
361

Tactical Pathfinding
on a NavMesh
Daniel Brewer

27

27.1 � Introduction

Traditional pathfinding has been focused on finding the shortest route from A to B.
However, as gamers demand more realism, this is no longer sufficient. Agents should
instead find the most appropriate route from A to B. In action-shooter or strategy games,
this usually means the most tactically sound route—the route that provides the most con-
cealment from the enemy and avoids friendly lines of fire, rather than the shortest, most
direct path.

Many tactical pathfinding solutions require a regular waypoint grid and numerous
line-of-sight raycast checks to determine the safer, more concealed route between two
points. However, regular waypoint grids are known for poor memory efficiency and the
large number of waypoints to check increases the run-time pathfinding load, especially
with the numerous visibility checks required for tactical pathfinding.

Navigation meshes (NavMeshes) are an alternative approach to grids and have become
a widely used, efficient representation of navigable space. This article will present a
method of cover representation and modification to the A* algorithm to perform tactical
pathfinding directly on a NavMesh.

27.1	 Introduction
27.2	 Other Methods
27.3	 Tactical Pathfinding

Method

27.4	 Extending the Technique
to 3D

27.5	 Conclusion

362 Part IV.  Strategy and Tactics

27.2 � Other Methods

At its core, tactical A* pathfinding can be achieved by modifying the cost of nodes in
your navigation graph [van der Sterren 02]. A node that is visible or exposed to the enemy
should have a higher cost, while a node that is concealed from the enemy should have a
lower cost. This way, the A* algorithm will favor the lower cost, more concealed nodes over
the high cost, exposed nodes. An agent following such a path will seem more cautious,
preferring to keep out of line-of-sight of his enemy as much as possible.

The common practice in tactical pathfinding is to use a grid or a regular waypoint graph.
The high resolution and regular spacing of nodes allows the A* algorithm to better take into
account the differing costs for exposed versus concealed nodes over the distance traveled.
The accuracy of these techniques depends on the density of the grid; the tighter the grid
spacing, the greater the number of nodes and the better the accuracy of the paths generated.
A high grid density has significant costs, not only in memory for storing all the nodes, but
also in processing at run-time when the A* algorithm has many more nodes to compute.

There are a number of possible methods to determine how exposed a particular node is
to an enemy threat. The crucial question is “Can an enemy standing at position A see me at
position B?” Performing visibility raycast checks at run-time during pathfinding can dras-
tically hamper performance. Exhaustive visibility calculations can be performed offline
and stored for use in game via look-up tables [Lidén 02]. As the environment increases
in size and the number of nodes grows, this O(n2) approach requires exponentially larger
amounts of memory.

An alternative to relying on exact line-of-sight raycast checks is to use approximations.
A possible approximation is to store a radial distance field for each node [Straatman 05].
This approach can be extended to 3D with depth-buffer cube-maps [van der Leeuw 09].
This allows a quick look-up to approximate how far an agent can see in a particular direc-
tion from a specified point in the world. By comparing the distances in each direction
between two points, it is possible to determine if these points are visible to each other.
Another form of approximation is to rasterize cover objects into a grid [Jurney 07]. The
enemy’s view cone can then be rasterized into the grid to add a weighting factor against
waypoints that are exposed to his line-of-sight. This rasterizing approach can be used to
deal with dynamic, destructible cover, too. After an object is destroyed, simply perform
the rasterization again with the remaining objects, and the navigation grid will reflect the
current run-time changes.

These approximations actually enhance the robustness of the solution against small
movements of the enemy threat. In an environment filled with complex geometry it is pos-
sible for a raycast to pass through a tiny gap in an object and so report a clear line-of-sight,
when in fact the location would be concealed. The opposite can also occur, reporting
an obscured line-of-sight when the location would in fact be visible. Even with simple
geometry, a small adjustment of the raycast origin could return different results. The low
resolution of the distance fields, or rasterized cover grids, makes these approximations
much less susceptible to these slight variations in position.

Navigation meshes are a popular, efficient method of representing navigable regions
of a virtual environment [Tozour 04]; however, it is not as straightforward to perform
tactical pathfinding on these navigation representations. The irregular spacing and large
area covered by the navigation polygons results in poor overall visibility accuracy from

36327.  Tactical Pathfinding on a NavMesh

raycast tests. To overcome this drawback, it is possible to dynamically calculate a regular
waypoint graph at run-time by sampling positions from a static NavMesh [Bamford 12].
This tactical graph need only be generated locally for the areas of the world where combat
encounters take place. However, this does lead to a duplication of navigation information
and at worst case may even require a separate, independent pathfinding code for the two
different representations.

