in each situation.

30.4.1 � Creating the Fitness Function
The fitness function’s job is to evaluate the results of the selected action to determine
how much better or worse the situation became as a result of its execution. For Supreme
Commander 2, this was achieved by gathering the same set of data (number of units, DPS
values, health, etc.) that were used to make the initial decision, and then examining how
those data values changed when the action was taken.

39530.  Using Neural Networks to Control Agent Threat Response

Listing 30.1 gives a snippet of the fitness function we used on Supreme Commander 2.
It first takes the ratio between the new and old values for each type of data. Note that since
all of these values are likely to have stayed the same or gone down, all of these ratios should
be between 0 and 1, which constrains the magnitude of the later calculations to something
reasonable. Next, we take the average of the ratios for the friendly units and for the enemy
units. This gives a sense of how much the overall tactical situation has changed for each side
not only in terms of damage taken, but also in terms of every significant capability—shields,
damage output, number of units remaining, and so forth. The resulting averages are passed
into DetermineNewOutputs which determines what the correct output—called the
desired output—value should have been using Equation 30.1.

	 desiredOutput output friendRatio enemyRatio= × + −()1(() 	 (30.1)

This desired output value is then plugged into the corresponding output node of the MLP,
and the MLP goes through a process of adjusting weights and biases, starting at the output
layer and working its way back to the input layer in a process called back propagation. This
is how an MLP learns.

30.4.2 � Adjusting Learning Parameters
The training of an MLP is typically controlled by a learning rate parameter that controls
the sizes of the changes the network makes when adjusting its weights and biases. A higher

Listing 30.1.  Fitness function snippet from Supreme Commander 2.

float friendRatio = 0.0f;
int numData = 0;
for (int i = 0; i < mFriendData.size(); ++i)
{
	 if (mFriendData[i] > 0.0f)
	 {
		 ++numData;
		 friendRatio += (newFriendData[i]/mFriendData[i]);
	 }
}
if (numData > 0)
	 friendRatio /= numData;
float enemyRatio = 0.0f;
numData = 0;
for (int i = 0; i < mEnemyData.size(); ++i)
{
	 if (mEnemyData[i] > 0.0f)
	 {
		 ++numData;
		 enemyRatio += (newEnemyData[i]/mEnemyData[i]);
	 }
}
if (numData > 0)
	 enemyRatio /= numData;
DetermineNewOutputs(friendRatio, enemyRatio, mOutputs, mActionIndex);
network->FeedAndBackPropagate(mInputs, mOutputs);

396 Part IV.  Strategy and Tactics

learning rate allows for larger changes, which can lead to faster learning but increases
the risk of numerical instability and oscillations as the network attempts to zero in on
optimum values; a lower rate can make training impractically slow. One common trick is
therefore to start training with a higher learning rate and decrease it over time—so you
initially get fast learning but, as the weights and biases approach their optimum values,
the adjustments become more and more conservative. For Supreme Commander 2, we
initially started with a learning rate of 0.8 and gradually lowered it down to 0.2.

MLP training algorithms usually also have a parameter called momentum, which can
be used to accelerate the learning process. Momentum does this by reapplying a propor-
tion of the last change in the value of a weight or bias during a subsequent adjustment,
thereby accelerating consistent changes and helping to prevent rapid oscillations. As with
the learning rate, a higher value for the momentum parameter is good initially because
it accelerates the early stages of learning. For Supreme Commander 2 we started with a
momentum value of 0.9 and eventually turned momentum off entirely by setting it to zero.

30.4.3 � Debugging Neural Networks
A neural network is essentially a black box, and that makes debugging them difficult.
You can’t just go in, set a breakpoint, and figure out why it made the decision it did. You
also can’t just go in and start adjusting weights. This is a large part of the reason why
neural networks are not more popular. In general, if an MLP is not performing as desired,
then it’s usually a problem with the data its receiving as input, the way its outputs are
interpreted, the fitness function that was used during training, or the environment it was
exposed to during training.

For example, if an MLP performs well during training but performs less well during
testing, it could be because the environment the network was exposed to during training
wasn’t representative of the environment it experienced during testing. Maybe the mix of
units was different, or something changed in the design? It could also be due to overfitting,
in which case a network with fewer inputs or fewer hidden nodes might perform better.
If an MLP performed well during training but its behavior isn’t always sensible, then it
might be that the fitness function that was used during training was flawed—perhaps it
sometimes assigned high utility to actions that were inappropriate or low utility to actions
that were appropriate—more on this point later. If an MLP fails to perform well even
during training, then it’s usually because either its inputs provide too little relevant infor-
mation or it has too few hidden nodes to learn the desired relationships.

If you are using neural networks in a game, these points need to be stressed. When
debugging neural networks, the solution is usually not to find the point of failure by
setting a breakpoint. You have to think about the network’s inputs, its outputs, and how
your fitness function is training your neural network.

30.4.4 � Case Study: Repairing a Bug in the Fitness Function
In Supreme Commander 2, each player starts with a unit called an ACU and whichever
player destroys their opponent’s ACU first wins the game. However, when an ACU is
destroyed, it blows up in a large nuclear explosion, taking out most of the smaller units
and buildings in a wide area. For the neural network this posed a problem: since the net-
work was trained on tactical engagements, it didn’t know about winning or losing. All it
saw was that when it sent units up against an ACU, most of them were destroyed.