The following section presents an approach to tactical pathfinding that can work
directly on a NavMesh without requiring the duplication of navigation information.

27.3 � Tactical Pathfinding Method

The technique is split up into three parts. The first part will deal with ways to partition and
annotate the NavMesh. The second part will deal with cover representation, and the final
part will deal with calculating the cost of navigation polygon traversal in A* in order to
calculate a more appropriate route.

27.3.1 � Tessellating and Annotating the NavMesh

There has been a lot of work on creating an optimal NavMesh representation of a virtual
environment [Tozour 02, Farnstrom 06], though this is not necessarily required for the
purposes of tactical pathfinding. The NavMesh can be more finely tessellated to provide
increased detail in areas of different movement properties or tactical significance.

Polygons in which it is more difficult, or more tactically unsafe, to move can be flagged
with additional costs, just as in a regular grid representation. Areas of water could be
flagged as “slow movement” or “only passable by amphibious units.” Regions of high grass
could be flagged with “provides concealment.” Dense undergrowth could be flagged as
“slow movement” and “provides concealment.” The center of a courtyard with overlooking
balconies can be flagged as “vulnerable” or “unsafe” so that agents will move through the
area while staying near the edges. These flags and costs modify the traversal costs for the
pathfinding algorithm to get agents to follow more appropriate paths rather than simply
the shortest route.

An optimal NavMesh will be made up of large, convex polygons in order to provide the
most coverage of the navigable space with the least number of polygons. The aforemen-
tioned courtyard could be represented by a single polygon as shown in Figure 27.1. This
would prevent the differentiation between the exposed center and the covered edges under
the balconies. Additional polygons are required in order to represent the tactical differ-
ence between these areas.

A quick and easy way to achieve these benefits is to provide tools allowing level design-
ers to mark-up areas of the NavMesh with this extra detail. The designers need to be able
to specify the contour boundaries of the marked up areas, and then these boundaries
need to be kept fixed in the polygonal tessellation of the map. It is possible to use terrain
analysis algorithms during NavMesh generation to automate some of the tedium of
manual mark-ups, but this is beyond the scope of this article. In most cases, this manual
mark-up may only be necessary in very specific game-play instances and the general cover
approach below will suffice for most tactical pathing needs during combat.

364 Part IV.  Strategy and Tactics

27.3.2 � Cover Representation
Cover spots in game levels can be represented as discrete points. This is often the case
with waypoint graph navigation representations. Connected areas of cover are repre-
sented by links between these cover waypoints. It can be beneficial to instead consider
cover as connected, linear segments rather than discrete points. These line segments
follow the contour of the cover-providing obstacle and a height property can differenti-
ate between tall, standing cover and waist-high, crouching cover. This annotated line
segment is called a “cover segment” and provides a simple polygon approximation of the
line-of-sight blocking obstacle.

It is important to quickly be able to look up which pieces of cover can provide con-
cealment to an avatar at a given location in the world. Each polygon in the NavMesh can
store a small table with the indices to the most significant cover segments affecting that
polygon. This table of cover segments per polygon is called the Cover Map (CoverMap).
This allows a quick look-up of the objects that could provide cover or block line-of-sight to
a character on a particular polygon in the NavMesh (Figure 27.2).

This data is only an approximation of the line-of-sight blockers, since only the most
relevant cover for each NavMesh polygon is stored. A heuristic for selecting cover seg-
ments for a navigation polygon should take into account the direction of cover provided,
the distance of the cover segment from the polygon, and whether that cover is already
occluded by other cover segments. For the purposes of allowing agents to make better
tactical choices during combat, this approximation is sufficient. It is possible to improve
the accuracy by increasing the number of cover segments stored per polygon and by
tweaking the selection criteria.

27.3.3 � Pathfinding
When searching for the shortest path, the primary concern is distance or movement time.
Tactical pathfinding, on the other hand, is concerned more with finding a safe path. This
can be accomplished by taking a standard pathfinding algorithm and biasing the node

Unsafe

(a) (b)

Figure 27.1

Optimal NavMesh for a courtyard with an overhanging balcony (a). The same courtyard is
shown with an exposed designer region flagged as “unsafe” (b).

36527.  Tactical Pathfinding on a NavMesh

traversal cost by how exposed or concealed that node is to the enemy. By increasing the
cost of exposed nodes, the pathfinding algorithm will return a route that avoids more
of these exposed nodes and thus one that is more concealed. The method below will not
cover how to perform A* on a NavMesh, which can be found elsewhere [Snook 00], but
will focus on how to modify the A* costs to take cover into account in order to find a safer
path. The core of the algorithm is first presented in a simpler, 2D form in order to clearly
illustrate the concept. The next section will explain some extensions to the algorithm to
operate in more complex environments.

To start finding a safe path from an enemy, the algorithm requires a list of cover seg-
ments that can potentially shield the agent from his enemy. The navigation polygon con-
taining the enemy’s position can be used to index into the CoverMap and obtain the list of
cover segments. When considering a potential path segment, it is now possible to calculate
how much of that path segment is concealed from the enemy.

The next step is to construct a 2D frustum from the cover segment (A–B in Figure 27.3)
and the lines joining the enemy’s position to each end of the cover segment (C–A and C–B).
The normals of all these planes should point inwards to the leeward area behind the cover.
The path segment is then clipped by this frustum. The portion of the segment left in front
of all three planes is the concealed portion of the path segment.

These steps are repeated for each cover segment in the enemy’s CoverMap. By compar-
ing the total clipped length to the original segment length, the proportion of exposed to

A

B

C

D

E

F

G

H

I

J

K

L

P

M O

N

Poly 1
Poly 2

CoverMap
Nav Polygon Cover Segments
Poly 1 A, B, E, H, I, J, M, P
Poly 2 F, J, K, L, O, P

Figure 27.2

Example NavMesh showing some cover segments and how they are stored in the CoverMap.

366 Part IV.  Strategy and Tactics

concealed is calculated. This is then multiplied by the cover-bias factor and added to the
base cost of the segment, as shown in Listing 27.1. The A* search will thus be biased away
from exposed segments. The greater the cover-bias factor, the more it will cost the agent to
move along exposed segments and this will result in him going further out of his way to
find a safer, more obscured path.

Listing 27.1 also shows how designer mark-ups and agent biases can affect the path-
ing costs. When dealing with these, it is important to remember that biases above 1.0
will increase the cost of traversing the polygon, while biases below 1.0 decrease it and
may cause the cost of traversing the node to drop below the actual straight-line distance.
In general, this should be avoided as it is preferable to keep the heuristic admissible and
always modify the costs to make nodes more expensive. Care should also be taken not
to increase the costs too much, as if the heuristic is drastically different to the cost, the
A* algorithm will explore many more nodes than necessary.

27.4 � Extending the Technique to 3D

The previously presented algorithm is good for 2D or slightly undulating terrain. This is to
present the core algorithm in a simple, digestible manner. However, not all environments
are this simple. A character on a tall hill will be able to draw a line-of-sight over some
intervening cover. Vertical structures can prove problematic as a character may not be able

A B

P1 P2

C

A B

P1 P2

C

Concealed portions from multiple cover

A B

P1 P2

C

Concealed

(a) (b)

(c) (d)

Figure 27.3

Calculating the proportion of the path segment that is concealed from an enemy (a) by first
constructing a frustum from the cover segment (b) and then clipping the path segment by
this frustum (c) and repeating for each cover segment in the CoverMap (d).

36727.  Tactical Pathfinding on a NavMesh

to draw a clear line-of-sight through the floor or ceiling, but if the visibility approxima-
tion only considers cover segments, it will not take the floor or ceiling into account. For-
tunately, the technique can be extended to work with these more complex environments.

If the terrain has large height variance, a more accurate result can be obtained by treat-
ing the cover segment as a rectangular polygon representing the length and height of the
cover. A frustum can be constructed from the enemy’s position and the edges of the cover
polygon, as shown in Figure 27.4. This frustum can be used to clip the path segments to
determine how much of the segment is obscured, just as in the planar example presented
above. If the environment includes more vertical structures, it may be necessary to add
extra cover planes for floors and ceilings into the CoverMap.