39730.  Using Neural Networks to Control Agent Threat Response

This introduced a bug that made the AI unwilling to commit troops to attack an
ACU. It would overwhelm players with massive groups of units but, as soon as it saw an
ACU, it would turn tail and run. The problem wasn’t in the behavior code, and it wasn’t
something that could be tracked down by setting a breakpoint; the problem was in the
fitness function.

Once we realized what the problem was, the solution was simple: we needed to modify
the fitness function to take into account the destruction of an enemy ACU. Basically, we
needed to teach the neural network that it was worth taking out an ACU whatever the
cost. This was done by modifying the fitness function to provide a very positive measure
of utility whenever an enemy ACU was destroyed. Instead of relying on the results of
Equation 30.1, the fitness function would return a desired output of double whatever the
original MLP output was, clamped to a maximum of 1.0. After retraining the network with
the new fitness function, we saw a huge improvement. The AI would run from the ACU
if it only had a small number of units but, if it had a large enough group to take it down,
it would engage, winning the game as the enemy’s ACU blew up in spectacular fashion.

30.5 � Adjusting Behavior

Even though the behavior of an MLP is fixed once it’s been trained, it’s still possible to use
it to generate AI that exhibits a variety of different behaviors. In Supreme Commander 2,
for example, we added an aggression value to the AI personality. This value was used to
modify the ratios that were input to the MLP to mimic the effect of the AI’s units being
stronger than they actually were. This made the MLP overestimate the utility of more
aggressive actions, producing an overall more aggressive AI.

Rather than always having the AI perform the action for which the MLP estimated
highest utility, different action selection schemes could be considered. For example, the
AI could select one of the N highest utility actions at random or select an action with
probability proportional to its utility. Both of these schemes would produce behavior with
greater variety though they both involve selecting actions that are probably suboptimal
and hence would probably produce AI that is easier to beat.

30.6 � Neural Network Performance

The run-time performance of an MLP is determined by how many nodes it has. In Supreme
Commander 2, each MLP has 34 input nodes, 15 output nodes, and 98 hidden nodes and we
never saw a network take longer than 0.03 ms to compute its output (during an eight-player
AI match). Since feeding a MLP forward is basically just a bunch of floating-point math,
this is not surprising. Performance will, of course, vary depending on hardware and the
details of your implementation, but it is unlikely that the time taken to query an MLP will
be a problem.

30.7 � Benefits of Using a Neural Network

Probably the most notable benefit of using a neural network over something like a utility
based approach is that you don’t have to come up with the weights yourself. You don’t have

398 Part IV.  Strategy and Tactics

to figure out whether health is more important than shields in any particular decision or
how they compare to speed. This is all worked out for you during training. Each of Supreme
Commander 2’s neural networks took about an hour of training to reach a shippable level
of performance. We did, however, have to complete the training process several times
before we ended up with a set of neural networks that worked well, mostly due to snags
such as the ACU problem that was mentioned earlier.

A major benefit of the input representation that was used in Supreme Commander 2 was
that it provided an abstract representation of the composition of a platoon that remained
valid even when the statistics of individual units changed; the neural network is not look-
ing at specific units, only their statistics. As long as there weren’t any radical changes in
the game’s mechanics, the networks were able to continue to make good decisions as the
statistics of individual units were modified to produce a well-balanced game.

30.8 � Drawbacks of Using Neural Networks

Like most things in life, using a neural network solution doesn’t come free. There are
certainly some drawbacks to using them over more traditional methods, the foremost of
those being their black box nature. With most solutions you can come up with a tool that
designers can use to adjust the behavior of the AI; at the very least you can make small
adjustments to alter its behavior to suit their needs. With neural networks this is difficult,
if not altogether impossible. On Supreme Commander 2, we got lucky because we had a
separate AI system for the campaign mode than we did for skirmish mode. The designers
could make any changes they wanted for the campaign but they did not want to have
control over skirmish mode. Unfortunately, most projects are not that lucky.

The other issue is the training time. Unlike with other techniques, where you can easily
make small changes, if you change anything to do with a neural network—its inputs, the
interpretation of its outputs, the fitness function, and the number of hidden nodes—you
have to start training from scratch. Even though training is hands-off, the time it takes
makes it difficult to quickly try things out.

30.9 � Conclusion

Whenever the subject of neural networks in Supreme Commander 2 comes up, two
questions are frequently asked: Was it worth using them, and would you use them
again? The answer to both is yes. We firmly believe that the AI in Supreme Commander 2
would not have had the same impact without the use of neural networks. Moreover, if
someone proposed doing Supreme Commander 3, you can bet neural networks would
play a part.

That being said, neural networks are not for every project, and they are certainly not
the be-all and end-all of AI. Neural networks are a tool like any other in that they have
specific strengths and weaknesses. They are very handy if you have a well-defined set of
actions or responses and designers don’t require a lot of control. If your designers are
going to want to fine-tune things or you have to work with multiple sets of responses to
accommodate things like different AI personalities, however, you may want to look at
other options.

39930.  Using Neural Networks to Control Agent Threat Response

References

[Buckland 02] M. Buckland. AI Techniques for Game Programming. Cincinnati, OH:
Premier Press, 2002, pp. 233–274.

[Manslow 01] J. Manslow. Game Programming Gems 2: Using a Neural Network in a Game:
A Concrete Example. Hingham, MA: Charles River Media, 2001, pp. 351–357.

[Millington 09] I. Millington and J. Funge. Artificial Intelligence for Games. Burlington, MA:
Morgan Kaufmann, 2009, pp. 646–665.