27.5 � Conclusion

Agents that can navigate an environment in a tactically sound manner can greatly
enhance a video game experience. A good approximation of cover is crucial for run-time
tactical pathfinding. Using linear cover segments is an effective way of reasoning about
cover and line-of-sight blocking obstacles. This representation makes it simple to calculate
how much of a path segment is obscured by each cover segment. By combining this cover
representation with a NavMesh, it is possible to perform fast tactical pathfinding without
having to resort to high memory usage grids, regular waypoint graphs, or comprehensive
visibility look-up tables.

Listing 27.1.  Pseudocode functions to calculate the exposed portion of a path segment
and the cost of traversing that segment for A* pathfinding.

Line ClipLineByPlane(Line, Plane)
	 returns the segment of the input Line in front of the Plane

float GetSegmentExposedLength(Line pathSegmentP1P2, Point C)
	 float ConcealedLength = 0
	 For each Line coverSegmentAB do
		 Plane planeAB = CalcPlaneFrom3Points(A, B, A + up_axis)
		 Plane planeAC = CalcPlaneFrom3Points(A, C, A + up_axis)
		 Plane planeCB = CalcPlaneFrom3Points(C, B, C + up_axis)
		 Line clippedLine = ClipLineByPlane(pathSegmentP1P2, planeAB)
		 clippedLine = ClipLineByPlane(clippedLine, planeAC)
		 clippedLine = ClipLineByPlane(clippedLine, planeCB)
		 ConcealedLength += Length(clippedLine)
		 ExposedLength = Length(pathSegmentP1P2) - ConcealedLength
		 return ExposedLength

float CostForSegment(Line pathSegmentP1P2, polyFlags)
	 float segmentLength = Length(pathSegmentP1P2)
	 float exposedLength =
	 GetSegmentExposedLength(pathSegmentP1P2, enemyPosition)
	 float cost = exposedLength * agentCoverBias +
	 (segmentLength – exposedLength)
	 cost += segmentLength * polyFlags.isUnsafe * agentSafetyBias
	 return cost

368 Part IV.  Strategy and Tactics

References

[Bamford 12] N. Bamford. “Situational Awareness: Terrain Reasoning for Tactical Shooter
A.I.” AI Summit, GDC 2012. Available online (http://www.gdcvault.com/play/1015443/
Situational-Awareness-Terrain-Reasoning-for).

[Farnstrom 06] F. Farnstrom, “Improving on near-optimality: More techniques for build-
ing navigation meshes.” In AI Game Programming Wisdom 3, edited by Steve Rabin.
Charles River Media, 2006, pp. 113–128.

[Jurney 07] C. Jurney and S. Hubrick. “Dealing with Destruction: AI From the Trenches
of Company of Heroes.” GDC 2007. Available online (http://www.chrisjurney.com/).

[Lidén 02] L. Lidén. “Strategic and tactical reasoning with waypoints.” In AI Game
Programming Wisdom, edited by Steve Rabin. Hingham, MA: Charles River Media,
2002, pp. 211–220.

[Snook 00] G. Snook. “Simplified 3D movement and pathfinding using navigation meshes.”
In Game Programming Gems, edited by Mark DeLoura. Charles River Media, 2000,
pp. 288–304.

[Straatman 05] R. Straatman, W. van der Sterren, and A. Beij. “Killzone’s AI: Dynamic
Procedural Combat Tactics.” GDC 2005. Available online (http://www.cgf-ai.com/
docs/straatman_remco_killzone_ai.pdf).

[Tozour 02] P. Tozour, “Building a near-optimal navigation mesh.” In AI Game Programming
Wisdom, edited by Steve Rabin. Hingham, MA: Charles River Media, 2002, pp 171–185.

[Tozour 04] P. Tozour, “Search space representations.” In AI Game Programming Wisdom 2,
edited by Steve Rabin. Charles River Media, 2004, pp. 85–102.

[van der Leeuw 09] M. van der Leeuw. “The PlayStation 3’s SPU’s in the Real World—A
KILLZONE 2 Case Study.” GDC 2009. Available online (http://www.gdcvault.com/
play/963/The-PlayStation-3-s-SPU).

[van der Sterren 02] W. van der Sterren. “Tactical path-finding with A*.” In Game Programming
Gems 3, edited by Dante Treglia. Hingham, MA: Charles River Media, 2002, pp. 294–306.

A

B

Height
P1

P2

A

B

P1

P2

ConcealedC C

Figure 27.4

To extend the algorithm into 3D, a full frustum needs to be created from the edges of the
cover segment polygon to clip the path segment.

